几何画板实验报告要点
几何画板中的度量功能实验报告:椭圆的画法

几何画板中的度量功能实验报告一、 实验目的1. 学习应用数学知识原理来指导绘制圆锥曲线。
2. 掌握几何画板中的建立坐标系,绘制已知点以及运用几何画板中内置计算器计算比值的方法,掌握度量菜单的用法。
3. 应用几何画板中的操作类按钮的功能动态显示圆锥曲线的变化状况。
二、 实验原理圆锥曲线基本定义,椭圆的参数方程以及椭圆的标准方程。
实验内容:根据椭圆的不同定义,标准方程以及参数方程,绘制不同的椭圆曲线。
三、 实验仪器PC 计算机; 软件工具:几何画板5.04 四、实验课时:6课时 五、实验步骤 (一)知识储备椭圆的第一定义:平面内与两定点F 1、F 2(即焦点)的距离的和等于常数的动点P 的轨迹叫做椭圆. 其数学表达式为:|PF 1|+|PF 2|=2a (2a >|F 1F 2|),焦距:|F 1F 2|=2c ≤2a.椭圆的第二定义:平面内到定点F(c ,0)的距离和到定直线l :ca x 2=(F 不在l 上)的距离之比为常数,即离心率ace =(0<e<1)的点的轨迹是椭圆. (二)椭圆的画法:1、根据椭圆的第一定义画椭圆:2种画法。
2、缩放法画椭圆3、双圆法画椭圆(三)各种画法的实验步骤1、根据椭圆的第一定义画椭圆:有两种画法 画法一:(1)新建页:【文件】-【文档选项】-【增加页】-【空白页面】,命名为:根据椭圆的第一定义画椭圆——画法一。
(2)构造控制台:选择【线段工具】,在空白处画线段AB ,选中线段AB ,【构造】-【构造线段上的点】(点C ),选中点C ,【度量】-【点的值】(xx ____上在AB C ),【数据】-【计算】-输入 :上在____1AB C ,选中比值,鼠标右击-【标记比值】。
(3)画圆:选择【点工具】,在空白处,作点D 、点E ,双击点D ,选中点E ,【变换】-【缩放】-【按标记比进行缩放】-【确定】,得到点E ’(通过拖动点C ,可以控制点E ’的位置,从而改变下面的椭圆的离心率。
几何画板实验报告册

几何画板实验报告册几何画板实验报告册一、引言几何画板是一种用于绘制几何图形的工具,它由一个平面板和一些固定在板上的钉子组成。
通过在钉子之间穿线,我们可以创造出各种美丽的几何图形。
本实验报告将介绍几何画板的原理、实验过程以及实验结果,并对其应用进行探讨。
二、实验原理几何画板的原理基于线段之间的连线。
当我们在画板上选择两个钉子,并用线段连接它们时,我们可以得到一条直线。
同样,当我们选择三个钉子并连接它们时,我们可以得到一个三角形。
通过在不同的钉子之间连接线段,我们可以创造出更复杂的几何图形,如四边形、五边形等。
三、实验过程1. 准备实验材料:几何画板、彩色线或线团。
2. 将几何画板放在平坦的桌面上。
3. 选择两个钉子,并在它们之间拉一条线段,得到一条直线。
4. 选择三个钉子,并在它们之间拉线段,得到一个三角形。
5. 继续选择更多的钉子,并在它们之间拉线段,创造出更多的几何图形。
6. 使用不同颜色的线团,使图形更加鲜明。
7. 拍摄实验过程中的照片,以备后续分析。
四、实验结果通过实验,我们创造了多个几何图形,包括直线、三角形、四边形、五边形等。
这些图形在几何学中具有重要的意义,并且在日常生活中也有广泛的应用。
通过使用不同颜色的线团,我们可以使图形更加美观,增加观赏性。
五、实验分析几何画板实验不仅仅是一种简单的娱乐活动,它还有着深远的教育意义。
通过实践操作,我们可以更直观地理解几何学中的基本概念和定理。
例如,在创造三角形的过程中,我们可以体验到三条边之间的关系,从而更深入地理解三角形的性质。
此外,几何画板实验还培养了我们的观察力和创造力,激发了我们对几何学的兴趣。
六、应用探讨几何画板不仅可以用于教学和学习,还可以应用于其他领域。
例如,在建筑设计中,几何画板可以帮助建筑师绘制精确的图纸,并确保建筑结构的几何形状符合要求。
在艺术创作中,几何画板可以成为艺术家创作灵感的来源,帮助他们创造出独特而美丽的几何艺术作品。
几何画板实验报告.doc

%1.实验目的:学会使用变换中的旋转按钮
%1.实验步骤:
%1画出一条线段;
%1选中线段左端点双击,标记中心;
%1选中线段和另-端点,选择变换中的旋转按钮,并设置旋转角度为
90°,然后在依次做出另外两条边。
%1.实验结果
实验二
一实验内容:构造三角形的中线
二实验目的:学会构造线段中点
三实验步骤:
%1单击线段工具,构造出一个三角形ABC;
%1选中线段AB,执行构造-中点命令,构造出AB中点D
%1单击线段工具,连接CD.
四实验结果
实验三
一实验内容:构造三角形的外心
二实验目的:学会构造线段的中垂线
三实验步骤:
%1单击线段工具,构造出一个三角形ABC;
%1选中线段AB,执行构造■中点命令,构造出AB中点D,同时选中
AB和D,执行构造-垂线
%1在AC±重复②,两垂线交点即为外心
四实验结果
一实验内容:绘制三角形的内心
二实验目的:学会构造巳知角的平分线
三实验步骤:
%1画出任意三点A, B, C,选中A,B.C三画,执行构造-线段,构造 出三角形ABC;
%1依次选中B,A,C,执行构造-角平分线,构造出ZBAC的角平分线i;
%1按照②的步骤做出ZABC的角平分线j;
%1选中i, j,执行构造■中点命令,构造出三角形内心D;
%1选中i, j,执行显示-隐藏平分线,隐藏平分线。
四实验结果:
实验一五
一实验内容:绘制函
三实验步骤:
%1执行绘图-定义坐标系命令,新建坐标系,并将原点坐标的标签设 为0;
%1执行数据-新建函数命令,新建函数y = r;
“圆的划分”几何画板实验报告

一、实验课题PPT 上圆面积意义的建构二、实验要求PPT 切换,角平分线作法、弧及内部的作法、变换三、实验步骤1、 PPT 切换演示文稿1—视图—工具栏—控制工具箱—其它控件—shockwave Flash Object —几何画板.gsp —新建文件夹(演示文稿1、几何画板.gsp )新建文件夹—打开演示文稿1—右击属性—Movie —2.swf2、角平分线作法作∠AOB 选择A 点—选择O 点—选择B 点—构造—角平分线3、弧及内部的作法先选择圆心O ,再选择圆上两点A 、B —构造—圆上的弧—选择圆心和A 、B 两点—构造—三角形内部—显示—颜色—弧的内部4、扇形的旋转变换:第一步:圆的划分1 、构造圆:(1)绘图--定义坐标系 (2)选定y 轴--构造轴上一点O (3)选定点O 以及y 轴—构造--作垂线(4)选定垂线—构造--在垂线上取点A (5)依序选定O 、A —构造—圆 (6)隐藏垂线。
2、十六等分圆周:(1) 双击点O (2)选定点A —构造--旋转22.50,得点A1(3)如此类推,依次把圆周十六等分(1)选定y 轴—构造—轴上的一点B (2)依序选择点O 、A 量(3)选定点B —变换--依标记向量平移得到点C (4)构造线段CB D (5)依次选取点C ,D —变换--记为标记向量 (6)点A —变换-- E (7)连线段AE (8)线段AE —变换--旋转22.50 (9第二步:上下两半圆1 、构造十六条半径把圆十六等分:(1)选定O 、A ,构造射线OA (2)选定射线OA —构造--任取点F (OF>2OA )(3)依次选取点O 、F —变换--标记向量 (4)选定圆O 及圆心O 、圆周上等分点—变换--平移(5)连接圆心与等分点,得到十六条半径(选定圆心和等分点ctrl+L 构造线段)2 、填充两个半圆:(1) 依序选定圆心、逆时针圆上两点—构造—圆上的弧(2)选定半圆弧—构造—内部—扇形内部—显示—颜色,两个半圆填充不同的颜色第三步:作扇形的旋转变换1 作四段圆弧: (1)在射线OA 上任取点G ,GF>4OA(2)依次选取点F ,G —变换--标记向量(3)选定右上1/4个圆上的等分点及半径、圆心—变换--依标记向量平移2作圆:(1)在y 轴点B 的下方任取点H (2)依序选定点H 、点B —构造--以圆心和圆周上的一点绘圆 3 取点: (1)在圆H 上任取点L(2)双击点H ,选定点L —变换—旋转,依次旋转11. 250,22. 50,33.750,450,得到点L 1,L 2,L 3, L 4. 4 旋转扇形1: (1)依序选定H 、L 3、L 4构造—圆上的弧 (2)选定弧—构造—弧上一点M(3)依序选定L3,H,M —变换--标记角度(4)选定扇形,不包括点A12,单击编辑中的显示隐藏按钮,标签改为显示对象1(5)双击点A12将1/4圆依标记角度旋转5 旋转扇形2 : 类似第四步,在弧L 2L 4上任选点R, 取∠L 2HR 为标记角度;选中右边三个扇形,不包括左边扇形的半径和圆心如图,点击编辑中的显示隐藏按钮,标签改为显示对象2,双击A11将为标记中心,选中右边三个扇形,包括左边扇形的半径,依标记角度旋转.6 旋转扇形3:类似第四步,在弧L 1L 3上任选点S, 取∠L 1HS 为标记角度;双击点A10为标记中心,选中右边二个扇形,包括左边扇形的半径和圆点,依标记角度旋转;选中右边两个扇形,不包括左边扇形的半径和圆点,如图,点击编辑中的显示隐藏按钮,标签改为显示对象3。
几何画板_实验报告

_____梯形的面积推导公式____实验报告姓名学号日期指导教师实验项目设计一个“梯形面积推导公式”的演示一、上机实验的问题和要求(需求分析):用几何画板设计一个“梯形面积推导公式”的演示。
二、程序设计的基本思想,原理和算法描述:1、打开打开几何画板,建立新绘图2、画两个全等的梯形用【文字工具】在画板上输入“梯形的面积公式推导”----用【线段直尺工具】画一个梯形ABCD----用【点工具】在空白处画一点E----选中点E和线段BC构造圆----用【点工具】在圆上画一点F----构造线段EF----度量∠ABC的度数----选中点E标记中心----选中EF旋转----标记角度单击参数----选中点E 和线段AB构造圆----选中新线段和新圆构造交点G----隐藏新线段和新圆----构造线段EG----度量∠DAB的度数----选中点G标记中心----选中EG旋转----标记角度单击参数----选中点G和线段AD构造圆----选中新线段和新圆构造交点H----隐藏新线段和新圆----构造线段GH和线段FH3、做运动的梯形选中点E和线段BC构造平行线----选中圆和平行线构造交点1和2----选择点E和点B编辑操作类按钮移动----标签:移动E→B----选择点F和点1 编辑操作类按钮移动----标签:旋转----选中点E和点A 编辑操作类按钮移动----标签:移动E→A----依次选择三个按钮(移动E→B--旋转--移动E→A)编辑操作类按钮系列----标签:移动----选择点F和点2编辑操作类按钮移动----标签:旋转还原----在空白处画一点3----选择点E和点3编辑操作类按钮移动----标签:移动E→3----隐藏点123----依次选择三个按钮(移动E →B--旋转还原--移动E→3)编辑操作类按钮系列----标签:还原----隐藏前三个按钮和一些不用的东西三、调试和运行程序过程中产生的问题及采取的措施:制作系列按钮时要按顺序依次选定按钮四、源程序及注释:五、运行输出结果及分析:。
几何画板实验报告7

实验报告姓名学号日期一、实验目的 二、实验内容1.绘出函数xb ax x f +=)(在区间[-9,9]的图像。
2.绘出函数)32sin(3π+=x y 在区间[π,5π]的图像。
3.绘制出半圆内接矩形面积的函数的图像。
4.绘制出函数()⎩⎨⎧<<-<<+=.05,sin 30,4x x x x x y 的图像。
5.已知21A F ,分别是椭圆的一焦点与顶点,P 点是椭圆上的一点,求21PA F ∠的最大值。
6.做出半圆沿与BC平行直线DE折叠后重叠部分面积的最大值。
三、实验步骤1.绘出函数xbax x f +=)(在区间[-9,9]的图像。
步骤:①做出点A(-9,0)、B(9,0),连接AB ,做出函数xbax x g +=)(②在AB 上取一点E ,度量E 的横坐标,计算)(E x g ③做出点(E x ,)(E x g ),选中点E 及(E x ,)(E x g )做出轨迹2.绘出函数)32sin(3π+=x y 在区间[π,5π]的图像。
步骤:①做出点A(π,0)、B(5π,0),连接AB ,做出函数)32sin(3π+=x y②在AB 上取一点C ,度量C 的横坐标,计算)(C x f ③做出点(C x ,)(C x f ),选中点C 及(C x ,)(C x f )做出轨迹3.绘制出半圆内接矩形面积的函数的图像。
步骤:①先以原点为圆心绘制出半圆,接着在半圆上做一点C ,关于Y 轴做出对称点D ,做出半圆的内接矩形CDEF ;②度量出C 点的横坐标,以及矩形CDEF 的面积;③以F 点的横坐标为横坐标,以矩形FGIH 的面积为纵坐标,绘制出点G ; ④选择C ,G 点,利用构造中的轨迹功能,做出半圆内接矩形面积的函数图像。
4. 绘制出函数()⎩⎨⎧<<-<<+=.05,sin 30,4x x x x x y 的图像。
步骤:①做出A (-5,0),B (3,0),连接AB ;做平行与X 轴的直线,过点A ,点O ,点B 做该直线的垂线,交点为E,D,F 点②在线段AB 上任选一点G ,构造线段ED ,过G 点做线段ED 的垂线,垂足为H ;③度量H x ,计算H x sin ,做出点J )(H H x x sin ,;选择G ,J 点,构造轨迹,即为(-5,0)上x sin 的图像④将点G 移至OB ,构造线段DF ,过点G 做线段DF 的垂线,垂足为K ;⑤度量K x ,计算)4(+K K x x ,做出点L )()4(,+K K K x x x ;选择G ,L 点,构造轨迹,即为(3,0)上)4(+x x 的图像;最后移动点G ,可以发现两个图像是一个整体。
几何画板教学实践研究报告

几何画板教学实践研究报告研究背景几何学作为数学的重要分支,对于培养学生的空间想象力和逻辑推理能力具有重要作用。
传统的几何学教学方法主要以纸笔作图为主,限制了学生对几何图形的自由探索和创造性思维的培养。
为了提高几何学的教学效果,本研究选择了使用几何画板进行教学实践,以探究该方法对学生学习成绩和兴趣的影响。
研究目的本研究的主要目的是探究几何画板教学方法在中学几何学教学中的应用效果,包括学生成绩和学习兴趣方面的影响。
通过实践验证,为推广该教学方法提供科学依据和实践参考。
研究设计受试者选择本研究选择了某中学八年级的两个班级作为实验组和对照组。
两个班级的学生在数学成绩和数学兴趣上没有显著差异,确保两组学生在初始条件上的一致性。
实验组设计实验组的学生将使用几何画板作为辅助工具进行几何学学习和练习。
教师会使用几何画板进行演示,并鼓励学生使用画板进行自主探索和解决问题。
实验组的学生将在每个几何学习单元结束后进行一次小测验,以评估他们的学习成果。
对照组设计对照组的学生将继续使用传统的纸笔作图进行几何学学习和练习。
教师仍然会进行演示和解释,但学生的作图工具将限制在纸上。
对照组的学生也将在每个几何学习单元结束后进行一次小测验。
数据收集和分析研究将收集学生的小测验成绩,并分析实验组和对照组的学习成绩差异。
此外,学生的学习兴趣也将通过问卷调查进行评估。
统计方法将用于分析数据,并得出结论。
研究实施研究从某中学八年级的两个班级中选择了60名学生作为研究对象。
其中30名学生分为实验组,使用几何画板进行教学;另外30名学生分为对照组,使用传统的纸笔作图进行教学。
研究进行了8个月,每周进行两节数学课,共进行16个几何学单元的教学。
在实验组的教学中,教师会根据课程要求,使用几何画板进行演示和解释。
学生会被要求使用画板进行自主探索和解决问题,并根据自己的理解进行作图。
在对照组的教学中,教师则使用传统的纸笔进行演示和解释,学生在纸上作图。
几何画板基本操作实验报告

几何画板基本操作实验报告一、实验目的1、认识几何画板2、能够使用几何画板的基本绘图工具绘制简单的图形3、掌握动画按钮的制作方法。
二、实验原理通过点的变化来引起动态参数的变化,从而充分体现正弦函数振幅,周期以及初相的变化而引起的函数图像的变化。
三、实验内容绘制函数sin()y A xωφ=+的图像,观察函数的振幅、周期和初象分别与Aωφ、、之间的关系。
四、实验课时:4课时五、实验步骤(略)1、绘制方法:线段坐标法和参数法2、绘制步骤(1)线段坐标法:①新建页:【文件】-【文档选项】-【增加页】-【空白页面】,命名为:三角函数——线段坐标法。
②绘制坐标系:点击【绘图】-【定义坐标系】,右击【隐藏网格】③设置角度单位:【编辑】-【参数选项】,将角度的单位改为【弧度】④选定自变量:在x轴上任取一点F,【度量】-【横坐标】,度量值为X F⑤选取动态的振幅、周期:在x轴上选取两个点H、I,选中两点,点击【变换】→【平移】,固定距离为1厘米,固定角度为90°。
选中H、H’构造射线,并在射线上选取一点,右击此点【属性】-【标签】-(改变振幅A)。
再次选中此点,【度量】-【纵坐标】,并将度量值的标签改为“A”。
选中I、I’构造射线,并在射线上选取一点,右击此点【属性】-【标签】-(改变周期ω)。
再次选中此点,【度量】-【纵坐标】,并将度量值的标签改为“ω”。
⑥选取动态的初相位:选中原点D和单位点E,【构造】-【以圆心和圆周上的点作圆】,【构造】-【圆上的点】,将圆上的点标签改为“改变初相位φ”,依次选中点E、D、改变初相位φ,【度量】-【角度】,将度量的角度值标签改为“φ”。
⑦建立函数并绘制图像:【数据】-【计算】→运用A、ω、φ输入:A*sin(ω*X F+φ),点击确定。
依次选中X F、Asin(ωX F+φ),【绘图】-【绘制点()(P)】,点的标签为“J”,【选中点J】-【选中点F】-【构造】-【轨迹】⑧隐藏不需要显示的对象:选中要隐藏的对象,【编辑】-【操作类按钮】-【显示/隐藏】,点击按钮:【隐藏对象】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的:
二、实验内容:
1、作出三角形的垂心。
2、作出三角形的外接圆与内切圆。
外接圆
内切圆
3、验证:三角形三边的中点、三条高的垂足、垂心到三顶点的中点共圆。
4、作出两圆的内外公切线。
三、实验步骤
1、作出三角形的垂心。
步骤:
构造△ABC;
选中点A和线段BC,构造垂线;
同理,构造线段AB、BC上的垂线;
(5)依次选定点P和线段EF,构造线段EF的轨迹,即线段EF运动的轨迹。
3、三角形ABC顶点A在一定圆上运动,另外两个顶点固定,作出三角形ABC外心的轨迹。
步骤如下:
(1)绘制圆O以及圆O上一点A;
(2)绘制三角形ABC;
(2)作AC、BC的中垂线交于K,即三角形ABC外心;
(3)选定点A和K,构造点K的轨迹,即三角形ABC外心K的轨迹。
依次选中M、D(H),接着“构造”—“以圆心和圆周上的点作圆”—“生成一个圆M交圆D于点O和N;
分别构造出直线OH和直线NH,即为所求的外公切线。
内公切线步骤:
构造线段FP交直线CD于点Q;
选中点C、Q,构造线段,再构造中点R;
依次选中点R、C(Q),构造圆交圆C于点S、T;
分别构造出直线QT和直线QS,即为所求的内公切线。
(4)依次选定点E、G、F,构造角平分线交直线OE于H;
(5)依次选定点H、E,构造圆H,即与定圆O、定直线CD都相切的圆;
(6)依次选定点E、H,构造圆心H的轨迹。
实验三应用轨迹与跟踪功能绘制图形
1、根据双曲线几何定义作出双曲线的轨迹.
画法:双曲线上任意一点到两焦点的距离之差的绝对值为定值,
利用到线段垂直平分线上任意一点到线段两端的距离相等, .
故 (线段AB的长度,为定值).
2、设A,B为平面上的两个定点,a为定值,P满足条件PA×PB=2a,作出P的轨迹图形.改变AB的距离观察轨迹图形的变化.
画法:利用度量,及计算器,确定出有比值关系的线段长度.
P为给定线段CD的延长线上任意一点,满足 ,
A、B为固定的两点,分别以它们为圆心,分别以线段PC、PD的长度为半径,则两圆的交点为满足条件的点.以P点为主动点,两交点为别动对象即可构造轨迹即可.
2、设ABCD为矩形,P是AB上的一动点,过P作PE⊥AC于E,PF⊥BD于F,
(1)作出EF的中点轨迹。
(2)作出线段EF运动的轨迹。
步骤如下:
(1)绘制矩形ABCD,并连接BD、AC;
(2)绘制AB上的一动点P,再构造AC、BD过P的垂线分别交于E、F;
(3)构造线段EF和它的中点I;
(4)依次选定点P和I,构造点I的轨迹,即EF的中点轨迹;
二、设置离心率. 2.1画一条线段AB;2.2作出线段AB对象上的点E;2.3通过度量、计算,求得线段AE与EB的比(离心率);2.4将比值标签改为e.
三、设置作轨迹所需的动态半径. 3.1过任一点D作出两条相交直线m、n; 3.2以D为圆心,AE为半径画圆交直线m于M;3.3以D为圆心,EB为半径画圆交直线n于N;作直线MN;3.4作直线m上一点G,过G作MN的平行线交n于H;3.5作出线段DG、DH.
5、根据圆锥曲线统一定义作出圆锥曲线的轨迹.
画法:平面内与一个定点的距离和一条定直线的距离之比等于常数e的点的轨迹,通过改变e的大小,改变圆锥曲线的类型.
当e>1时,它是双曲线
当e=1时,它是抛物线
当0<e<1时,它是椭圆
方法和步骤:
一、确定对称轴、焦点、准线. 1.1打开《几何画板》,新建文件;1.2画一条水平直线x; 1.3作出直线x对象上的点K、F(焦点);1.4过K作直线x的垂线l(准线).
3、验证:三角形三边的中点、三条高的垂足、垂心到三顶点的中点共圆。
步骤:
构造△ABC;
选中线段AB、BC、AC分别构造中点D、E、F;
选中线段BC和点A构造垂线,垂足为H,同理得到垂足L、K,三条垂线的交点为M;
选中点A和M构造线段,再选中线段AM构造中点O,同理得到点N、P;
选中点E、P、O构造过三点的弧,选中点O、D、E构造过三点的弧;
交点D即为垂心。
2、作出三角形的外接圆与内切圆。
外接圆步骤:
构造△ABC;
选中线段AB,构造中点E;
选中线段AB和点E,构造垂线;
同理构造线段AC、BC上的中垂线,交点为K;
选中点K、A,构造圆。
内切圆步骤:
构造△ABC;
选中线段AB、AC,构造角平分线;
选中AB、BC,构造角平分线,交点为D;
选中A、D,构造圆。
注意:在用计算器算长度之比时,被除数要先乘以1,在点击单位“厘米”.
3、作出过平面一定点的直线系.
画法:先画一个圆,任取圆上一点C与圆心A构造直线,并以C为主动点,直线AC为被动对象构造轨迹即可.
4、作出过一个定点且半径为定长的圆系.
画法:先作一个圆A,并在圆上任取一点C;以C为圆心,线段AC的长度构造圆C;以C为主动点,圆C为被动对象构造轨迹即可.
4、作出两圆的内外公切线。
外公切线步骤:
构造两圆C、D,圆心分别为C、D(注:圆C的半径大于圆D的半径);
选中点C、D,构造直线CD;
在圆D上任意取一点F,连接构造线段DF;
选中点C、线段DF,构造平行线交圆C于点G、P
选中点G、F,再构造直线GF交直线CD于点H;
选中点D、H,构造线段DH,再构造线段DH的中点M;
4、作出与已知定圆、定直线都相切的圆的圆心的轨迹圆O上一点E;
(2)选定点O、E构造直线OE;
(3)选定直线OE和点E,构造垂线交直线CD与F;
(4)依次选定点E、F、D,构造角平分线交直线OE于H;
(5)依次选定点H、E,构造圆H,即与定圆O、定直线CD都相切的圆;
(6)依次选定点E、H,构造圆心H的轨迹;
(7)依次选定E、F、C,构造角平分线交直线OE于I,步骤同(4)(5)(6),构造圆心I的轨迹,即可得出完整的圆心的轨迹。
老师的方法:
步骤如下:
(1)绘制圆O和直线CD以及圆O上一点E;
(2)选中点O、E构造直线OE交CD于F;
(3)选定直线OE和点E,构造垂线交直线CD与G;
四、实验的结论及实验中存在的问题。
实验二
一、实验内容及步骤
1、设P是圆O上的一动点,C为半径OB上一定点,连接PC并作PC中垂线交OP于Q,求Q的轨迹
步骤如下:
(1)绘制圆O和其半径OB上一点C;
(2)绘制圆O上一点P,连接PC、PO;
(3)作PC的中垂线交OP于Q;
(4)依次选定点P和Q,构造Q的轨迹。