全等三角形证明经典题(含答案)
全等三角形经典题型50题(含答案)

全等三角形证明经典50题(含答案)1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求 AD延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD即 BE=AC=2 在三角形 ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=512.已知:D 是 AB 中点,/ ACB=90 °,求证: CD - AB2为BC=ED,CF=DF, / BCF= / EDF 。
所以 三角形BCF 全等于三角形 EDF (边角边)。
所以BF=EF, / CBF= / DEF 。
连接 BE 。
在三角形 BEF 中,BF=EF 。
所以 / EBF= / BEF 。
/ ABE= / AEB 。
所以 AB=AE 。
在三角形 ABF 和 / ABF= / ABE+ / EBF= / AEB+ / BEF= / AEF 。
所以/ C= / D , F 是 CD 中点,求证:/ 1 = / 2证明:连接BF 和EF 。
因又因为 / ABC= / AED 。
所以 三角形 AEF 中, AB=AE,BF=EF, 三角形ABF 和三角形AEF 全等。
所以 / BAF= / EAF ( / 仁/ 2)。
A3因为 EB = EF ,CE = CE , 所以△ CEBCEF 所以/ B = / CFE 因为/ B +/ D = 180° / CFE + / CFA = 180° 所以/ D = / CFA 因为 AC 平分/ BAD 所以/ DAC = / FAC 又因为 AC = AC 所以△ ADC 也厶AFC ( SAS ) 所以AD = AF 所以AE = AF + FE = AD + BE12.如图,四边形 ABCD 中,AB // DC ,BE 、CE 分别平分/ ABC 、/ BCD ,且点 E 在AD 上。
全等三角形经典题型50题(含答案)

全等三角形证明经典50 题(含答案)1. 已知: AB=4, AC=2, D 是 BC 中点, AD 是整数,求ADAB CD延长 AD 到 E,使 DE=AD,则三角形ADC全等于三角形EBD即 BE=AC=2 在三角形 ABE 中 ,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又 AD 是整数 ,则 AD=512. 已知: D 是 AB 中点,∠ ACB=90°,求证:CD AB2ADC B3.已知: BC=DE,∠ B=∠ E,∠ C=∠ D, F 是 CD中点,求证:∠ 1=∠ 2A21B EC F D证明:连接 BF 和 EF。
因为 BC=ED,CF=DF,∠ BCF=∠ EDF。
所以三角形 BCF 全等于三角形 EDF(边角边 )。
所以 BF=EF,∠ CBF=∠ DEF。
连接 BE。
在三角形BEF 中 ,BF=EF。
所以∠ EBF=∠ BEF。
又因为∠ ABC=∠AED。
所以∠ABE=∠AEB。
所以 AB=AE。
在三角形 ABF 和三角形 AEF中, AB=AE,BF=EF,∠ABF=∠ ABE+∠ EBF=∠ AEB+∠ BEF=∠ AEF。
所以三角形 ABF 和三角形 AEF全等。
所以∠ BAF=∠ EAF (∠ 1=∠ 2)。
A4. 已知:∠ 1=∠ 2, CD=DE, EF//AB,求证: EF=AC 1 2证明:过 E 点,作 EG//AC,交 AD 延长线于 G 则∠ DEG=∠ DCA,F ∠DGE=∠ 2又∵CD=DE∴ ⊿ADC≌ ⊿ GDE(AAS)∴EG=AC∵ EF//AB∴∠ DFE=∠ 1∵ ∠ 1=∠ 2∴ ∠ DFE=∠ DGE∴ EF=C EG∴ EF=AC DEB5.已知:AD平分∠ BAC,AC=AB+BD,求证:∠B=2∠C ACB D证明:在 AC上截取AD=AD∴ ⊿ AED≌ ⊿ ABD AE=AB,连接(SASED∵ AD)平分∠ BAC∴ ∠∴ ∠ AED=∠ BEAD=∠ BAD 又∵ AE=AB,,DE=DB∵ AC=AB+BDAC=AE+CE∴ CE=DE∴ ∠ C=∠ EDC∵∠ AED=∠ C+∠ EDC=2∠ C∴∠ B=2∠C6. 已知: AC 平分∠ BAD,CE⊥ AB,∠ B+∠ D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接 CF 因为 CE⊥AB 所以∠CEB=∠ CEF= 90 °因为 EB= EF, CE= CE,所以△CEB≌△CEF 所以∠B =∠ CFE 因为∠ B+∠ D= 180 ,°∠CFE+∠ CFA= 180°所以∠ D=∠ CFA 因为AC 平分∠ BAD 所以∠ DAC=∠ FAC 又因为AC= AC所以△ ADC≌ △ AFC( SAS)所以 AD= AF 所以 AE= AF+ FE= AD+ BE12.如图,四边形 ABCD 中, AB∥ DC, BE、 CE 分别平分∠ ABC、∠ BCD,且点 E 在 AD 上。
八年级全等三角形证明经典50题含答案

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CGB ACDF21E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE ∵AB=4即4-2<2AD<4+2 1<AD<3∴AD=28.已知:D是AB中点,∠ACB=90°,求证:12 CD AB9.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF 和EF 。
证明三角形全等总复习(经典题目)(含答案)

三角形专题训练【知识精读】1. 三角形的内角和定理与外角和定理;2. 三角形中三边之间的关系定理及其推论;3. 全等三角形的性质与判定;4. 特殊三角形的性质与判定(如等腰三角形);5. 直角三角形的性质与判定。
【分类解析】1. 三角形内角和定理的应用例1. 如图1,已知∆ABC 中,∠=︒⊥BAC AD BC 90,于D ,E 是AD 上一点。
求证:∠>∠BED C2. 三角形三边关系的应用例2. 已知:如图2,在∆ABC 中,AB AC >,AM 是BC 边的中线。
求证:()AM AB AC >-123. 角平分线定理的应用例3. 如图3,∠B=∠C=90°,M是BC的中点,DM平分∠ADC。
求证:AM平分DAB。
4. 全等三角形的应用(1)构造全等三角形解决问题例4. 已知如图4,△ABC是边长为1的等边三角形,△BDC是顶角(∠BDC)为120°的等腰三角形,以D为顶点作一个60°的角,它的两边分别交AB于M,交AC于N,连结MN。
求证: AMN的周长等于2。
(2)“全等三角形”在综合题中的应用例5. 如图5,已知:点C 是∠FAE 的平分线AC 上一点,CE ⊥AE ,CF ⊥AF ,E 、F 为垂足。
点B 在AE 的延长线上,点D 在AF上。
若AB =21,AD =9,BC =DC =10。
求AC 的长。
5、中考点拨例6. 如图,在∆ABC 中,已知∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,若BD +CE =9,则线段DE 的长为( ) A. 9B. 8C. 7D. 66、题型展示例7. 已知:如图6,∆ABC 中,AB =AC ,∠ACB =90°,D 是AC 上一点,AE 垂直BD 的延长线于E ,AE BD =12。
求证:BD 平分∠ABC例8. 某小区结合实际情况建了一个平面图形为正三角形的花坛。
8上全等三角形证明经典50题(含答案)

1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2AD BC证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGDDE =DC∠FDE =∠GDC (对顶角)∴△EFD ≌△CGDEF =CGB ACDF21E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又 EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE 上取F ,使EF =EB ,连接CF∵CE ⊥AB∴∠CEB =∠CEF =90°∵EB =EF ,CE =CE ,∴△CEB ≌△CEF∴∠B =∠CFE∵∠B +∠D =180°,∠CFE +∠CFA =180°∴∠D =∠CFA∵AC 平分∠BAD∴∠DAC =∠FAC∵AC =AC∴△ADC ≌△AFC (SAS )∴AD =AF∴AE =AF +FE =AD +BE7. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCAD BCBD=DC∴△ACD ≌△BDE∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=28. 已知:D 是AB 中点,∠ACB=90°,求证:1CD AB9. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
全等三角形证明经典45题及答案

17.(7分)已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):18.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .19、(10分)如图:DF=CE ,AD=BC ,∠D=∠C 。
求证:△AED ≌△BFC 。
20、(10分)如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
求证:AM 是△ABC 的中线。
O ED C B A FE D C B AMFE CBAFE DCBA21、(10分)如图:在△ABC 中,BA=BC ,D 是AC 的中点。
求证:BD ⊥AC 。
22、(10分)AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CF23、(12分)如图:AB=CD ,AE=DF ,CE=FB 。
求证:AF=DE 。
DCBAFDCBAFE DCBA24.公园里有一条“Z ”字形道路ABCD ,如图所示,其中AB ∥CD ,在AB ,CD ,BC 三段路旁各有一只小石凳E ,F ,M ,且BE =CF ,M 在BC 的中点,试说明三只石凳E ,F ,M 恰好在一条直线上.25.已知:点A 、F 、E 、C 在同一条直线上, AF =CE ,BE ∥DF ,BE =DF .求证:△ABE ≌△CDF .26.已知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。
27.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.CA28.已知AB ∥DE ,BC ∥EF ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .29.已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .30如图,△ABC 中,AD 是∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F .求证:(1)AD ⊥EF ;(2)当有一点G 从点D 向A 运动时,GE ⊥AB 于E ,GF ⊥AC 于F ,此时上面结论是否成立?31.已知:如图, AC ⊥BC 于C , DE ⊥AC 于E , AD ⊥AB 于A , BC =AE .若AB = 5 ,求AD 的长?32.如图:AB=AC ,ME ⊥AB ,MF ⊥AC ,垂足分别为E 、F ,ME=MF 。
全等三角形经典题型50题[含答案]
![全等三角形经典题型50题[含答案]](https://img.taocdn.com/s3/m/6ec7153dbed5b9f3f80f1c1f.png)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF 和三角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
ADBC4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠ED C ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB=∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
八年级全等三角形简单证明题及答案(15道)

∴BC=ED.
全等三角形的判定与性 质.
01
如图,在△ABC中, ∠C=90°,点D是AB边上的 一点,DM⊥AB,且 DM=AC,过点M作 ME∥BC交AB于点E.求证: △ABC≌△MED。
02
证明:∵MD⊥AB,
∴∠MDE=∠C=90°,
∵ME∥BC,
∴∠B=∠MED,
在△ABC与△MED中, ∠B=∠MED ∠C=∠EDM DM=AC ,
∠D=∠B , ∴△ADF≌△CBE(ASA), ∴AF=CE, ∴AF+EF=CE+EF,即
AE=CF.
全等三角形的判定与性 质.
11.在△ABC中,AB=CB,∠ABC=90°,F为AB延 长线上一点,点E在BC上,且AE=CF.求证: Rt△ABE≌Rt△CBF;
证明:∵∠ABC=90°,
角平分线的性质;全等三角形的判定与性质.
全等三角形的判定.
如图,在△ABC中, AB=AC,AD平分 ∠BAC.求证: ∠DBC=∠DCB.
解:∵AD平分∠BAC, ∴∠BAD=∠CAD. ∴在△ACD和△ABD中 AB=AC ∠BAD=∠CAD
AD=AD , ∴△ACD≌△ABD, ∴BD=CD, ∴∠DBC=∠DCB.
:∵AC平分∠BAD,
∴∠BAC=∠DAC,
在△ABC和△ADC中, AB=AD ∠BAC=∠DAC AC=AC ,
∴△ABC≌△ADC.
全等三角形的判定.
9.如图,已知 点E,C在线段
BF上, BE=CF, AB∥DE, ∠ACB=∠F.
求证: △ABC≌△DEF
.
证明:∵AB∥DE,
∴∠B=∠DEF.
全等三角形的判定与性质.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形证明经典题(含答案)
连接CE,在△CEA和△CEB中,∠XXX∠CEB,
CE=CE,∠XXX∠BEC=90°,∴△CEA≌△CEB(AAS)
∴AE=BE
在△AED和△BED中,∠AED=∠BED,AD=BD,
∠XXX∠EBD,∴△AED≌△BED(SAS)∴AE=BE 又∠B+∠D=180°,∴ABCD为四边形,AC=BD=AD+BC AE=BE,
∴AE+AD+BE=2AE+AD=AD+AC=AD+AD+BC=2AD+BC=AD +BD+BC=AD+BE
XXX⊥XXX∴∠ABE=90°-∠1,∠DBE=90°-∠2
ADE=∠ABE=90°-∠1,∠XXX∠DBE=90°-∠2
又∠1=∠2,∴∠ADE=∠BDC
ADE≌△BDC(AAS)
AD=BC,AC-AB=AD-BD=BC-BD
又因为BD=2BE(在直角三角形BDE中,根据勾股定理可得BD=2BE)
AC-AB=BC-2BE=2BE(在三角形ABC中,根据角度和定理可得∠B=180°-4∠C,又∠ABC=3∠C,因此∠B=60°,所
以三角形ABC为等边三角形,即AC=BC)。
AC-AB=2BE,证毕。
1.根据题意,可知在等腰三角形ABD中,AE是角BAD
的角平分线,因此AE垂直BD。
同时,由于AB=AD,所以
点E也是BD的中点,即BD=2BE。
又因为BD=CD=AC-AB,所以AC-AB=2BE。
根据已知条件,可得E是AB的中点,
AF=BD=5,BD=CD=AC-AB=7-5=2.因此,DC=CF=2.
2.由题意可知,BD=DC,且∠1=∠2.因此,△ABD和
△ACD是全等三角形(边角边),即AB=AC,
∠BAD=∠CAD。
又因为AE是△XXX的中垂线,所以
AE⊥BC,即AD⊥BC。
3.根据题意,可知OM平分∠POQ,MA⊥OP,MB⊥OQ,且AB交OM于点N。
由于OM平分∠POQ,所以∠POM=
∠QOM。
又因为MA⊥OP,MB⊥OQ,所以∠MAO=
∠MBO=90°。
因此,△AOM≌△BOM(AAS),即OA=OB。
又因为ON=ON,所以△AON≌△BON(SAS)。
因此,
∠XXX∠OBA,∠ONA=∠ONB。
又因为∠ONA+∠ONB=180°,所以∠ONA=∠ONB=90°。
因此,OM⊥AB。
4.根据题意,可知AD∥BC,且∠PAB的平分线与∠CBA 的平分线相交于E,CE的连线交AP于D。
连接BE并延长至
与AP相交于F点。
由于PA//BC,所以∠PAB+∠CBA=180°。
又因为AE和BE均为∠PAB和∠CBA的角平分线,所以
∠EAB+∠EBA=90°,即∠AEB=90°。
因此,EAB为直角三角形。
在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线,因此三角形FAB为等腰三角形,即AB=AF。
又因为BE=EF,在三角形DEF与三角形BEC中,有∠XXX∠DFE,且
BE=EF,∠DEF=∠CEB。
因此,三角形DEF与三角形BEC
为全等三角形,即DF=BC。
因此,AB=AF=AD+DF=AD+BC。
连接BD,因为AB=AD,BC=BD,所以∠ADB=∠ABD,∠XXX∠ABD,两角相加得到∠XXX∠ABC。
又因为CE是
BF的中点,所以DE=BF,而且因为AB=AD,DE=BF,所以
∠XXX∠ABC,进而得到AE=AF。
因此,得证∠5=∠6.
在四边形ABCD中,连接AC,根据三角形的角度之和等
于180度,得到∠BAC=∠DAC,∠BCA=∠DCA。
因为
AB=AD,BC=CD,所以△ADC≌△ABC。
又因为∠1=∠2,∠3=∠4,所以∠5=∠6.因此,得证。
已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF。
因为AD=DF,所以AC=DF。
又因为AB∥DE,所以
∠A=∠EDF。
因为BC∥EF,所以∠F=∠BCA。
因此,根据ASA准则,得证△ABC≌△DEF。
在图中,连接CF和BD。
因为AB=AC,所以
∠XXX∠XXX。
因为BD⊥AC,CE⊥AB,所以
∠XXX∠BEC=90°。
因此,根据AAS准则,得到
Rt△BDC≌Rt△BEC,进而得到BE=CD。
在△ABC中,连接AD,DE,DF。
因为AD是∠BAC的平分线,所以∠EAD=∠FAD。
因为DE⊥AB,DF⊥AC,所以∠BFD=∠CFD=90°。
因此,根据AAS准则,得到
△AED≌△AFD,进而得到AE=AF。
因为∠EAO=∠FAO,所以△AEO≌△AFO。
因此,∠AOE=∠AOF=90°,所以
AD⊥EF,进而得到DE=DF。
在图中,连接AE、DE、BC、EF。
因为BC=AE,所以
△ABC≌△DAE。
因为∠BAC=∠DAE,所以XXX是一个平
行四边形。
因为DE⊥AC,所以∠ADE=90°。
因为AD⊥AB,所以∠BAC=90°。
因此,△ADE和△ABC都是直角三角形。
因为BC=AE,所以△ABC≌△DAE(ASA)。
因此,
AD=AB=5.
29.已知直角三角形ABE和ACF,其中AE=AB,AF=AC,且BE和CF垂直于AB和AC。
证明:(1)EC=BF;(2)
EC⊥BF。
1)因为AE⊥AB,AF⊥AC,所以∠BAE=∠CAF=90°。
又因为AE=AB,所以∠XXX∠BAF。
根据SAS准则,可以得到△ABF≌△AEC,从而得到EC=BF。
2)根据(1),可以得到△ABF≌△AEC,所以
∠XXX∠ABF。
又因为AE⊥AB,所以∠BAE=90°。
因此,
∠AEC+∠ADE=90°。
又因为∠ADE=∠BDM(对顶角相等),所以∠ABF+∠BDM=90°。
在△BDM中,∠BMD=180°-
∠ABF-∠BDM=180°-90°=90°。
因此,XXX。
30.已知直角三角形ABE和ACF,其中BE⊥AC,
CF⊥AB,且BM=AC,CN=AB。
证明:(1)AM=AN;(2)AM⊥AN。
1)因为BE⊥AC,CF⊥AB,所以∠ABM+∠BAC=90°,∠ACN+∠XXX°。
因此,∠ABM=∠ACN。
又因为BM=AC,CN=AB,所以△ABM≌△NAC。
因此,AM=AN。
2)因为△ABM≌△NAC,所以∠XXX∠N。
又因为
∠N+∠BAN=90°,所以∠BAM+∠BAN=90°。
因此,
∠MAN=90°。
所以,XXX。