运筹学之单纯形法汇总

运筹学

1(单纯形法)例:Min Z=-2x1-x2+x3 , s.t. 3x1+x2+x360≤ x1-x2+2x310≤,x1+x2-x320≤,xj 0≥,解析:对第一、二、三个不等式添加松弛变量x4 x5 x6,则原线性问题化成标准形形式为:(略)因为B=(A4 A5 A6)是一单位矩阵,且b=(60 10 20)T>0 所以基B 是可行基,x4 x5 x6为基变量,x1 x2 x3为非基变量,基B 对应的基本可行解为 检验数02>=ξ,故当前解不是最优解,A1列中有三个元素a11 a21 a31 均为正数,取 min ()31 3 212111,,a b a b a b =min ()1 20110360,,=10故转轴元为a21,x1为进基变量,x5为出基变量,进行旋转后得下表(略)它对应的基本可行解为x=(10 0 0 30 0 10)T,其目标函数值为Z0=-20,但,032>=ξ仍不是最优解, (以下的过程跟前面一样)最后得Z0=-35,检验向量0<ξ故为最优解。故基本可行解x*=(15 ,5 ,0 )Tm 目标函数值为Z0=-35。 2(两阶段法)例 max z=3x1+4x2+2x3 s.t. x1+x2+x3+x430≤, 3x1+6x2+x3-2x40≤, x24 ≥解:化为标准形形式为min z=-3x1-4x2-2x3 s .t.分别加x5 x6 x7松弛变量,因为该线性规划的系数矩阵的系数矩阵已包含两个单位向量,就是A5=(100)T ,A6=(010)T ,第一阶段只要增加一个人工变量x8得到辅助LP 问题为min g=x8 s.t .以下略,作如下表(略),将表中第三行加到关于g 的第0行中,得到第一张单纯形表(略)按单纯形迭代,表略,第一阶段结束,得到辅助问题的一个最优解, 3(对偶单纯形法)例 min 2x1+3x2+4x3, s.t. x1+2x2+x33≥ 2x1-x2+3x34≥ x1 x2 x3 0≥,解:引进非负的剩余变量x40≥,x50≥,将不等式约束化为等式约束 直接利用对偶单纯形法求解,b2=- 40,故原问题最优解为x*=( )T,其最优值Z0=() 4 写出下面线性规划的对偶规 划。Min 10x1+10x2, s.t. 5x1+2x25≥,x1+4x23≥,x1+3x22≥,8x1+2x24≥,x1 x2为自由变量,解:C=(10,10)T ,b=(5 3 2 4 )T, A=(5 1 1 8;2 4 3 2 )竖着写,根据定义其对偶问题max (5 3 2 4)(w1 w2 w3 w4 )竖写,s. t.(5 1 1 8;2 4 3 2 )横写,(w1 w2 w3 w4 )竖写=(10,10)竖写,按分量形式写出的对偶问题是:max 5w1+3w2+2w3+4w4,s.t.5w1+w2+w3+8w4=10,2w1+4w2+3w3+2w4=10,wj0≥.

运筹学毕业论文-单纯形法

1 算法分析 1.1单纯形算法 1.1.1单纯形法的基本思路 利用求线性规划问题基本可行解(极点)的方法求解较大规模的问题是不可行的。有选择地取基本可行解,即从可行域的一个极点出发,沿着可行域的边界移动到另一个相邻的极点,要求新极点的目标函数值不比原目标函数值差。在线性规划的可行域中先找出一个可行解,检验它是否为最优解,如果是最优解,计算停止;如果不是最优解,那么可以判断线性规划无有限最优解,或者根据一定步骤得出使目标函数值接近最优值的另一个基本可行解。由于基本可行解的个数有限,所以总可以通过有限次迭代,得到线性规划的最优基本可行解或判定线性规划无有限最优解。 1.1.2单纯形法的基本步骤描述 第1步:求初始基可行解,列出初始单纯形表。 对非标准型的线性规划问题首先要化成标准形式。由于总可以设法使约束方程的系数矩阵中包含一个单位矩阵()12,,,m P P P , 以此作为基求出问题的一个初始基可行解。 为检验一个基可行解是否最优,需要将其目标函数值与相邻基可行解的目标函数值进行比较。为了书写规和便于计算,对单纯形法的计算设计了一种专门表格,称为单纯形表(见表1-1)。迭代计算中每找出一个新的基可行解时,就重画一单纯形表。含初始基可行解的单纯形表称初始单纯形表,含最优解的单纯形表称最终单纯形表。 第2步:最优性检验。

表1-1单纯形表 如表中所有检验数c j -z j ≦0,且基变量中不含有人工变量时,表中的基可行解即为最优解,计算结束。当表中存在c j -z j >0时,如有P j ≦0,则问题为无界解,计算结束;否则转下一步。 第3步:从一个基可行解转换到相邻的目标函数值更大的基可行解,列出新的单纯形表。 1.确定换入基的变量。只要有检验数δj >0,对应的变量x j 就可作为进基的变量,当有一个以上检验数大于零时,一般从中找出最大一个δk ,其对应的变量x k 作为进基变量。 2.确定出基的变量。min |0i r ik ik rk b b a a a θ???=>=?????确定x r 是出基变量,a rk 为主元。 3.用进基变量x k 替换出基变量x r ,得到一个新的基()111, ,,,, ,r k r m P P P P P -+。 对应这个基可以找出一个新的基可行解,并相应地可以画出一个新的单纯形表(表1-2)。 (1) 把第r 行乘以rk a 1 之后的结果填入新表的第r 行;对于r i ≠行,把第r 行乘以?? ? ? ?-rk ik a a 之后与原表中第 i 行;在B x 列中的r 行位置填入k x ,其余行不变;在B c

运筹学第五

第 六 次课 2学时 本次课教学重点: 单纯形法原理、基变换、最优检验 本次课教学难点: 单纯形法原理、基变换、最优检验 本次课教学内容: 第五章 单 纯 形 法 §1 单纯形法的基本思路和原理 一、 单纯形法的基本思路: 从可行域中某一个顶点开始,判断此顶点是否是最优解,如不是,则再找另一个使得其目标函数值更优的顶点,称之为迭代,再判断此点是否是最优解。直到找到一个顶点为其最优解,就是使得其目标函数值最优的解,或者能判断出线性规划问题无最优解为止。 通过第二章例1的求解来介绍单纯形法: 在加上松弛变量之后我们可得到标准型如下: 目标函数: max 50x1+100x2 约束条件:x1+x2+s1≤300, 2x1+x2+s2≤400, x2+s3≤250. xj ≥0 (j=1,2),sj ≥0 (j=1,2,3) 它的系数矩阵 ??? ? ? ??==100100101200111),,,,(54321p p p p p A 其中pj 为系数矩阵A 第j 列的向量。A 的秩为3,A 的秩m 小于此方程组的变量的个数n , 为了找到一个初始基本可行解,先介绍以下几个线性规划的基本概念。 二、基本概念 基: 已知A 是约束条件的m ×n 系数矩阵,其秩为m 。若B 是A 中m ×m 阶非奇异子矩阵(即可逆矩阵),则称B 是线性规划问题中的一个基。 基向量:基B 中的一列即称为一个基向量。基B 中共有m 个基向量。 非基向量:在A 中除了基B 之外的一列则称之为基B 的非基向量。 基变量:与基向量pi 相应的变量xi 叫基变量,基变量有m 个。 非基变量:与非基向量pj 相应的变量xj 叫非基变量,非基变量有n -m 个。 由线性代数的知识知道,如果我们在约束方程组系数矩阵中找到一个基,令这个基的非基变量为零,再求解这个m 元线性方程组就可得到唯一的解了,这个解我们称之为线性规划的基本解。 在此例中我们不妨找到了 ??? ? ? ??=1010010113B 为A 的一个基,令这个基的非基变量x 1,

运筹学习题解答(chap1 线性规划及单纯形法)

第一章 线性规划及单纯形法 一、写出下列线性规划的标准形式,用单纯形法求解,并指出其解属于哪种情 况。 1、P55,1.3(a) 21510m ax x x Z += ⎪⎩⎪ ⎨⎧≥≤+≤+0x ,x 8x 2x 59x 4x 3. t .s 2 12121 解:将模型化为标准型 21510x x Z Max += ⎪⎩⎪ ⎨⎧≥=++=++0,,,825943. .4 32142 13 21x x x x x x x x x x t s 单纯形表如下

因所有检验数0j ≤σ,已达最优解,最优解是)2,1(*=X ,最优目标值为2 。由 检验数的情况可知,该问题有唯一最优解。 2、 P55,1.3(b) 21x x 2Z m ax += s.t ⎪⎪⎩⎪⎪⎨ ⎧ ≥≤+≤+≤0 ,5 24261552121212x x x x x x x 解:将模型化为标准型 21x x 2Z Max += t s . ⎪⎪⎩⎪⎪⎨ ⎧ ≥=++=++=+0 x ,...,x ,x ,5x x x ,24x x 2x 6,15x x 552152142 132 单纯形表如下

因所有检验数0j ≤σ,已达最优解,最优解是)0,0,2 ,2,2(X *=,最有目标值为 2 17 。由检验数的情况可知,该问题有唯一最优解。 3、 3212x x x Z Min -+=, t s . ⎪⎪⎩⎪⎪⎨ ⎧≥≤++≤+-≤-+0 ,,,5,822,4223213213 21321x x x x x x x x x x x x 解:将模型化为标准型: 3212x x x Z Min -+= t s . ⎪⎪⎩⎪⎪⎨ ⎧≥=+++=++-=+ -+0 ,,,5,822,42232163 2153 214 321x x x x x x x x x x x x x x x 用单纯形法迭代

《运筹学》知识点总结

1.用图解法求解下列线性规划问题,并指出问题具有惟一最优解、无穷多最优解、无界解还是无可行解。 ?? ???≤≤≤≤≤++=8 3105120106max 21212 1x x x x x x z 2.将下述线性规划问题化成标准形式。 (1)?????? ?≥≥-++-≤+-+-=-+-+-+-=无约束 4,03,2,12321422245243min 43214 32143214 321x x x x x x x x x x x x x x x x x x x x z 解:令z z -=',' '4' 44x x x -= ???????≥=-+-++-=+-+-+=-+-+-+-+-=0,,,,,,23214 2222455243'max 6 5''4'43216' '4'43215' '4'4321''4'4321''4'4321x x x x x x x x x x x x x x x x x x x x x x x x x x x x x z 3.分别用图解法和单纯形法求解下述线性规划问题,并对照指出单纯形表中的各基可行解对应

图解法中的可行域的哪个顶点。 ??? ??≥≤+≤++=0,825943510max 2 121212 1x x x x x x x x z 解:①图解法: ②单纯形法:将原问题标准化: ??? ??≥=++ =+++=0,,,825943510max 4 32142 13 212 1x x x x x x x x x x x x z C j 10 5 0 0 θ 对应图解法中的点 C B B b x 1 x 2 x 3 x 4 0 x 3 9 3 4 1 0 3 O 点 0 x 4 8 [5] 2 0 1 8/5 σj 0 10 5 0 0 0 x 3 21/5 0 [14/5] 1 -3/5 3/2 C 点 10 x 1 8/5 1 2/5 0 1/5 4 σj -16 0 1 0 -2 5 x 2 3/2 0 1 5/14 -3/14 B 点 10 x 1 1 1 0 -1/7 2/7 σj 35/2 -5/14 -25/14 最优解为(1,3/2,0,0),最优值Z=35/2。

运筹学方法总结

运筹学方法总结 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

一.线性规划 1.问题背景:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人 们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题 2.求解方法: a.单纯形法: 适用的问题:约束条件全部为≤,右边常数全部为非负,对目标函数的系数没有要求。 min z=3x1-2x2 s.t. x1+2x2≤12 2x1+ x2≤18 x1,x2≥0 求解步骤: STEP 0 将线性规划问题标准化 STEP 1 是否有明显的初始基础可行解,如果有,转STEP 3,否则,转STEP 2。 STEP 2 构造辅助问题,用两阶段法求解辅助问题。如果辅助问题最优解的目标函数值大于0,原问题无可行解,算法终止。否则转STEP 3。 STEP 3 写出单纯形表,将基变量在约束条件中的系数消为单位矩阵,将基变量在目标函数中的系数消为0。转STEP 4。 STEP 4 如果所有非基变量的检验数全为负数或0,则已获得最优解,算法终止。否则,选择检验数为正数并且绝对值最大的非基变量为进基变量。转STEP 5。 STEP 5 如果进基变量在约束条件中的系数全为负数或0,目标函数无界,算法终止。否则根据右边常数和正的系数的最小比值,确定离基变量。转STEP 6。 STEP 6 进基变量列和离基变量行交叉的元素称为主元。对单纯形表进行行变换,将主元变为1,将主元所在列的其他元素变为0。转STEP 4。 b.对偶单纯形法: 适用的问题:约束条件中至少有一个是≥,相应的右边常数为非负,目标函数系数全部为非负。 min z=3x1+2x2 s.t. x1+2x2≥12 2x1+ x2≤18 x1,x2≥0 求解步骤: 步骤1 确定原问题(L)的初始基B,使所有检验数,即是对偶可行解,建立初始单纯形表。 步骤2 检查基变量的取值,若≥0,则已得最优解,计算停;否则求确定单纯形表第L行对应的基变量为旋出变量。 步骤3 若所有,则原问题无可行解,计算停;否则,计算确定对应的为旋入变量。 步骤4 以为主元作(L,K)旋转变换,得新的单纯形表,转步骤2。可以证明,按上述方法进行迭代,所得解始终是对偶可行解。 二.运输问题 1.问题背景:一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个

运筹学知识点

运筹学知识点: 绪论 1.运筹学的起源 2.运筹学的特点 第一章线性规划及单纯形法 1.规划问题指生产和经营管理中如何合理安排,使人力、物力等各种资源得到充分利用,获得最大效益。 2.规划问题解决两类问题:一是给定一定数量的人力、物力等资源,研究如何充分利用,以发挥其最大效果;二是已给定计划任务,研究如何统筹安排,用最少的人力和物力去完成。 3.规划问题的数学模型包含三个组成要素:决策变量、目标函数(单一)、约束条件(多个)。 线性规划问题的数学模型要求:决策变量为可控的连续变量,目标函数和约束条件都是线性的。 4.线性规划问题的标准形式:目标函数为极大、约束条件为等式、决策变量为非负、变量为非负 5.划标准型时添加的松驰变量、剩余变量和人工变量 6.理解可行解、最优解、基、基解、基可行解等概念,且掌握各类解间的关系 7.用图解法理解线性规划问题的四种解的情况:无穷多最优解、无界解、无可行解、唯一最优解 8.用图解法只有解决两个变量的决策问题 9.线性规划问题存在可行解,则可行域是凸集。 10.线性规划问题的基可行解对应线性规划问题可行域的顶点。 11.线性规划问题的解进行最优性检验:当所有的检验数小于等于零时为最优解;尤其当检验数小于零时(即不等于零)有唯一最优解;当某个非基变量检验数为时,有无穷多最优解;当存在某个检验数大于零且对应的系数又小于等于零时,有无界解。 12.单纯形法的计算过程,可能出计算题 13.入单纯形表前首先要化成标准形式。 14.确定换出变量时根据θ值最小原则,且要求公式中对应的系数大于零。 15.当线性规划中约束条件为等式或大于等于时,划为标准型后,系数矩阵中又不包含单位矩阵时,需要添加人工变量构造一个单位矩阵作为基。 16.人工变量的系数为足够大的一个负值,用—M代表 17.一般线性规划问题的数学建模题(生产计划问题、人才资源分配问题、混合

运筹学复习资料(1)

运筹学复习 一、单纯形方法(表格、人工变量、基础知识) 线性规划解的情况:唯一最优解、多重最优解、无界解、无解。其中,可行域无界,并不意味着目标函数值无界。 无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。有界可行域对应唯一最优解和多重最优解两种情况。 线性规划解得基本性质有:满足线性规划约束条件的可行解集(可行域)构成一个凸多边形;凸多边形的顶点(极点)与基本可行解一一对应(即一个基本可行解对应一个顶点);线性规划问题若有最优解,则最优解一定在凸多边形的某个顶点上取得。 单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。换基迭代要求除了进基的非基变量外,其余非基变量全为零。 检验最优性的一个方法是在目标函数中,用非基变量表示基变量。要求检验数全部小于等于零。 “当x 1由0变到45/2时,x 3 首先变为0,故x 3 为退出基变量。”这句话是最 小比值法的一种通俗的说法,但是很有意义。这里,x 1为进基变量,x 3 为出基变 量。将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。 单纯型原理的矩阵描述。 在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m矩阵与其最初的那一列向量的乘积。 最初基变量对应的基矩阵的逆矩阵。这个样子:

'1 222 1 0 -32580 1 010 0 158P B P -?????? ??????==?????? ???????????? 51=5 所有的检验数均小于或等于零,有最优解。但是如果出现非基变量的检验数 为0,则有无穷多的最优解,这时应该继续迭代。解的结果应该是: X *= a X 1*+(1-a)X 2* (0<=a<=1) 说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。 无最优解的情况就是:应该进基的变量所对应的列的系数全部小于零。若存在某个λj >0,且所有的a ij <0,则不存在有界最优解。 人为地构造一个单位矩阵来充当初始可行基,再通过单纯形迭代将它们逐个地从基变量中替换出来。若经过基的变换,基变量中不再含有非零的人工变量,这表示原问题有解。若在最终表中当所有C j -z j ≤ 0 ,而在其中还有某个非零人工变量,这表示无可行解。 大M 法原理核心:打破原来的约束,再设法恢复。 大M 法基本思想:假定人工变量在基变量中的价值系数为一个绝对值很大的-M (M>>0,对于极小化问题用+M),这样只要基变量中还存在人工变量,目标函数就不可能实现极值。 两阶段法原理:第一阶段是据给定的问题构造其辅助问题,为原问题求初始基本可行解。加上人工变量后,要求的就是人工变量退出,辅助问题是人工变量之和的最小值必须为零。 第二阶段是将第一阶段求出的最优解,作为第二阶段的初始基本可行解,然后在原问题的目标函数下进行优化,以决定原问题的最优解。 注意:单纯形法中 1.每一步运算只能用矩阵初等行变换;

《管理运筹学》第四版 第5章 单纯形法 课后习题解析

《管理运筹学》第四版课后习题解析 第5章单纯形法 1.解: 表中a 、c 、e 、f 是可行解,f 是基本解,f 是基本可行解。 2.解: (1)该线性规划的标准型如下。 max 5x 1+9x 2+0s 1+0s 2+0s 3 s.t. 0.5x 1+x 2+s 1=8 x 1+x 2-s 2=10 0.25x 1+0.5x 2-s 3=6 x 1,x 2,s 1,s 2,s 3≥0 (2)至少有两个变量的值取零,因为有三个基变量、两个非基变量,非基变量取零。 (3)(4,6,0,0,-2)T (4)(0,10,-2,0,-1) T (5)不是。因为基本可行解要求基变量的值全部非负。 (6)略 3.解: 令33 3x x x ''-'=,z f -=改为求f max ;将约束条件中的第一个方程左右两边同时乘以-1,并在第二和第三个方程中分别引入松弛变量5x 和剩余变量6x ,将原线性规划问题化为如下标准型: j x '、j x ''不可能在基变量中同时出现,因为单纯性表里面j x '、j x ''相应的列向量是相同的,只有符号想法而已,这时候选取基向量的时候,同时包含两列会使 选取的基矩阵各列线性相关,不满足条件。 4.解: (1) 表5-1 0,,,,,, 24423 1863 1334 7234max 65433 21633 21543321433 214 321≥'''=-''+'--=++''+'-+-=+''+'---++-=x x x x x x x x x x x x x x x x x x x x x x x x x x x f 约束条件:

(2)线性规划模型如下。 max 6x 1+30x 2+25x 3 s.t. 3x 1+x 2+s 1=40 2x 2+x 3+s 2=50 2x 1+x 2-x 3+s 3=20 x 1,x 2,x 3,s 1,s 2,s 3 ≥0 (3)初始解的基为(s 1,s 2,s 3) T ,初始解为(0,0,0,40,50,20)T ,对应的目标函数值为0。 (4)第一次迭代时,入基变量时x 2,出基变量为s 3。 6. 解: (1)当现行解为可行解,并且对应的非基变量检验数均小于0时,该线性规划问题才有唯一最优解,即01≥k ,03

运筹学原理单纯形法练习题

四、把下列线性规划问题化成标准形式: 2、minZ=2x1-x2+2x3 五、按各题要求。建立线性规划数学模型 1、某工厂生产A、B、C三种产品,每种产品的原材料消耗量、机械台时消耗量以及这些资源的限量,单位产品的利润如下表所示:

根据客户订货,三种产品的最低月需要量分别为200,250和100件,最大月销售量分别为250,280和120件。月销售分别为250,280和120件。 问如何安排生产计划,使总利润最大。 2、某建筑工地有一批长度为10米的相同型号的钢筋,今要截成长度为3米的钢筋90根,长度为4米的钢筋60根,问怎样下料,才能使所使用的原材料最省 ? 某运输公司在春运期间需要24小时昼夜加班工作,需要的人员数量如下表所示: 起运时间 服务员数 2—6 6—10 10一14 14—18 18—22 22—2 4 8 10 7 12 4

每个工作人员连续工作八小时,且在时段开始时上班,问如何安排,使得既满足以上要求,又使上班人数最少? 五、分别用图解法和单纯形法求解下列线性规划问题.并对照指出单纯形迭代的每一步相当于图解法可行域中的哪一个顶点。

六、用单纯形法求解下列线性规划问题: 七、用大M法求解下列线性规划问题。并指出问题的解属于哪一类。

八、下表为用单纯形法计算时某一步的表格。已知该线性规划的目标函数为maxZ=5x1+3x2,约束形式为“≤”,X3,X4为松驰变量.表中解代入目标函数后得Z=10 Xl X2 X3 X4 —10 b -1 f g X3 2 C O 1 1/5 Xl a d e 1 (1)求表中a ~g 的值 (2)表中给出的解是否为最优解? (1)a=2 b=0 c=0 d=1 e=4/5 f=0 g=-5 (2) 表中给出的解为最优解 第四章 线性规划的对偶理论 五、写出下列线性规划问题的对偶问题 1.minZ=2x1+2x2+4x3

1 3 第一章线性规划与单纯形法运筹学习题集第一章线性规划与单纯形

1 3 第一章线性规划与单纯形法运筹学习题集第一章线性 规划与单纯形 1 3 第一章 线性规划与单纯形法 运筹学习题集 第一章线性规划与单纯形法 复习思考题 1. 试述线性规划数学模型的结构及各要素的特征。 2. 求解线性规划问题时可能出现哪几种结果?哪些结果反映建模时有错误? 3. 什么是线性规划问题的标准形式?如何将一个非标准型的线性规划问题转化为标准形式? 4. 试述线性规划问题的可行解、基解、基可行解、最优解的概念以及上述解之间的相互关系。 5. 试述单纯形法的计算步骤,如何在单纯形表上判别问题是具有唯一最优解、无穷多最优解、无界解或无可行解? 6. 如果线性规划的标准型变换为求目标函数的极小化min z,则用单纯形法计算时如何判别问题已得到最优解? 7. 在确定初始可行基时,什么情况下要在约束条件中增添人工变量?在目标函数中人工变量前的系数为(-M)的经济意义是什么? 8. 什么是单纯形法计算的两阶段法?为什么要将计算分成两个阶段进行,如何根据第一阶段的计算结果来判定第二阶段的计算是否需要继续进行? 9. 简述退化的含义及处理退化的勃兰特规则。

10. 举例说明生产和生活中应用线性规划的可能案例,并对如何应用进行必要 描述。 11. 判断下列说法是否正确: (a) 图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的; (b) 线性规划模型中增加一个约束条件,可行域的范围一般将缩小,减少一个约束条件,可行域的范围一般将扩大; (c) 线性规划问题的每一个基解对应可行域的一个顶点; (d) 如线性规划问题存在可行域,则可行域一定包含坐标的原点; (e) 对取值无约束的变量xj,通常令xj=x′j-x″j,其中x′j?0,x″j?0, 在用单纯形法求得的最优解中有可能同时出现x′j,0,x″j,0; (f) 用单纯形法求解标准型的线性规划问题时,与σj,0对应的变量都可以被 选作换入变量; (g) 单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负; (h) 单纯形法计算中,选取最大正检验数σk对应的变量xk作为换入变量, 将使目标函数值得到最快的增长; (i) 一旦一个人工变量在迭代中变为非基变量后,则该变量及相应列的数字可 以从单纯形表中删除,而不影响计算结果; (j) 线性规划问题的任一可行解都可以用全部基可行解的线性组合表示; (k) 若X1,X2分别是某一线性规划问题的最优解,则X=λ1X1+λ2X2也是该线性规划问题的最优解,其中λ1、λ2可以为任意正的实数; (l) 线性规划用两阶段法求解时,第一阶段的目标函数通常写为min z=?ixai(xai为人工变量),但也可写为min z=?ikixai,只要所有ki均为大于零的常数;

运筹学[第一章线性规划与单纯形法]山东大学期末考试知识点复习

第一章线性规划与单纯形法1.线性规划问题的数学模型 (1)一般形式 (2)标准型式 ] 2.数学模型化为标准型 (1)若目标函数实现最小化,则 min z=-max z'(令z'=-z) (2)若约束方程为不等式,则 若约束方程为“≤”不等式

左端+松驰变量(≥0)=右端 若约束方程为“≥”不等式 左端-剩余变量(≥0)=右端 (3)若存在取值无约束的变量x k(1≤k≤咒),则在标准型中 x k=x'k-x"k(其中x k=x',x"k≥0) 3.线性规划的解 线性规划问题: (1)可行解:满足约束条件②和③的解X=(x1,x2,…,x n)T。 (2)最优解:使目标函数①达到最大值的可行解。 (3)基:设A为约束方程组②的m×n阶系数矩阵,设n>m,其秩为m,B 为矩阵A中的一个m×m阶的满秩子矩阵,则称B为线性规划问题的一个基。不失一般性,设 B中每一个列向量P j(j=1,2,…,m)称为基向量,与基向量PJ对应的变量x j称为基变量。除基变量以外的变量为非基变量。

(4)基本解:在约束方程组②中,令所有非基变量x m+1=x m+2=…=x n=0,此时方程组②有唯一解X B=(x1,x2,…,x m)T,将此解加上非基变量取0的值有X=(x1,x2,…,x m,0,0…,0)T,称X为线性规划问题的基本解。 (5)基本可行解:满足非负条件③的基本解。 (6)可行基:对应于基本可行解的基。 4.初始基可行解的确定 (1)直接从A中观察到存在一个初始可行基。 (2)对所有约束条件是“≤”形式的不等式,可利用化为标准型的方法,在每个约束条件左端加上一个松弛变量,这m个松弛变量就构成一个基变量,则对应的m个向量组成的单位矩阵B就是线性规划问题的一个可行基。 (3)对所有约束条件是“≥”形式的不等式以及等式约束情况,采用人造基的方法。即对不等式约束的左端减去一个非负的剩余变量后,再加上一个非负的人工变量;对于等式约束的左端再加上一个非负的人工变量。这些人工变量就成为基变量,则对应的列向量组成的单位矩阵B就是线性规划问题的一个可行基。 5.最优性检验 在得到初始基本可行解后,要检验一下是否为最优解。若是,则停止迭代,否则,则继续迭代,但每次迭代后都要检查一下当前解是否为最优解。有如下的判别准则: (1)最优解判别定理:若X(0)=(b'1,b"1,…,b'm,0,0…,0)T为对应于基B 的基本可行解,且对于一切j=m+1,m+2,…,n有σj≤0,则X(0)为最优解,其中σj为检验数, (2)无穷多最优解判定理:若X(0)=(b'1,b"1,…,b'm,0,0…,0)T为一个基

运筹学习题2-单纯形法

《运筹学》习题(二) 班级姓名 一、判断题 1、无约束的变量xj,通常令 ,其中 ,在用单纯形法求得的最优解中有可能同时出现 。 2、用单纯形法求解标准形的线性规划问题时,与 对应的变量都可以被选作换入变量。 3、单纯形法计算中,如不按最小比值原则选取换出变量,则在下一个解中至少有一个基变量的值为负。 4、单纯形法计算中,选取最大正检验数 对应的变量xk作为换入变量,将使目标函数值得到最快的增长。 答: 二、单纯形法迭代中,任何从基变量中替换出来的变量,在紧接着的下一次迭代中,会不会再进入基变量中?为什么? 答: 三、下表为用单纯形法计算时某一步的表格,已知该线性规划问题中目标函数为

,约束条件均用“≤”关系连接, , 为松弛变量,该表中解代入目标函数可得z =10。求a---g的值;问此表所给的解是否为最优解。 2 a c d e 1 0.2 1 cj?-?zj b -1 f g 答: 四、用单纯形法求解下述问题: max S=x1+x2 2x1+x2≤8 2x1+5x2≤20 x1+x2≤5 x1, x2≥0 解:加入松弛变量,用单纯形法解得如下: Cj→ 1 1 0 0 0 θi CB XB b X1 X2 X3 X4 X5 0 0 0 X3 X4 X5 8 20 5 2* 2 1 1 5 1 1 1 1

-S 0 1 1 0 0 0 ←λj 1 0 0 X1 X4 X5 4 12 1 1 1/2 4 1/2* 1/2 -1 -1/2 1 1 -S -4 0 1/2 -1/2 0 0 ←λj 1 0 1 X1 X4 X2 3 4 2 1 1 1 3 -1 1 -1 -8 2 -S -5 0 0 0 0 -1 ←λj 五、试利用两阶段法第一阶段的求解,找出下述方程组的一个可行解,并利用计算得到的最终单纯形表说明该方程组有多余方程。 解: 附《运筹学》习题(二)答案 一、1、对(因为 的系数列向量只差一个符号,所以它们线性相关,不可能是某个可行基中的两列,因此在同一个基可行解中不可能出现 );2、对;3、对;4、错。

运筹学

图解法的步骤:1.在平面上建立直角坐标系2.图示约束条件,找出可行域或判别是否存在可行域3.图示目标函数4.寻找最优解。 解的判别:1.检验数>0 ,Pj

单纯形法典型例题

科学出版社《运筹学》教材 第一章引言 第二章线性规划,姜林 第三章对偶规划,姜林 第四章运输问题,姜林 第五章整数规划,姜林 第六章非线性规划,姜林 第七章动态规划,姜林 第八章多目标规划,姜林 第九章图与网络分析,熊贵武 第十章排队论,熊贵武 第十一章库存论,王勇 第十二章完全信息博弈,王勇 第十三章不完全信息博弈,王勇 第十四章决策论与影响图 第十五章运筹学模型的计算机求解 成年人每天需要从食物中摄取的营养以及四种食品所含营养和价格见下表。问如何选择食品才能在满足营养的前提下使购买食品的费用最小?

解:设需猪肉、鸡蛋、大米和白菜各需x1,x2,x3,x4斤。则热量的需求量为: 200020090080010004321≥+++x x x x 蛋白质 某工厂要做100套钢架,每套有长3.5米、2.8米和2根2.4米的圆钢组成(如右图)已知原料长12.3米,问应如何下料使需用的原材料最省。 解:假设从每根12.3米的原材料上截取3.5米、2.8米和2根2.4 米,则每根原材料需浪费1.2米,做100套需浪费材料120米,现采用套裁的方法。 现在假设每种方案各下料x i (i=1、2、3、4、5、6),则可列出方程: minZ=0.3x 1+1.1x 2+0.8x 3+0.4x 4+0.5x 5+0.1x 6 约束条件: x 3+x 4+2x 5+2x 6=100 4x 2+2x 3+3x 4+x 6=100 5x 1+x 3+2x 5+x 6=200 ,,,800 500300200400551020605030002009008001000. .23614min 4 321432143214 3214321≥≥+++≥+++≥++++++=x x x x x x x x x x x x x x x x t s x x x x z

运筹学重点

第一章线性规划与单纯形法 一、本章考情分析:常考题型:选择填空判断计算分值:必考知识点,30分以上,非常重要! 二、本章基本内容:1)掌握线性规划的数学模型的标准型;2)掌握线性规划的图解法及几何意义;3)了解单纯形法原理;4)熟练掌握单纯形法的求解步骤;5)能运用大M法与两阶段法求解线性规划问题;6)熟练掌握线性规划几种解的性质及判定定理. 三、本章重难点: 重点:1)单纯形法求解线性规划问题;2)解的性质;3)线性规划问题建模. 难点:1)单纯形法原理的理解;2)线性规划问题建模. 四、本章要点精讲:·要点1化标准型·要点2图解法·要点3单纯形法的原理·要点4单纯形法的计算步骤·要点5单纯形法的进一步讨论 1)要点1化标准型 线性规划的数学模型:Z=CX (C:价值系数) Ax=b (a:工艺或技术系数 b:资源限制)复习思路提示:化标准型按“目标函数—资源限量—约束条件—决策变量”的顺序进行。2)要点2图解法 线性规划解的情况有:唯一最优解、无穷多最优解、无界解、无可行解; 3)要点3单纯形法原理 解的概念与关系:基:设A是约束方程组的m*n阶系数矩阵(设n>m),其秩为m,B是A 中的一个m*m阶的满秩子矩阵(B≠0的非奇异子矩阵),称 B是线性规划问题的一个基.设除基变量以外的变量称为非基变量。基解:在约束方程组中,令所有的非基变量=0,可以求出唯一解X。基可行解:变量非负约束条件的基解.可行基:基可行解的基.几个定理:1线性规划问题的可行解为基可行解的充要条件是X的正分量所对应的系数列向量是线性独立的.2线性规划问题的基可行解X对应线性规划问题可行域(凸集)的顶点.3若线性规划问题有最优解,一定存在一个基可行解是最优解.最优解唯一时,最优解也是基最优解;当最优解不唯一时,最优解不一定是基最优解.基最优解基可行解集解 最优解可行解 线性规划解的判别:①最优解:全部σj≤ 0,则X(0)为最优解.②唯一最优解:全部σj<0,则X(0)为唯一最优解.③无穷多最优解:全部σj≤0,存在一个非基变量的σ=0,则存在无穷多最优解.④无界解:若有一个非基变量的σ>0,而其对应非基变量的所有系数a′≤0,则具有无界解。 复习思路提示:·几个解的概念及几何意义;·单纯形法迭代思路;·解的判别定理.4)要点4单纯形法的计算步骤:求初始基可行解,列出初始单纯形表、最优性检验、基变换(入基变量:maxσ,σ>0;出基变量:minb/a,a>0) 5)要点5 单纯形法的进一步讨论:大M法+两阶段法=人工变量法 两阶段法:一阶段:加入人工变量后,构造仅含人工变量的目标函数,并要求其实现最小化;二阶段:一阶段最终表除去人工变量,目标函数系数换成原问题的。 当一阶段的最优解中的基变量不含人工变量时,得到原线性规划问题的一个基可行解,二阶段就以此为基础对原目标函数求最优解;当一阶段的最优解不等于0时,说明还有不为0的人工变量是基变量,则原问题无可行解。 第二章对偶问题与灵敏度分析 一、本章考情分析:常考题型:选择填空判断计算分值:20—25分之间 二、本章基本内容:1)熟练掌握原问题与对偶问题的转化关系;2)熟练掌握单纯形法的矩阵描述;3)掌握对偶问题的几条基本性质;4)熟练掌握影子价格的经济意义;5)

运筹学知识点总结

运筹学 考试时间: 2009-1-4 10:00-12:00 考试地点: 金融1、2:(二)201,会计1、2:(二)106 人资1、2:(二)203,工商1、2:(二)205 林经1、2:(二)306 答疑时间: 17周周二周四上午8:00-11:00 18周周一周三上午8:00-11:00 地点:基础楼201

线性规划 如何建立线性规划的数学模型; 线性规划的标准形有哪些要求?如何把一般的线性规划化为标准形式? 如何用图解法求解两个变量的线性规划问题?由图解法总结出线性规划问题的解有哪些性质? 如何用单纯形方法求解线性规划问题? 如何确定初始可行基或如何求初始基本可行解?(两阶段方法)如何写出一个线性规划问题的对偶问题?如果已知原问题的最优解如何求解对偶问题的最优解?(对偶的性质,互补松紧条件)对偶单纯形方法适合解决什么样的问题?如何求解? 对于已经求解的一个线性规划问题如果改变价值向量和右端向量原最优解/基是否仍是最优解/基?如果不是,如何进一步求解?

1、建立线性规划的数学模型: 特点: (1)每个行动方案可用一组变量(x 1,…,x n )的值表示,这些变量一般取非负值; (2)变量的变化要受某些限制,这些限制条件用一些线性等式或不等式表示; (3)有一个需要优化的目标,它也是变量的线性函数。 2、线性规划的标准形有哪些限制?如何把一般的线性规划化为 标准形式? 目标求极小;约束为等式;变量为非负。 min b 0 T z C X AX X ==⎧⎨ ≥⎩ 例:把下列线性规划化为标准形式: 12 1212112 max 2328 1 20,0z x x x x x x x x x =++≤⎧⎪ -+≥⎪⎨ ≤⎪⎪≤<>⎩ 解:令13245,,x x x x x =-=-标准型为: ,3453456345738min 23()2()8 () x 1 +x 20,3,4,5,6,7,8i z x x x x x x x x x x x x i =-+--+-+=⎧⎪ ++--=⎪⎨ -=⎪⎪≥=⎩

相关主题
相关文档
最新文档