北师大版九年级数学上册第三单元概率的进一步认识 检测试题 含答案
北师大版九年级数学上册 第三章 概率的进一步认识 单元检测试题(有答案)

第三章概率的进一步认识单元检测试题(满分120分;时间:120分钟)一、选择题(本题共计9 小题,每题3 分,共计27分,)1. 某人有红、白、蓝三条长裤和红、白、蓝三件衬衣,他从中任意拿一条长裤和一件衬衣,恰好颜色配套的概率是()A.1 8B.16C.13D.122. 在一个不透明的塑料袋中装有红色、白色球共20个,除颜色外,其它都相同.小明通过多次摸球实验后发现,其中摸到红球的频率稳定在25%左右.则口袋中红球大约有()个.A.5个B.10个C.12个D.15个3. 在一个不透明的袋子中有若干个除颜色外形状大小完全相同的球,如果其中有20个红球,且摸出红球的概率是15,则估计袋子中大概有球的个数是()个.A.25B.50C.75D.1004. 如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.2 5B.310C.320D.155. 有三个质地、大小一样的纸条上面分别写着三个数,其中两个正数,一个负数,任意抽取一张,记下数的符号后,放回摇匀,再重复同样的操作一次,试问两次抽到的数字之积是正数的概率为()A.1 3B.49C.59D.236. 在毕业晚会上,有一项同桌默契游戏,规则是:甲、乙两个不透明的纸箱中都放有红、黄、白三个球(除颜色外完全相同),同桌两人分别从不同的箱中各摸出一球,若颜色相同,则能得到一份默契奖礼物.同桌的小亮和小洁参加这项活动,他们能获得默契奖礼物的概率是()A.2 3B.13C.16D.197. 一个不透明的盒子有有n个除颜色外其它完全相同的小球,其中有6个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在20%,那么可以推算出n大约是()A.30B.20C.12D.68. 不透明的口袋中装有同型号的红球m个、黄球n个,小明做试验:往该口袋中再放入同型号的红球1个,把球摇匀后,从中任取一球出来,做了大量重复试验,发现它是红球的频率越来越稳定于0.5;小聪做试验:从该口袋中取出2个红球,把球摇匀后,从中任取一球出来,做了大量重复试验,发现它是红球的频率越来越稳定于0.2,则m+n的值为()A.10B.9C.7D.59. 已知甲袋有5张分别标示1∼5的号码牌,乙袋有6张分别标示6∼11的号码牌,慧婷分别从甲、乙两袋中各抽出一张号码牌.若同一袋中每张号码牌被抽出的机会相等,则她抽出两张号码牌,其数字乘积为3的倍数的机率为何?()A.1 10B.13C.715D.815二、填空题(本题共计8 小题,每题3 分,共计24分,)10. 从1,2,3,4中任取两个不同的数,其乘积大于4的概率是________.11. 一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球________个.12. 经过某十字路口的汽车,可直行,也可向左转或向右转,如果这三种可能性大小相同,则两辆汽车经过该十字路口时都直行的概率是________.13. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V数”,如“947”就是一个“V数”.若十位上的数字为2,则从1,3,4,5中任选两个数,能与2组成“V数”的概率是________.14. 小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字1,2,每天每次从每组中抽出一张,两张牌的数字之积为2的概率为________.15. 在一个不透明的袋子里放有黑,白各两个小球,它们只有颜色上的区别,从袋子中随机摸出一个小球记下颜色后不放回,再随机摸一个,则摸出两个小球为同一颜色概率是________.,0,√2,−1这四个数中随机取出两个数,则取出的两个数均为正数的概率是16. 在13________.17. 某批乒乓球的质量检验结果如表:从这批乒乓球中,任意抽取一只乒乓球是优等品的概率的估计值是________.(精确到0.01)三、解答题(本题共计8 小题,共计69分,)18. 经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.19. 本校有A、B两个餐厅,甲、乙两名学生各自随机选择其中一个餐厅用餐,请用列表或画树状图的方法解答:(1)甲、乙两名学生在同一餐厅用餐的概率;(2)甲、乙两名学生至少有一人在B餐厅的概率.20. 为了促进学生的全面发展,学校成立了各种丰富的社团.其中羽毛球社团利用假期组织了一场社员之间的羽毛球比赛,比赛将参赛人员分为甲、乙两队,共进行男单、女单、男双、女双、混双5场比赛,采用五局三胜制,且5场比赛必须全部打完.假如甲、乙两队每一局获胜的概率相同,在已经进行了的两场比赛中,甲队以2:0领先.(1)甲队再进行一场比赛就能获胜的概率为________;(2)求甲队至少要进行两场比赛才能获胜的概率.21. 均匀的正四面体的各面依次标有1,2,3,4四个数字.小明做了60次投掷试验,结果统计如下:(1)计算上述试验中“4朝下”的频率是多少?(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是1”的说法正确吗?为什3么?22. 现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)23. 有两组相同的牌,每组两张,两张牌的牌面数字分别是4和5,从每组牌中各摸出一张称为一次试验,小明一共进行了50次试验.(1)在一次试验中两张牌的牌面数字的和可能有哪些值?(2)小明做了50次试验,作了如下统计,请完成统计表.(4)如果经过次数足够多的试验,请你估计两张牌数字和等于9的频率是多少?牌面数字的和等于8或10的概率又是多少?24. 某校九年级兴趣小组进行投针实验,在地面上有一组平行线,相邻两条平行线间的距离都为5cm,将一长为3cm的针任意投向这组平行线,下表是他们的实验数据.(1)计算出针与平行线相交的频率,并完成统计表;(2)估算出针与平行线相交的频率;(3)由表中的数据说明:在以上条件下相交于不相交的可能性相同吗?(4)能否利用列表或树形图法求出针与平行线相交的概率?25. 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时,(1)利用画树状图的方法,求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往我市新建经济开发区的,因此交管部门的汽车行驶高,向左转和直行的频峰时段对车流量做了统计,发现汽车在此十字路口向右转的频率为25率均为3,目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯10亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.参考答案一、选择题(本题共计9 小题,每题 3 分,共计27分)1.【答案】C【解答】解:画树状图得:∵ 共有9种等可能的结果,恰好颜色配套的由3种情况,∵ 恰好颜色配套的概率是:39=13.故选C.2.【答案】A【解答】解:设有红球x个,根据题意得:x÷20=25%解得:x=5,故选A.3.【答案】D【解答】解:由题意可得,袋子中大概有球的个数是:20÷15=20×5=100.故选D.4.【答案】B【解答】解:列表得:所以两个转盘的组合有20种结果,其中有6种指针都落在奇数,所以指针都落在奇数上的概率是620=310,故选B.5.【答案】C【解答】解:两个正数分别用a,b表示,一个负数用c表示,画树状图如下:共有9种等可能情况,其中两次抽到的数字之积是正数的有5种,则两次抽到的数字之积是正数的概率是59.故选C.6.【答案】B【解答】解:画树状图得:∵ 一共有9种等可能的结果,摸出两球的颜色相同的有3种情况,∵ 摸出两球的颜色相同的概率是39=13.即他们能获得默契奖礼物的概率是13.故选:B .7. 【答案】 A 【解答】解:由题意可得,6n ×100%=20%,解得,n =30(个). 故估计n 大约有30个. 故选:A . 8. 【答案】 C 【解答】解:根据题意知{m+1m+n+1=0.5,m−2m+n−2=0.2, 整理,得:{m −n =−1,4m −n =8,解得:{m =3,n =4.经检验:m =3,n =4均为原分式方程的解, ∵ m +n =7. 故选C . 9. 【答案】 C【解答】根据题意列表得:所有等可能的结果为30种,其中是3的倍数的有14种,则P=1430=715.二、填空题(本题共计8 小题,每题 3 分,共计24分)10.【答案】12【解答】解:画树状图得:∵ 共有12种等可能的结果,任取两个不同的数,其乘积大于4的有6种情况,∵ 从1、2、3、4中任取两个不同的数,其乘积大于4的概率是:612=12.故答案为:12.11.【答案】【解答】此题暂无解答12.【答案】19【解答】解:画树状图为:共有9种等可能的结果数,其中两辆汽车都直行的结果数为1,所以两辆汽车都直行的概率为19.故答案为:19.13.【答案】12【解答】解:从1,3,4,5中选取两个数,所有等可能的情况数有12种,分别为1,3;1,4;1,5;3,4;3,5;4,5;3,1;4,1;5,1;4,3;5,3;5,4;其中“V数”的情况数有6种,分别为3,4;3,5;4,5;4,3;5,3;5,4,则$P_{能与2组成``V数"} = \frac{6}{12} = \frac{1}{2}$.故答案为:1214.【答案】12【解答】解:画树形图得:由树状图可知共有2×2=4种可能,两张牌的积为2的有2种,所以概率24=12.故答案为:12.15.【答案】13【解答】画树状图为:,共有12种等可能的结果数,其中两次都摸到相同颜色的结果数为4,所以两次都摸到相同颜色的概率=412=13.16.【答案】16【解答】画树状图为:共有12种等可能的结果数,其中取出的两个数均为正数的结果数为2,所以取出的两个数均为正数的概率=212=16.17.【答案】0.95【解答】解:从这批乒乓球中,任意抽取一只乒乓球是优等品的概率的估计值是0.95.故答案为0.95.三、解答题(本题共计8 小题,每题10 分,共计80分)18.【答案】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为59.【解答】解:画树状图为:共有9种等可能的结果数,其中两人之中至少有一人直行的结果数为5,所以两人之中至少有一人直行的概率为59.19.【答案】解:(1)画树形图得:∵ 甲、乙两名学生在餐厅用餐的情况有AB、AA、BA、BB,∵ P(甲、乙两名学生在同一餐厅用餐)=24=12;(2)由(1)的树形图可知P(甲、乙两名学生至少有一人在B餐厅)=34.【解答】解:(1)画树形图得:∵ 甲、乙两名学生在餐厅用餐的情况有AB、AA、BA、BB,∵ P(甲、乙两名学生在同一餐厅用餐)=24=12;(2)由(1)的树形图可知P(甲、乙两名学生至少有一人在B餐厅)=34.20.【答案】12(2)画树状图如解图:由树状图可知,后三局比赛共有8种等可能的结果,其中甲队至少要进行两场比赛才能获胜的结果有(乙、甲、甲),(乙、甲、乙),(乙、乙、甲)共3种,∵ P(甲队至少要进行两场比赛才能获胜)=3.8【解答】解:(1)(2)画树状图如解图:由树状图可知,后三局比赛共有8种等可能的结果,其中甲队至少要进行两场比赛才能获胜的结果有(乙、甲、甲),(乙、甲、乙),(乙、乙、甲)共3种,.∵ P(甲队至少要进行两场比赛才能获胜)=3821.【答案】上述试验中“4朝下”的频率是:16;(2)这种说法是错误的.在60次试验中,“2朝下”的频率为13并不能说明“2朝下”这一事件发生的概率为13.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.【解答】解:(1)根据图表中数据可以得出:“4朝下”的频率:1060=16;答:上述试验中“4朝下”的频率是:16;(2)这种说法是错误的.在60次试验中,“2朝下”的频率为13并不能说明“2朝下”这一事件发生的概率为13.只有当试验的总次数很大时,事件发生的频率才会稳定在相应的事件发生的概率附近.22.【答案】解:(1)如表所示:所有可能的结果有9种,两次抽得相同花色的可能性有5种,∵ P相同花色=59,∵ 两次抽得相同花色的概率为:59.(2)他们两次抽得的数字和是奇数的可能性大小一样.当x为奇数时,两次抽得的数字和是奇数的可能性有4种,;∵ P甲=49当x为偶数时,两次抽得的数字和是奇数的可能性有4种,,∵ P乙=49∵ P甲=P乙,∵ 他们两次抽得的数字和是奇数的可能性大小一样.【解答】解:(1)如表所示:所有可能的结果有9种,两次抽得相同花色的可能性有5种,,∵ P相同花色=59.∵ 两次抽得相同花色的概率为:59(2)他们两次抽得的数字和是奇数的可能性大小一样.当x为奇数时,两次抽得的数字和是奇数的可能性有4种,;∵ P甲=49当x为偶数时,两次抽得的数字和是奇数的可能性有4种,,∵ P乙=49∵ P甲=P乙,∵ 他们两次抽得的数字和是奇数的可能性大小一样.23.【答案】解:(1)在一次试验中两张牌的牌面数字的和可能有:4+4=8,4+5=9,5+5=10; (2)∵1450=0.28,1950=0.38,1750=0.34,∵ 完成统计表如下:9的频率最大;(4)如果经过次数足够多的试验,和等于9的概率为12,和为8或10的概率为12.【解答】 解:(1)在一次试验中两张牌的牌面数字的和可能有:4+4=8,4+5=9,5+5=10; (2)∵ 1450=0.28,1950=0.38,1750=0.34, ∵ 完成统计表如下:9的频率最大;(4)如果经过次数足够多的试验,和等于9的概率为12,和为8或10的概率为12. 24. 【答案】解:(1)根据相交频率=相交次数投掷次数, 可计算出100∼5000次的相交频率依次为48100=0.48,281600=0.47,4541000=0.45,8612500=0.34,13713500=0.39,19015000=0.38;(2)∵ 当实验次数为5000时,实验频率稳定于概率附近, ∵ 估计与平行线相交的概频率约为0.38;(3)根据表中实验频率的变化,说明在题设的前提下,针与平行线相交与不相交的可能性不完全相同;(4)由于相交与不相交的可能性不一定相同,因此很难用列表法和画树形图法求针与平行线相交的概率.【解答】解:(1)根据相交频率=相交次数投掷次数,可计算出100∼5000次的相交频率依次为48100=0.48,281600=0.47,454 1000=0.45,8612500=0.34,13713500=0.39,19015000=0.38;∵ 估计与平行线相交的概频率约为0.38;(3)根据表中实验频率的变化,说明在题设的前提下,针与平行线相交与不相交的可能性不完全相同;(4)由于相交与不相交的可能性不一定相同,因此很难用列表法和画树形图法求针与平行线相交的概率.25.【答案】解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵ 共有27种等可能的结果,三辆车全部同向而行的有3种情况,∵ P(三车全部同向而行)=19;(2)∵ 至少有两辆车向左转的有7种情况,∵ P(至少两辆车向左转)=727;(3)∵ 汽车向右转、向左转、直行的概率分别为25,∵ 在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).【解答】解:(1)分别用A,B,C表示向左转、直行,向右转;根据题意,画出树形图:∵ 共有27种等可能的结果,三辆车全部同向而行的有3种情况,∵ P(三车全部同向而行)=19;(2)∵ 至少有两辆车向左转的有7种情况,∵ P(至少两辆车向左转)=727;(3)∵ 汽车向右转、向左转、直行的概率分别为25,∵ 在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下:左转绿灯亮时间为90×310=27(秒),直行绿灯亮时间为90×310=27(秒),右转绿灯亮的时间为90×25=36(秒).。
北师大版九年级数学上册第三章概率的进一步认识单元综合检测题附答案

第三章单元测试卷 (时间:100分钟 满分:120分) 一、选择题(本大题10小题,每小题3分,共30分) 1. 在抛掷硬币的试验中,下列结论正确的是(A) A.经过大量重复的抛掷硬币试验,可发现“正面向上”的频率
越来越稳定 B.抛掷10000次硬币与抛掷12000次硬币“正面向上”的频率
相同 C.抛掷50000次硬币,可得“正面向上”的频率为0.5
D.若抛掷2000次硬币“正面向上”的频率是0.518,则“正面
向下”的频率也为0.518 2. 在一个不透明的袋中装有2个黄球和2个红球,它们除颜色外没有其他区别,从袋中任意摸出一个球,然后放回搅匀,再从袋中任意摸出一个球,那么两次都摸到黄球的概率是(C)
A.18 B.16 C.14 D.12
3. 学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为(C)
A.23 B.12 C.13 D.16
4. 在一个不透明的袋中装着2个红球和1个黄球,它们除颜色外其他均相同,随机从袋中摸出2个小球,两球恰好都是红球的概率 为(B) A.12 B.13 C.14 D.16
5. 在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计盒子中大约有红球(B) A.16个 B.14个 C.20个 D.30个
6. 如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是(B)
A.34 B.23 C.13 D.12
,第6题图) ,第7题图)
,第10题图)
7. 如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是(C)
A.1925 B.1025 C.625 D.525
8. 掷两枚正六面体骰子,所得点数之和为11的概率为(A) A.118 B.136 C.112 D.115
(北师大版)长沙市九年级数学上册第三单元《概率的进一步认识》检测(有答案解析)

一、选择题1.有四根长度分别为2cm、3cm、4cm、5cm的木棒,从中任取三根,并将它们首尾相连,能组成三角形的概率为()A.14B.23C.34D.122.王老师的讲义夹里放了大小相同的试卷12张,其中语文5张,数学4张,外语3张,他随机从讲义夹中抽出1张,抽出的试卷恰好是数学试卷的概率是()A.14B.13C.512D.123.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(不放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49B.112C.13D.164.如图所示,一个大正方形的面上,编号为1,2,3,4的地块,是四个全等的等腰直角三角形空地,中间是小正方形绿色草坪,一名训练有素的跳伞运动员,每次跳伞都能落在大正方形地面上,则跳伞运动员一次跳伞落在草坪上的概率是()A.12B.14C.16D.185.将分别标有“走”“向”“伟”“大”“复”“兴”汉字的小球装在一个不透明的口袋中,这些球除汉字外完全相同,每次摸球前先搅匀,随机摸出一球,不放回,再随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是()A.16B.115C.18D.1126.现有4条线段,长度依次是2、4、6、7,从中任选三条,能组成三角形的概率是()A.14B.12C.35D.347.连续掷两次骰子,出现点数之和等于4的概率为()A.136B.118C.112D.198.袋中装有除颜色外其他完全相同的4个小球,其中3个红色,一个白色,从袋中任意地摸出两个球,这两个球颜色相同的概率是( )A.12B.13C.23D.169.典典、诺诺、悦悦三人参加学校的“幸运就是我”节目.幸运的是,她们都得到了一件精美的礼物.其过程是这样的:墙上挂着两串礼物(如下图),每次只能从其中一串的最下端取一件,直到礼物取完为止.典典第一个取得礼物,然后诺诺、悦悦依次取得第2件、第3件礼物.事后她们打开这些礼物品仔细比较发现礼物B最精美,那么取得礼物B可能性最大的是()A.典典B.诺诺C.悦悦D.无法确定10.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.611.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率为()A.13B.14C.16D.13612.已知数据:117,4,5-,2π1-,0.其中无理数出现的频率为()A.0.2B.0.4C.0.6D.0.8二、填空题13.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是__________.14.同时掷两枚质地均匀的骰子;两枚骰子点数之和为10的概率为__________.15.一个不透明的袋子中装有1个白球和3个红球,这些球除颜色外都相同.搅匀后从中任意摸出2个球,摸出两个颜色不同的小球的概率为_____.16.李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是______.17.有六张大小形状相同的卡片,分别写有1~6这六个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为a,则a的值使得关于x的分式方程26122 axx x--=--有整数解的概率为_____.18.小刚和小亮用图中的转盘做“配紫色”游戏:分别转动两个转盘各一次,若其中的一个转盘转出了红色,另一个转出了蓝色,则可配成紫色,此时小刚赢,否则小亮赢.若用P1表示小刚赢的概率,用P2 表示小亮赢概率,则两人赢的概率P1________P2(填写>,=或<)19.小丽在4张同样的纸片上各写了一个正整数,从中随机抽取2张,并将它们上面的数相加.重复这样做,每次所得的和都是5,6,7,8中的一个数,并且这4个数都能取到.猜猜看,小丽在4张纸片上各写下的数是__________.20.在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.己知袋中有红球5个,白球23个,且从袋中随机摸出一个红球的概率是110,则袋中黑球的个数为__________.三、解答题21.小明和小华想利用抽取扑克牌游戏决定谁去参加市里举办的“创建全国文明城市,争做文明学生”的演讲比赛,游戏规则是:将4张除了数字2、3、4、5不同外,其余均相同的扑克牌,数字朝下随机平铺于桌面,一人先从中随机取出1张,另一人再从剩下的3张扑克牌中随机取出一张,若取出的2张扑克牌上数字和为偶数,则小明去参赛,否则小华去参赛.(1)用列表法或画树状图法,求小明参赛的概率;(2)你认为这个游戏公平吗?请说明理由.22.为加强素质教育,某学校自主开设了A书法、B阅读、C足球、D器乐四门选修课程供学生选择,每门课程被选到的机会均等.(1)学生小明计划选修两门课程,请写出所有可能的选法;(用树状图或列表法表示选法)(2)若学生小明和小刚各计划选修一门课程,则他们两人恰好同时选修书法或足球的概率是多少?23.森林防火,人人有责.前不久,华蓥市公安局结合华蓥山竹林风景线建设,在华蓥山国家森林公园、石林景区,以“严防森林火灾、保护绿水青山”为主题,开展了森林防灭火知识宣传.广安市某校为了解九年学生对森林防灭火知识的了解程度,在九年级学生中做了一次抽样调查,并将结果分为四个等级:A.非常了解;B.比较了解;C.基本了解;D.不了解.根据调査结果绘制了如下两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)这次参与调查的学生一共有______人,并补全条形统计图.(2)若该校九年级共有1000名学生,请你估计该校九年级学生中“基本了解”森林防灭火知识的学生有多少人?(3)九(2)班被调查的学生中A等级的有5人,其中3名男生2名女生.现打算从这5名学生中任意抽取2名进行电话采访,请用列表或画树状图的方法求恰好抽到一男一女的概率.24.为弘扬开州传统文化,某校开展“言子儿进课堂”的活动,该校随机抽取部分学生,按四个类别:A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”,调查他们对言子儿的喜欢情况,将结果绘制成如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)这次共抽取_______名学生进行统计调查,扇形统计图中,D类所对应的扇形圆心角的度数为_________;(2)将条形统计图补充完整;(3)若调查的A类学生中有2名男生,其余为女生,现从中抽2人进行采访,请画树状图或列表法求刚好选中2名恰好是1男1女的概率.25.在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是奇数的概率.26.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为A、B、C、D四个等次,绘制成如图所示的不完整的统计图,请你依图解答下列(1)a=,b=,c=;(2)请将条形统计图补充完整,并计算表示C等次的扇形所对的圆心角的度数为°;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】求出任取三根木棒的所有情况,再求出能组成三角形的所有情况,利用概率公式直接计算即可.【详解】解:2cm、3cm、4cm、5cm的根木棒中,共有以下4种组合:2,3,4;2,3,5;2,4,5;3,4,5;其中共有以下方案可组成三角形:①取2cm,3cm,4cm;由于4﹣2<3<4+2,能构成三角形;②取2cm,4cm,5cm;由于5﹣2<4<5+2,能构成三角形;③取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;所以有3种方案符合要求.故能组成三角形的概率是P=3 4故答案选:C【点睛】本题考查了三角形的三边关系和概率公式,正确找到所有组成三角形的情况是解题的关2.B解析:B【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学4页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为41123=.故选:B.【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3.C解析:C【详解】画树状图得:∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,∴两次抽取的卡片上的数字之积为正偶数的概率是:2163=.故选C.【点睛】本题考查运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.4.A解析:A【分析】设大正方形的边长为2a,从而可得大正方形的面积为24a,先求出小正方形绿色草坪的面积,再根据简单事件的几何概率公式即可得.【详解】设大正方形的边长为2a ,则大正方形的面积为22(2)4a a =, 编号为1,2,3,4的地块是四个全等的等腰直角三角形空地,∴等腰直角三角形的直角边均相等,且长为a ,由勾股定理得:等腰直角三角形的斜边长为22a a 2a +=, 即小正方形绿色草坪的边长为2a ,∴小正方形绿色草坪的面积为22(2)2a a =,则跳伞运动员一次跳伞落在草坪上的概率是222142a P a ==, 故选:A . 【点睛】本题考查了简单事件的几何概率计算公式、全等三角形的性质、勾股定理等知识点,根据全等三角形的性质和勾股定理求出小正方形绿色草坪的边长是解题关键.5.B解析:B 【分析】根据题意列表得出所有等情况数和两次摸出的球上的汉字是“复”“兴”的情况数,再根据概率公式即可得出答案. 【详解】解:根据题意画图如下:共有30种等情况数,其中两次摸出的球上的汉字是“复”“兴”的有2种, 则随机摸出一球,两次摸出的球上的汉字组成“复兴”的概率是213015; 故选:B . 【点睛】此题考查了树状图法或列表法求概率.树状图法适合两步或两步以上完成的事件;列表法适合两步完成的事件,解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.6.B解析:B【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【详解】解:从长度分别为2、4、6、7的四条线段中任选三条有如下4种情况:2、4、6;2、4、7;2、6、7;4、6、7;其中能构成三角形的有2、6、7;4、6、7这两种情况,所以能构成三角形的概率是21 42 =,故选:B.【点睛】本题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.构成三角形的基本要求为两小边之和大于最大边.7.C解析:C【分析】列举出所有情况,看点数之和等于4的情况数占总情况数的多少即可.【详解】解:如图所示:4的情况为13,22,31共3种,于是P(点数之和等于4)=31= 3612.故选:C.【点睛】本题考查概率的求法与运用,由于两次实验出现的情况较多,用列表法较好.用到的知识点为:概率=所求情况数与总情况数之比.8.A解析:A 【分析】用树形图法确定所有情况和所需情况,然后用概率公式解答即可. 【详解】解:画树状图如下:则总共有12种情况,其中有6种情况是两个球颜色相同的,故其概率为61122=. 故答案为A . 【点睛】本题考查画树形图和概率公式,其中根据题意画出树形图是解答本题的关键.9.C解析:C 【分析】因为数量不多,所以可直接列举出所有情况,比较得到B 的可能性即可. 【详解】解:∵取得礼物共有三种情况:(1)典典A ,诺诺B ,悦悦C ;(2)典典C ,诺诺A ,悦悦B ;(3)典典A ,诺诺C ,悦悦B .∴典典取得礼物B 的概率=0;诺诺取得礼物B 的概率1=3;悦悦取得礼物B 的概率2=3∴悦悦取得礼物B 可能性最大 故选:C . 【点睛】本题考查随机事件发生的可能性,当数量不大时可直接列举出所有的情况,当数量比较大时通常都会用列表法或是树状图来列举.10.D解析:D 【分析】直接利用概率公式进行求解,即可得到答案. 【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个. ∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.C解析:C【分析】首先列表,然后根据表格求得所有等可能的结果与两个骰子的点数相同的情况,再根据概率公式求解即可.【详解】列表得:∴两个骰子的点数相同的概率为:61=366故选:C【点睛】此题考查了树状图法与列表法求概率.注意树状图法与列表法可以不重不漏的表示出所有等可能的结果.用到的知识点为:概率=所求情况数与总情况数之比12.B解析:B【分析】根据无理数的定义和“频率=频数÷总数”计算即可.【详解】-,共2个解:共有5个数,其中无理数有,2π1所以无理数出现的频率为2÷5=0.4.故选B.【点睛】此题考查的是无理数的判断和求频率问题,掌握无理数的定义和频率公式是解决此题的关键.二、填空题13.【分析】根据题意把所有可能出现的结果用表格表示出来即可求解【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果其中两人恰好选中同一根绳子的结果共有3种∴两人恰好选中同一根绳子的概率为:故解析:1 3【分析】根据题意,把所有可能出现的结果用表格表示出来,即可求解.【详解】解:所有可能出现的结果用表格表示为:共有9种等可能的结果,其中两人恰好选中同一根绳子的结果共有3种,∴两人恰好选中同一根绳子的概率为:3193,故答案为:13.【点睛】本题考查用列表法或画树状图法求概率,解题的关键是根据题意列出所有可能出现的结果.14.【分析】利用列表法确定所有可能的情况确定两枚骰子点数之和为10的情况的数量根据概率公式计算得出答案【详解】解:列表:1 2 3 4 5 6 1 2 3 4 5 6 7 2 3 4 5 6 7解析:1 12【分析】利用列表法确定所有可能的情况,确定两枚骰子点数之和为10的情况的数量,根据概率公式计算得出答案.【详解】解:列表:12345612345672345678 3456789 45678910 567891011 6789101112∴P(两枚骰子点数之和为10)=336=1 12,故答案为:1 12.【点睛】此题考查利用列举法求事件的概率,正确列出所有等可能的情况,熟记概率的计算公式是解题的关键.15.【分析】用列表法列举出所有等可能出现的情况从中找出两个球颜色不同的结果数进而求出概率【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数其中两个球颜色不同的有6种∴摸出两个颜色不同解析:1 2【分析】用列表法列举出所有等可能出现的情况,从中找出两个球颜色不同的结果数,进而求出概率.【详解】解:用列表法表示所有可能出现的结果如下:共有12种不同的结果数,其中两个球颜色不同的有6种,∴摸出两个颜色不同的小球的概率为61122,故答案为:12.【点睛】本题考查随机事件的概率,可用列表法和树状图法来解,属于中考常考题型.16.【分析】首先根据题意画出树状图然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况再利用概率公式即可求得答案【详解】画树状图得:∵共有12种等可能的结果小红和小丽同时被抽中的有2种情况∴小红解析:1 6【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小红和小丽同时被抽中的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,小红和小丽同时被抽中的有2种情况,∴小红和小丽同时被抽中的概率是:P =16.故答案为1 6【点睛】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.【分析】先把分式方程化为整式方程解整式方程得到x=且x≠2利用有理数的整除性得到a=2或3然后根据概率公式求解【详解】把分式方程去分母得ax﹣2﹣(x﹣2)=6∴(a﹣1)x=6∵分式方程有整数解∴解析:13.【分析】先把分式方程化为整式方程,解整式方程得到x=61a-且x≠2,利用有理数的整除性得到a=2或3,然后根据概率公式求解.【详解】把分式方程26122axx x--=--去分母得ax﹣2﹣(x﹣2)=6,∴(a﹣1)x=6,∵分式方程有整数解,∴x =61a -且x ≠2, ∴a =2或3,∴a 的值使得关于x 的分式方程26122ax x x --=--有整数解的概率=13.故答案为13. 【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.分式方程的增根是令分母等于0的未知数的值,不是原分式方程的解.也考查了概率公式.18.<【分析】由于第二个转盘红色所占的圆心角为120°则蓝色部分为红色部分的两倍即相当于分成三个相等的扇形(红蓝蓝)再列出表根据概率公式计算出小刚赢的概率和小亮赢的概率即可得出结论【详解】解:用列表法将解析:< 【分析】由于第二个转盘红色所占的圆心角为120°,则蓝色部分为红色部分的两倍,即相当于分成三个相等的扇形(红、蓝、蓝),再列出表,根据概率公式计算出小刚赢的概率和小亮赢的概率,即可得出结论. 【详解】解:用列表法将所有可能出现的结果表示如下:所以小刚赢的概率是131124P ==;则小亮赢的概率是213144P =-= 所以12P P <; 故答案为:< 【点睛】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.19.2335或2344【分析】首先假设这四个数字分别为:ABCD 且A≤B≤C≤D 进而得出符合题意的答案【详解】解:四个数只能是2335或2344理由:设这四个数字分别为:ABCD且A≤B≤C≤D故A+B解析:2,3,3,5或2,3,4,4【分析】首先假设这四个数字分别为:A,B,C,D且A≤B≤C≤D,进而得出符合题意的答案.【详解】解:四个数只能是2,3,3,5或2,3,4,4理由:设这四个数字分别为:A,B,C,D且A≤B≤C≤D,故A+B=5,C+D=8,(1)当A=1时,得B=4,∵A≤B≤C≤D,∴B=C=D=4,不合题意舍去,所以A≠1,(2)当A=2时,得B=3,(I)当C=B=3时,D=5,(II)当C>B时,∵A≤B≤C≤D,∴C=D=4,故综上所述:这四个数只能是:2,3,3,5或2,3,4,4.故答案为:2,3,3,5或2,3,4,4.【点睛】此题主要考查了应用类问题,利用分类讨论得出是解题关键.20.22【分析】袋中黑球的个数为利用概率公式得到然后利用比例性质求出即可【详解】解:设袋中黑球的个数为根据题意得解得即袋中黑球的个数为个故答案为:22【点睛】本题主要考查概率的计算问题关键在于根据题意对解析:22【分析】袋中黑球的个数为x,利用概率公式得到5152310x=++,然后利用比例性质求出x即可.【详解】解:设袋中黑球的个数为x,根据题意得5152310x=++,解得22x=,即袋中黑球的个数为22个.故答案为:22.【点睛】本题主要考查概率的计算问题,关键在于根据题意对概率公式的应用.三、解答题21.(1)13;(2)不公平,理由见解析【分析】(1)先列出表格,展示出所有等可能的结果,数出符合条件的结果数,利用概率公式,即可求解;(2)分别求出小明和小华去参赛的概率,进而即可求解.【详解】解:(1)列表如下P∴(小明参赛)41 123 ==;(2)游戏不公平,理由:P(小明参赛)13 =,P∴(小华参赛)12133 =-=,1233≠,∴这个游戏不公平.【点睛】本题主要考查概率和游戏的公平性,掌握列树状图和列表格展示等可能的结果,是解题的关键.22.(1)树状图见解析,共有6种可能的选法;(2)18.【分析】(1)利用直接列举得到所有6种等可能的结果数;(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:共有12种等可能的结果数,不重复的选法有6种:AB、AC、AD、BC、BD、CD.(2)画树状图如下:共有16种等可能的结果数,其中他们两人恰好修书法或足球的结果数为2,所以他们两人恰好选修书法或足球的概率为21 168=.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.(1)200,补图见解析;(2)估计该校九年级学生中“基本了解”森林防灭火知识的学生有400人;(3)35.【分析】(1)由“不了解”的人数及其所占的百分比即可求出总人数.根据总人数可求出C等级的人数,即可补全统计图.(2)利用C等级的人数所占的百分比乘以该校九年级的人数即可估算.(3)利用列表法列举出所有事件发生的情况,再找出抽到一男一女的情况,最后根据概率公式计算即可.【详解】(1)2010%=200÷人.C等级的人数为200(406020)80-++=(人),补全条形统计图如下:(2)801000400200⨯=(人),故估计该校九年级学生中“基本了解”森林防灭火知识的学生有400人.(3)列表如下:男1男2男3女1女2男1男1,男2男1,男3男1,女1男1,女2男2男2,男1男2,男3男2,女1男2,女2男3男3,男1男3,男2男3,女1男3,女2女1女1,男1女1,男2女1,男3女1,女2女2女2,男1女2,男2女2,男3女2,女1故恰好抽到一男一女的概率为123 205=.【点睛】本题考查条形和扇形统计图相关联,列表法或树状图法求概率.掌握条形和扇形统计图的特点和能够正确列出表格是解答本题的关键.24.(1)50,72°;(2)补全图形见解析;(3)3 5【分析】(1)根据选择C的人数和所占的百分比,可以求得本次抽取的学生人数,再求得D类占总体的比例乘以360即为圆心角的度数;(2)用总人数减去其它的人数即为A类的人数,据此可以补充条形统计图;(3)画树状图展示所有20种等可能的结果数,找出被抽到的两个学生恰好是1男1女的结果数,然后根据概率公式计算.【详解】解:(1)这次共抽取:12÷24%=50(人),D类所对应的扇形圆心角的大小103607250︒⨯=︒,故答案为50,72°;(2)A类学生:50-23-12-10=5(人),条形统计图补充如下(3)A类学生中有2名男生,则有3名女生,画树状图为:共有20种等可能的结果数,其中被抽到的两个学生恰好是1男1女的结果数为12,所以被抽到的两个学生性别相同的概率123 205 ==.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.25.(1)34;(2)23【分析】(1)根据口袋中数字不大于3的小球有3个,即可确定概率;(2)通过列表或画树状图写出所有的等可能结果,然后数出两次摸出小球上的数字和恰好是奇数的结果,即可得到概率.【详解】解:(1)34;(2)列表得:1234 1——(1,2)(1,3)(1,4)2(2,1)——(2,3)(2,4)3(3,1)(3,2)——(3,4)4(4,1)(4,2)(4,3)——两次摸出小球上的数字和恰好是奇数的情况有8种:即:(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3).∴P(两次摸出小球上的数字和恰好是奇数)=82123=.【点睛】本题考查了概率的计算,熟练掌握画树状图或列表法求概率是解题的关键.26.(1)2,45,20;(2)图见解析,72;(3)1 6【分析】(1)用A 等次的人数除以它所占的百分比得到调查的总人数,再分别求出a 和B 等次的人数,然后计算出b 、c 的值;(2)先补全条形统计图,然后用360°乘以C 等次所占的百分比得到C 等次的扇形所对的圆心角的度数;(3)画树状图展示所有12种等可能的结果数,再找出甲、乙两名男生同时被选中的结果数,然后根据概率公式求解. 【详解】解:(1)1230%40÷=, 405%2a =⨯=; 401282%100%45%40b ---=⨯=,即45b =; 8%100%20%40c =⨯=,即20c =; 故答案为:2,45,20;(2)B 等次人数为40128218---=, 条形统计图补充为:C 等次的扇形所对的圆心角的度数20%36072=⨯︒=︒; 故答案为72︒; (3)画树状图为:共有12种等可能的结果数,其中甲、乙两名男生同时被选中的结果数为2, 所以甲、乙两名男生同时被选中的概率21126==. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.也考查了统计图.。
北师大版九年级数学上册第三章概率的进一步认识单元测试题(有答案)

北师大版九年级数学上册 第三章 概率的进一步认识 单元测试题一.选择题(共10小题,每小题3分,共30分) 1.下列说法正确的是( )A .为了解一批灯泡的使用寿命,宜采用普查方式B .掷两枚质地均匀的硬币,两枚硬币都是正面朝上这一事件发生的概率为C .掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是必然事件D .甲乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定2.“学雷锋”活动月中,“飞翼”班将组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是( )A .B .C .D .3.如图,4×2的正方形网格中,在A ,B ,C ,D 四个点中任选三个点,能够组成等腰三角形的概率为( )A .0B .C .D .4.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.若一次性摸出两个球,则一次性取出的两个小球标号的和不小于4的概率是( )A .B .C .D .5.消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个给“好评”的概率为( )A .B .C .D .6.将一枚均匀的硬币连续抛掷两次,则两次都是正面朝上的概率等于( ) A .0.5B .0.25C .0.75D .17.某小组在“用频率估计概率”的实验中,统计了某种频率结果出现的频率,绘制了如图所示的折线统计图,那么符合这一结果的实验最有可能的是( )A.掷一枚质地均匀的硬币,落地时结果是“正面向上”B.掷一个质地均匀的正六面体骰子,落地时朝上的面点数是6C.在“石头剪刀、和”的游戏中,小明随机出的是“剪刀”D.袋子中有1个红球和2个黄球,只有颜色上的区别,从中随机取出一个球是黄球8.在做抛硬币试验时,甲、乙两个小组画出折线统计图后发现频率的稳定值分别是50.00%和50.02%,则下列说法错误是()A.乙同学的试验结果是错误的B.这两种试验结果都是正确的C.增加试验次数可以减小稳定值的差异D.同一个试验的稳定值不是唯一的9.如图所示,分别用两个质地均匀的转盘转得一个数,①号转盘表示数字2的扇形对应的圆心角为120°,②号转盘表示数字3的扇形对应的圆心角也是120°,则转得的两个数之积为偶数的概率为()A.B.C.D.10.如图,两个转盘中指针落在每个数字的机会均等.现在同时自由转动甲、乙两个转盘,转盘停止后,指针各自指向一个数字,用所指的两个数字作乘法运算所得的积为奇数的概率为()A.B.C.D.二.填空题(共8小题,每小题3分,共24分)11.一个口袋中装有6个红球和4个白球,这些球除颜色外完全相同,充分搅匀后随机摸出一球发现是白球,如果这个白球不放回,再摸出一球,它是白球的概率是.12.一枚材质均匀的骰子,六个面的点数分别是1,2,3,4,5,6,投这个骰子,掷的点数大于4的概率是.13.从分别写有﹣1,﹣2,1,2的四张卡片中随机抽取两张,把第一张卡片上的数字作为a,第二张卡片上的数字作为b,则a,b之和大于0的概率是.14.在一个不透明的箱子里有四张外形相同的卡片・卡片上分别标有数字﹣1,1,3,5.摸出一张后,记下数字,再放回,摇匀后再摸出一张,记下数字.以第一次得到的放字为横坐标,第二次得到的数字为纵坐标,得到一个点则这个点.恰好在直线y=﹣x+4上的概率是.15.在两个暗盒中,各自装有编号为1,2,3的三个球,球除编号外无其它区别,则在两个暗盒中各取一个球,两球上的编号的积为偶数的概率为.16.某校春季运动会,小红参加100米和200米的比赛,每组六人分别在1﹣﹣6号跑道同时进行比赛,问小红两次都抽到3号跑道的概率是.17.在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有个.18.如图,一个转盘的盘面被等分成四个扇形区域,并分别标有数字﹣1、0、1、2若转动转盘两次,每次转盘停止后记录指针所指区域的数字(当指针恰好指在分界线上时,不记,重转),则记录的两个数字的和等于0的概率为.三.解答题(共7小题,共66分)19.“五一”期间,某商场推出“购物满额即可抽奖”活动.商场在抽奖箱中装有1个红球、2个黄球、3个白球、8个黑球,每个球除颜色外都相同,红球、黄球、白球分别代表一、二、三等奖,黑球代表谢谢参与.获得抽奖杋会的顾客每次从箱子中摸出一个球,按相应颜色对应等级兑换奖品,每次所摸得球再放回抽奖箱,摇匀后由下一位顾客抽奖.已知小明获得1次抽奖机会.(1)小明是否一定能中奖:;(填是、否)(2)求出小明抽到一等奖的概率;(3)在这个活动中,中奖和没中奖的机会相等吗?为什么?如果不相等,可以如何改变球的个数,使中奖和没中奖的机会相等?(只写一种即可)20.如图,把一个转盘分成六等份,依次标上数字1、2、3、4、5、6,小明和小芳分别只转动一次转盘,小明同学先转动转盘,结果指针指向2,接下来小芳转动转盘、若把小明和小芳转动转盘指针指向的数字分别记作x、y,把x、y作为点A的横、纵坐标.(1)写出点A(x,y)所有可能的坐标;(2)求点A(x,y)在直线y=x+1上的概率.21.2018年12月16日,西安市地铁4号线带着华美的外表和深厚的文化开通试运营,列车车厢的Tiffany蓝与车厢的顶部及脚面的科技感十足的银色互相搭配,被首批试乘的旅客称为“仙女专列”.小华和小丽利用元旦放假期间进行了西安市民对地铁4号线的满意度的调查,如图是西安地铁四号线南端的五站路线图,小华和小丽分别在飞天路、东长安街、神舟大道这三站中随机选取一站作为调查的站点.(1)小华选取的站点的飞天路的概率为;(2)请用列表或画树状图的方法,求小华和小丽选取的站点相邻的概率.22.小红和小丁玩纸牌优秀,如图是同一副扑克中的4张牌的正面,将它们正面朝下洗匀后放在桌面上,小红先从中抽出一张,小丁从剩余的3张牌中也在、抽出一张,比较两人抽取的牌面上的数字,数字大者获胜,请用树状图或列表法求小红获胜的概率.23.下表是一名同学在罚球线上投篮的实验结果,根据表中数据,回答问题:(1)将表格补充完成;(精确到0.01)(2)估计这名同学投篮一次,投中的概率约是多少(精确到0.1)?(3)根据此概率,估计这名同学投篮622次,投中的次数约是多少?24.国家为了实现2020年全面脱贫目标,实施“精准扶贫”战略,采取异地搬迁,产业扶持等措施.使贫困户的生活条件得到改善,生活质量明显提高.某旗县为了解贫困县对扶贫工作的满意度情况,进行随机抽样调查,分四个类别A.非常满意;B.满意;C.基本满意;D.不满意.依据调查数据绘制成条形统计图和扇形统计图(不完整).根据以上信息,解答下列问题:(1)D类别在扇形统计图中对应的圆心角度数是;(2)将条形统计图补充完整;(3)市扶贫办从该旗县甲乡镇3户和乙乡镇2户共5户贫困户中,随机抽取两户进行满度回访,求这两户贫困户恰好都是同一乡镇的概率.25.现今“微信运动”被越来越多的人关注和喜爱,某兴趣小组随机调查了我市50名教师某日“微信运动”中的步数情况进行统计整理,绘制了如下的统计图表(不完整),请根据以上信息,解答下列问题;(1)写出a,b,c,d的值并补全频数分布直方图;(2)本市约有37800名教师,用调查的样本数据估计日行步数超过12000步(包含12000步)的教师有多少名?(3)若在50名被调查的教师中,选取日行走步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师恰好都在20000(包含20000)以上的概率.参考答案一.选择题1.解:A、为了解一批灯泡的使用寿命,宜采用抽样调查的方式,所以A选项错误;B、利用树状图得到共有正正、正反、反正、反反四种可能的结果数,所以两枚硬币都是正面朝上这一事件发生的概率为,所以B选项错误;C、掷一枚质地均匀的正方体骰子,骰子停止转动后,5点朝上是随机事件,所以C选项错误;D、因为S甲2=0.4,S乙2=0.6,所以甲的方差小于乙的方差,所以甲的射击成绩较稳定,所以D选项正确.故选:D.2.解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择同一场馆的结果数为3,所以两人恰好选择同一场馆的概率==.故选:A.3.解:在A,B,C,D四个点中任选三个点,有如下四种情况:ABC、ABD、ACD、BCD,其中能够组成等腰三角形的有ACD、BCD两种情况,∴能够组成等腰三角形的概率为=,故选:B.4.解:画树状图为:共有6种等可能的结果数,其中一次性取出的两个小球标号的和不小于4的结果数为5,所以一次性取出的两个小球标号的和不小于4的概率=.故选:D.5.解:画树状图为:共有9种等可能的结果数,两人中至少有一个给“好评”的结果数为5,所以两人中至少有一个给“好评”的概率=.故选:C.6.解:画树状图为:共有4种等可能的结果数,两次都是正面朝上的结果数为1,所以两次都是正面朝上的概率=.故选:B.7.解:A、掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率为,不符合题意;B、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为,符合题意;C、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,不符合题意;D、袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率,不符合题意;故选:B.8.解:A、两试验结果虽然不完全相等,但都是正确的,故错误;B、两种试验结果都正确,正确;C、增加试验次数可以减小稳定值的差异,正确;D、同一个试验的稳定值不是唯一的,正确,故选:A.9.解:列表如下由表知,共有9种等可能结果,其中转得的两个数之积为偶数的有7种结果,所以转得的两个数之积为偶数的概率为,故选:C.10.解:列表法:由表知,指的两个数字作乘法运算所得的积为奇数的有2种结果,所以指的两个数字作乘法运算所得的积为奇数的概率为=,故选:B.二.填空题11.解:如果先摸出一白球,这个白球不放回,那么第二次摸球时,有3个白球和6个红球,再摸出一球它是白球的概率是=,故答案为:.12.解:∵在这6种情况中,掷的点数大于4的有2种结果,∴掷的点数大于4的概率为=,故答案为:.13.解:画树状图为:共有12种等可能的结果数,其中a,b之和大于0的结果数为4,所以a,b之和大于0的概率==.故答案为.14.解:画树状图为:共有16种等可能的结果数,其中以第一次得到的放字为横坐标,第二次得到的数字为纵坐标得到的恰好在直线y=﹣x+4上的结果数为4,所以以第一次得到的放字为横坐标,第二次得到的数字为纵坐标,得到一个点则这个点.恰好在直线y=﹣x+4上的概率==.故答案为.15.解:画树状图为:共有9种等可能的结果数,其中两球上的编号的积为偶数的结果数为5,所以两球上的编号的积为偶数的概率=.故答案为.16.解:画树状图为:共有36种等可能的结果数,其中小红两次都抽到3号跑道的结果数为1,所以小红两次都抽到3号跑道的概率=.故答案为.17.解:设袋中红球有x个,根据题意,得:=0.7,解得:x=7,经检验:x=7是分式方程的解,所以袋中红球有7个,故答案为:7.18.解:画树状图得:∵共有16种等可能的结果,记录的两个数字的和等于0的由3种结果,∴记录的两个数字的和等于0的概率为,故答案为:.三.解答题19.解:(1)小明不一定能中奖,故答案为:否;(2)球的个数有1+2+3+8=14(个),而红球有1个所以小明抽到一等奖的概率是.(3)因为黑球的个数有8个,所以没有中奖的概率是=,则中奖的概率是1﹣=,因为≠,所以中奖和没中奖的机会不相等,可以减少2个黑球使中奖和没中奖的机会相等(答案不唯一).20.解:(1)点A所有可能的坐标为(2,1)、(2,2)、(2,3)、(2,4)、(2,5)、(2,6);(2)∵在所列的6种等可能结果中,点A落在y=x+1上的有1种结果,∴点A(x,y)在直线y=x+1上的概率为.21.解:1)小华选取的站点的飞天路的概率为;故答案为;(2)画树状图为:(用A、B、C分别表示飞天路、东长安街、神舟大道这三站)共有9种等可能的结果数,其中小华和小丽选取的站点相邻的结果数为4,小华和小丽选取的站点相邻的概率=22.解:画树状图为:共有12种等可能的结果数,其中小红获胜的结果数为6,所以小红获胜的概率==.23.解:(1)153÷300=0.51,252÷500≈0.50;故答案为:0.51,0.50;(2)估计这名同学投篮一次,投中的概率约是0.5;(3)622×0.5=311(次).所以估计这名同学投篮622次,投中的次数约是311次.24.解:(1)∵被调查的总户数为50÷25%=200(户),∴D类别在扇形统计图中对应的圆心角度数是360°×=18°,故答案为:18°;(2)B满意度的户数为200﹣(50+20+10)=120(户),补全图形如下:(3)画树状图如下:由树状图知共有20种等可能结果,其中这两户贫困户恰好都是同一乡镇的有8种结果,所以这两户贫困户恰好都是同一乡镇的概率为=.25.解:(1)a=8÷50=0.16,b=12÷50=0.24,c=50×0.2=10,d=50×0.04=2,补全频数分布直方图如下:(2)37800×(0.2+0.06+0.04)=11340,答:估计日行走步数超过12000步(包含12000步)的教师有11340名;(3)设16000≤x<20000的3名教师分别为A、B、C,20000≤x<24000的2名教师分别为X、Y,画树状图如下:由树状图可知,被选取的两名教师恰好都在20000步(包含20000步)以上的概率为=.。
新北师大版九年级数学上册第三章《概率的进一步认识》章末练习题含答案解析 (24)

一、选择题1.如图所示,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡L1,L2同时发光的概率为( )A.16B.12C.23D.132.四张完全相同的卡片上,分别画有圆、矩形、等边三角形、等腰梯形,现从中随机抽取一张,卡片上画的恰好是中心对称图形的概率为( )A.14B.12C.34D.13.小明在一次用“频率估计概率”的试验中,把对联“海水朝朝朝朝朝朝朝落,浮云长长长长长长长消”中的每个汉字分别写在同一种卡片上,然后把卡片搅匀将无字的面朝上,随机抽取一张,并统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能是( )A.抽出的是“朝”字B.抽出的是“长”字C.抽出的是独体字D.抽出的是带“氵”的字4.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )A.14B.13C.12D.345.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为a;如果投掷一枚硬币,正面向上的概率为b.关于a,b大小的正确判断是( )A.a>b B.a=b C.a<b D.不能判断6.为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:组别(cm)x<160160≤x<170170≤x<180x≥180人数5384215根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm的概率是( )A.0.85B.0.57C.0.42D.0.157.如图,衣橱中挂着3套不同颜色的服装,同一套服装的上衣与裤子的颜色相同.若从衣橱里各任取一件上衣和一条裤子,它们取自同一套的概率是( )A.127B.19C.16D.138.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( )A.6m2B.7m2C.8m2D.9m29.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是( )A.12B.13C.14D.1610.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100粒黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有A.10粒B.160粒C.450粒D.500粒二、填空题11.甲乙两同学做“石头、剪刀、布”的游戏,在一个回合中,甲同学获胜的概率是.12.一个不透明的袋子中装有4个球,这些球除颜色外无其他差别.把它们分别标号为1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于4的概率是.13.从−3,1,−2这三个数中任取两个不同的数,积为正数的概率是.14.在一个不透明的袋子中放有a个球,其中有6个白球,这些球除颜色外完全相同,若每次把球充分搅匀后,任意摸岀——球记下颜色再放回袋子.通过大量重复试验后,发现摸到白球的频率稳定在0.25左右,则a的值约为.15.袋中共有5个大小相同的红球、白球,任意摸出一球是红球的概率为25,任意摸出2个球均为红球的概率是 .16. 在 13,0,√2,−1 这四个数中随机取出两个数,则取出的两个数均为正数的概率是 .17. 公司以 3元/kg 的成本价购进 10000 kg 柑橘,并希望出售这些柑橘能够获得 12000 元利润,在出售柑橘(去掉损坏的柑橘)时,需要先进行“柑橘损坏率”统计,再大约确定每千克柑橘的售价,右面是销售部通过随机取样,得到的“柑橘损坏率”统计表的一部分,由此可估计柑橘完好的概率为 (精确到 0.1);从而可大约每千克柑橘的实际售价为 元时(精确到 0.1),可获得 12000 元利润.柑橘总质量n/kg 损坏柑橘质量m/kg 柑橘损坏的频率mn (精确到0.001)⋯⋯⋯25024.750.09930030.930.10335035.120.10045044.540.09950050.620.101三、解答题18. 只有 1 和它本身两个因数且大于 1 的正整数叫素数.我国数学家陈景润从哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:“每个大于 2 的偶数都可以表示为两个素数的和”.如 20=3+17.(1) 若从 7,11,19,23 这 4 个素数中随机抽取一个,则抽到的数是 7 的概率是 ; (2) 从 7,11,19,23 这 4 个素数中随机抽取 1 个数,再从余下的 3 个数中随机抽取 1 个数,再用画树状图或列表的方法,求抽到的两个素数之和等于 30 的概率.19. 我校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级若干名学生“30 秒跳绳”的次数,并将调查所得的数据整理如下: 30 秒跳绳次数的频数、频率分布表 成绩段频数频率0≤x <2050.10≤x <4010a 40≤x <60b 0.1460≤x <80m c 80≤x <10012n 根据以上图表信息,解答下列问题:(1) 本次调查了九年级学生 名;表中的 a = ,m = ; (2) 请把频数分布直方图补充完整;(画图后请标注相应的数据)(3) 若该校九年级共有 600 名学生,请你估计“30 秒跳绳”的次数 60 次以上(含 60 次)的学生有多少人?20. 第 24 届冬季奥林匹克运动会将在 2022 年 02 月 04 日 ∼2022 年 02 月 20 日在中华人民共和国北京市和张家口市联合举行.为了调查中学生对冬奥会比赛项目的了解程度,某中学在学生中做了一次抽样调查,调查结果共分为四个等级:A .非常了解,B .比较了解,C .基本了解,D .不了解.根据调查统计结果,绘制了统计表和如图所示的不完整的统计图. 对冬奥会了解程度的统计表对冬奥会的了解程度百分比A.非常了解10%B.比较了解15%C.基本了解35%D.不了解n%(1) n = ;(2) 扇形统计图中,D 部分扇形所对应的圆心角的度数是 ; (3) 请补全条形统计图;(4) 根据调查结果,学校准备开展冬奥会的知识竞赛.某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定谁参赛.具体规则如下:把四个完全相同的乒乓球分别标上数字 1,2,3,4,然后放到一个不透明的袋中,先从袋中随机摸出一个球,再从剩下的三个球中随机摸出一个球,若摸出的两个球上的数字和为偶数,则小明去,否则小刚去,请用画树状图或列表的方法说明这个游戏是否公平.21.在一个不透明的布袋里装有4个标号为−1,2,3,4的小球,它们的材质、形状、大小完全相同,小凯从布袋里随机取出一个小球,记下数字为x,小芳从剩下的3个小球中随机取出一个小球,记下数字为y这样确定了点P的坐标(x,y).(1) 请你运用画树状图或列表的方法,写出点P所有可能的坐标.(2) 求点(x,y)落在第二象限的概率.22.有四张正面分别标有数字0,1,2,3的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.(1) 随机抽出一张卡片,则抽到数字“2”的概率为;(2) 随机抽出一张卡片,记下数字后放回并搅匀,再随机抽出一张卡片,请用列表或画树状图的方法,求两次抽出的卡片上的数字之和是3的概率.23.每年的4月26日为“世界知识产权日”,为了树立尊重知识产权、崇尚科学和保护知识产权的意识,某校九年级开展了“知识产权知识竞赛”,对全年级同学成绩进行统计后分为“优秀”、“良好”、“一般”、“较差”四个等级,并根据成绩绘制成两幅不完整的统计图,请结合图中的信息,回答下列问题.(1) 扇形统计图中“优秀”所对应扇形的圆心角为度,并将条形统计图补充完整;(2) 此次比赛有四名同学获得满分,分别是甲、乙、丙、丁.现从这四名同学中挑选两名同学参加学校举行的“知识产权知识竞赛”,请用列表法或画树状图法,求出甲没有被选上的概率.24.小亮正在参加学校举办的古诗词比赛节目,他须答对两道单选题才能顺利通过最后一关,其中第一题有A,B,C,D共4个选项,第二题有A,B,C共3个选项,而这两题小亮都不会,但小亮有一次使用“特权”的机会(使用“特权”可去掉其中一题的一个错误选项).(1) 如果小亮第一题不使用“特权”,随机选择一个选项,那么小亮答对第一题的概率是.(2) 如果小亮将“特权”留在第二题,请用画树状图或列表法来求出小亮通过最后一关的概率.25.2021年,黄冈、咸宁、孝感三市实行中考联合命题,为确保联合命题的公平性,决定采取三轮抽签的方式来确定各市选派命题组长的学科.第一轮,各市从语文、数学、英语三个学科中随机抽取一科;第二轮,各市从物理、化学、历史三个学科中随机抽取一科;第三轮,各市从道德与法治、地理、生物三个学科中随机抽取一科.(1) 黄冈在第一轮抽到语文学科的概率是;(2) 用画树状图或列表法求黄冈在第二轮和第三轮抽签中,抽到的学科恰好是历史和地理的概率.答案一、选择题1. 【答案】D【解析】画树状图,如图所示:由树状图可知,共有六种等可能的情况,其中能让两盏灯泡L1,L2同时发光的情况有2种,则P(能让两盏灯泡L1,L2同时发光)=26=13.故选D.【知识点】树状图法求概率2. 【答案】B【知识点】列表法求概率3. 【答案】D【解析】A.抽出的是“朝”字的概率是720,不符合题意;B.抽出的是“长”字的概率是720,不符合题意;C.抽出的是独体字的概率是920,不符合题意;D.抽出的是带“氵”的字的概率为420=20%,符合题意.【知识点】用频率估算概率4. 【答案】A【解析】共4种情况,有1种情况每个路口都是绿灯,所以概率为14.【知识点】树状图法求概率5. 【答案】B【知识点】用频率估算概率6. 【答案】D【解析】样本中身高不低于180cm的频率=15100=0.15,所以估计抽查该地区一名九年级男生的身高不低于180cm的概率是0.15.故选:D.【知识点】用频率估算概率7. 【答案】D【解析】令3件上衣分别为A,B,C,对应的裤子分别为a,b,c,画树状图如下:由树状图可知,共有9种等可能结果,其中取自同一套的有3种可能,所以取自同一套的概率为39=13,故选:D.【知识点】树状图法求概率8. 【答案】B【解析】假设不规则图案面积为x,由已知得:长方形面积为20,根据几何概率公式小球落在不规则图案的概率为:x20,当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:x20=0.35,解得x=7.【知识点】用频率估算概率9. 【答案】C【解析】由题图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E,F,G,H四个,所以小球从E出口落出的概率是14.故选C.【知识点】树状图法求概率10. 【答案】C【解析】设这袋黄豆原来有x粒.10 100=5050+xx=450.【知识点】概率的计算二、填空题11. 【答案】13【知识点】列表法求概率12. 【答案】316【知识点】列表法求概率13. 【答案】13【解析】根据题意画出树状图如下:一共有6种情况,积是正数的有2种情况,所以,P(积为正数)=26=13.【知识点】树状图法求概率14. 【答案】24【解析】根据题意得6a=0.25,解得:a=24,经检验:a=24是分式方程的解.【知识点】用频率估算概率15. 【答案】110【解析】题意可得红球有2个,白球有3个.列出所有等可能情况,如下表.由表可知,任意摸出两个球共有20种情况,其中摸到的2个球均为红球的有2种,所以任意摸出2个球均为红球的概率为220=110.红1红2白1白2白3红1红1红2红1白1红1白2红1白3红2红2红1红2白1红2白2红2白3白1白1红1白1红2白1白2白1白3白2白2红1白2红2白2白1白2白3白3白3红1白3红2白3白1白3白2【知识点】列表法求概率16. 【答案】16【知识点】树状图法求概率17. 【答案】0.9;4.7【解析】从表格可以看出,柑橘损坏的频率在常数0.1左右摆动,并且随统计量的增加这种规律逐渐明显,所以柑橘的完好率应是1−0.1=0.9;设每千克柑橘的销售价为x元,则应有10000×0.9x−3×10000=12000,解得x=143≈4.7.所以去掉损坏的柑橘后,水果公司为了获得12000元利润,完好柑橘每千克的售价应为 4.7元,故答案为:0.9,4.7.【知识点】用频率估算概率、一元一次方程的应用三、解答题18. 【答案】(1) 14(2) 树状图如图所示:共有12种可能,满足条件的有4种可能,∴抽到的两个素数之和等于30的概率为412=13.【知识点】公式求概率、树状图法求概率19. 【答案】(1) 50;0.2;16(2) 补全频数分布直方图如下:(3) 估计“30秒跳绳”的次数60次以上(含60次)的学生有600×(1−0.1−0.2−0.14)=336(人).【解析】(1) 本次调查的九年级学生总人数为5÷0.1=50(名),则a=10÷50=0.2,b=50×0.14=7,∴m=50−(5+10+7+12)=16.【知识点】用样本估算总体、条形统计图、用频率估算概率20. 【答案】(1) 40(2) 144∘(3) 补全的条形统计图如图所示.(4) 画树状图如图所示:∴P(小刚去)=812=23,P(小明去)=412=13,∵23≠13,∴游戏规则不公平.【解析】(3) 被调查学生的总数为40÷10%=400(人),调查结果为D等级的人数为400×40%=160.【知识点】扇形统计图、条形统计图、树状图法求概率21. 【答案】(1) 根据题意,列表如下:x−1234−1(−1,2)(−1,3)(−1,4) 2(2,−1)(2,3)(2,4) 3(3,−1)(3,2)(3,4) 4(4,−1)(4,2)(4,3)(2) 共12种等可能的结果,点(x,y)落在第二象限的有3中,分别是(−1,2),(−1,3),(−1,4).∴P=312=14.【知识点】列表法求概率22. 【答案】(1) 14(2) 列表如下:012300123112342234533456由表可知,共有16种等可能结果,其中两次抽出的卡片上的数字之和是3的有4种结果,∴两次抽出的卡片上的数字之和是3的概率为416=14.【解析】(1) 从4张除数字外均相同的卡片中抽取1张,共有4种等可能结果,其中抽到数字“2”的只有1种结果,∴抽到数字“2”的概率为14,故答案为:14.【知识点】列表法求概率、公式求概率23. 【答案】(1) 72补全条形统计图:良好120人.(2) 根据题意可列表为:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)由表中可得出共有12种情况,其中甲没有被选上的有6种.∴P(甲没有被选上)=612=12.【知识点】条形统计图、列表法求概率、扇形统计图24. 【答案】(1) 14(2) 若第二道选择“特权”,画树状图如图,因为共有8种等可能的结果,小亮顺利通关的只有1种情况,此时小亮通过最后一关的概率为18.【解析】(1) 因为第一道单选题有4个选项,所以小亮答对第一道题的概率是14.【知识点】树状图法求概率、公式求概率25. 【答案】(1) 13(2) 列表如下:物理化学历史道法(物理,道法)(化学,道法)(历史,道法)地理(物理,地理)(化学,地理)(历史,地理)生物(物理,生物)(化学,生物)(历史,生物)由表可知共有9种等可能结果,其中抽到的学科恰好是历史和地理的只有1种结果,∴抽到的学科恰好是历史和地理的概率为19.【解析】(1) 黄冈在第一轮抽到语文学科的概率是13.【知识点】列表法求概率、公式求概率。
北师大版九年级数学上册数学_第三章_概率的进一步认识_单元检测试题【有答案】

北师大版九年级数学上册数学第三章概率的进一步认识单元检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.将分别写有数字,,的三张卡片(除数字外,其余均相同)洗匀后背面朝上摆放,然后从中任意抽取两张,则抽到的两张卡片上的数字之和为偶数的概率是()A. B. C. D.2.在一个不透明的纸箱中放入个除颜色外其他都完全相同的球,这些球中有个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出的值大约是()A. B. C. D.3.在一个不透明的布袋中,红色、黑色的球共有个,它们除颜色外其他完全相同.张宏通过多次摸球试验后发现其中摸到红球的频率稳定在附近,则口袋中红球的个数很可能是()A.个B.个C.个D.个4.一个不透明的口袋里装有除颜色外都相同的个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:先将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了次,其中有次摸到白球,因此小亮估计口袋中的红球大约为()A.个B.个C.个D.个5.某一部三册的小说,任意排放在书架的同一层上,则各册自左到右或自右到左的顺序恰好为第,,册的概率为()A. B. C. D.6.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回A. B. C. D.7.同时掷两个质地均匀的正方体骰子,骰子的六个面上分别刻有到的点数,则两个骰子向上的一面的点数和为的概率为()A. B. C. D.8.一个口袋中有个黑球和若干个白球,从口袋中随机摸出一球,记下颜色,再放回口袋,不断重复上述过程,共做了次,其中有次摸到黑球,因此估计袋中白球有()A.个B.个C.个D.个9.从、、三个数中随机取一个数为,再随机取一个数(可重复)为,则直线与轴的交点在轴正半轴的概率是()A. B. C. D.10.图示的两个圆盘中,指针落在每一个数字所在的扇形区域上的机会是相等的,那么两个指针同时落在偶数所在的扇形区域上的概率是()A. B. C. D.二、填空题(共 10 小题,每小题 3 分,共 30 分)11.李老师想从小明、小红、小丽和小亮四个人中用抽签的方式抽取两个人做流动值周生,则小红和小丽同时被抽中的概率是________.12.如图所示,一只蚂蚁从点出发到,,处寻觅食物.假定蚂蚁在每个岔路口都可能的随机选择一条向左下或右下的路径(比如岔路口可以向左下到达处,也可以向右下到达处,其中,,都是岔路口).那么,蚂蚁从出发到达处的概率是________.13.口袋中有红色、黄色、蓝色的玻璃球共个,小华通过多次试验后,发现摸到红球、黄球的频率依次是、,则估计口袋中篮球的个数约为________个.14.小李和小王准备到古隆中、水镜庄、黄家湾三个景点去游玩,如果他们各自在这三个景点中任选一个作为游玩的第一站(每个景点被选为第一站的可能性相同),那么他们都选古隆中为第一站的概率是________.15.分别从数,,,中,任取两个不同的数,则所取两数的和为正数的概率为________.16.一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是________.17.一个袋子中装有个球,其中个黑球个白球,这些球除颜色外,形状、大小、质地等完全相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出两个球为白球的概率是________.18.一水塘里有鲤鱼、鲫鱼、鲢鱼共尾,一渔民通过多次捕捞实验后发现,鲤鱼、鲫鱼出现的频率分别是和,则这个水塘里大约有鲢鱼________尾. 19.有红黄蓝三种颜色的小球各一个,它们除颜色外完全相同,将这三个小球随机放入编号为①②③的盒子中,若每个盒子放入一个小球,且只放入一个小球,则黄球恰好被放入③号盒子的概率为________.20.两个不透明的袋子,一个装有两个球(个白球,一个红球),另一个装有个球(个白球,个红球,个绿球),小球除颜色不同外,其余完全相同.现从两个袋子中各随机摸出个小球,两球颜色恰好相同的概率是________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.在四张背面完全相同的纸牌、、、,其中正面分别画有四个不同的几何图形(如图),小华将这张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸一张.用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用、、、表示);求摸出两张纸牌牌面上所画几何图形,既是轴对称图形又是中心对称图形的概率.22.甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于,那么甲获胜;如果积不大于,那么乙获胜.请你解决下列问题:利用树状图(或列表)的方法表示游戏所有可能出现的结果;求甲、乙两人获胜的概率.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:.打扫街道卫生;.慰问孤寡老人;.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.若随机选一个年级的学生代表和一项活动内容,请你用列表法(或画树状图)表示所有可能出现的结果;求九年级学生代表到社区进行义务文艺演出的概率.24.一个不透明的盒中装有若干个只有颜色不同的红球与白球.若盒中有个红球和个白球,从中任意摸出两个球恰好是一红一白的概率是多少?请用画树状图或列表的方式说明;若先从盒中摸出个球,画上记号放回盒中,再进行摸球实验.摸球实验的要求:每次摸球前先搅拌均匀,摸出一个球,记录颜色后放回盒中,再继续,在的条件下估算盒中红球的个数.“端午”节前,第一次爸爸去超市购买了大小、质量都相同的火腿粽子和豆沙粽子若干,放入不透明的盒中,此时随机取出火腿粽子的概率为;妈妈发现小亮喜欢吃的火腿粽子偏少,第二次妈妈又去买了同样的只火腿粽子和只豆沙粽子放入同一盒中,这时随机取出火腿粽子的概率为.请计算出第一次爸爸买的火腿粽子和豆沙粽子各有多少只?若妈妈从盒中取出火腿粽子只、豆沙粽子只送爷爷和奶奶后,再让小亮从盒中不放回地任取只,问恰有火腿粽子、豆沙粽子各只的概率是多少?(用字母和数字表示豆沙粽子和火腿粽子,用列清法计算)26.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为分)作了统计分析,请你根据图表提供的信息,解答下列问题:根据学校规定将有的学生参加校级数学冬令营活动,试确定参赛学生的最低资格线?数学老师准备从不低于分的学生中选人介绍学习经验,其中符合条件的小华、小丽同时被选中的概率是多少?答案1.B2.D3.A4.C5.A6.C7.B8.B9.A10.B11.12.13.14.15.16.17.18.19.20.21.解画树状图得:则共有种等可能的结果; ∵既是中心对称又是轴对称图形的只有、,∴既是轴对称图形又是中心对称图形的有种情况,∴既是轴对称图形又是中心对称图形的概率为:.22.解:树状图法:或列表法:根据列出的表,甲,乙.23.解:由题意可画出树状图:由树状图可知共有种可能,九年级学生代表到社区进行义务文艺演出的有种,所以概率是九年级学生代表到社区进行义务文艺演出的概率为.24.红球占,白球占;由题意可知,次摸球实验活动中,出现有记号的球次,∴总球数为,∴红球数为,答:盒中红球有个.25.第一次爸爸买了只火腿粽子,只豆沙粽子.现在有火腿粽子只,豆沙粽子只,送给爷爷,奶奶后,还有火腿粽子只,豆沙粽子只.记豆沙粽子,,;火腿粽子,,,,.恰好火腿粽子、豆沙粽子各只的概率为.分;设四人分别为甲(小华)、乙(小丽)、丙、丁,根据题意,列表可得,∴小华、小丽两同学同时被选中的概率.。
北师大版数学九年级上册第三章概率的进一步认识单元测试卷【含答案】

北师大版数学九年级上册第三章概率的进一步认识单元测试卷一、选择题(每小题3分,共30分)1. 有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a 的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b 的值,则点(a ,b )在第二象限的概率是( ) A.61 B.31 C.21 D.32 2. 下列说法正确的是( )A .在一次抽奖活动中,“中奖的概率是1001”表示抽奖100次就一定会中奖 B .随机抛一枚硬币,落地后正面一定朝上 C .同时掷两枚均匀的骰子,朝上一面的点数和为6D .在一副没有大、小王的扑克牌中任意抽一张,抽到的牌是6的概率是131 3. 在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为32,则黄球的个数为( )A.2B.4C.12D.16 4. 让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域, 则这两个数的和是2的倍数或是3的倍数的概率等于( ) A.163B.83C.85D.1613 5. 在课外实践活动中,甲、乙、丙、丁四个小组用投掷一元硬币的方法来估算正面朝上的概率,其试验次数分别为10次,50次,100次,200次,其中试验相对科学的是( ) A .甲组 B .乙组 C .丙组 D .丁组 6. 某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( )A.101B.91C.31D.217. 在一个密闭不透明的盒子里有若干个白球,在不允许将球倒出来的情况下,为了估计白球的个数,小刚向其中放入8个黑球,摇匀后从中随机摸出一个球记下颜色,再把它放回盒中,不断重复,共摸球400 次,其中88次摸到黑球,估计盒中大约有白球( )A. 28个B. 30个C. 36个D. 42个 8. 某市民政部门五一期间举行“即开式福利彩票”的销售活动,发行彩票10万张(每张彩票2元),在这次彩票销售活动中,设置如下奖项:A.20001 B.5001 C. 5003 D.20019. 青青的袋中有红、黄、蓝、白球若干个,晓晓又放入5个黑球,通过多次摸球试验,发现摸到红球、黄 球、蓝球、白球的频率依次为30%、15%、40%、10%,则青青的袋中大约有黄球( )A.5个B.10个C.15个D.30个 10. 一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有颜色不同,其中一个无盖.突然停电了,小伟只好把 杯盖与茶杯随机地搭配在一起,则花色完全搭配正确的概率是( ) A.31 B.21 C. 61 D.121二、填空题(每小题3分,共18分)11. 某长途汽车站的显示屏,每隔五分钟显示某班次汽车的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示该班次信息的概率是 .12. 一个不透明的袋子中只装有2个红球和2个蓝球,它们除颜色外其余都相同.现随机从袋中摸出两个球,颜色能配成紫色的概率是 .13. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:成活的频率nm0.865 0.904 0.888 0.875 0.882 0.878 0.879 0.881估计该种幼树在此条件下移植成活的概率为__________.14. 现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相 同的概率是 .15. 若同时抛掷两枚质地均匀的骰子,则事件“两枚骰子朝上的点数互不相同”的概率是__________.16. 为了估计湖里有多少条鱼,我们从湖里捕上100条做上标记,然后放回湖里,经过一段时间待带标记 的鱼完全混合于鱼群中后,第二次捕得200条,发现其中带标记的鱼25条,通过这种调查方式,我们可以估计出这个湖里有______条鱼.三、解答题(4小题,共52分)17. (12分) 在一个不透明的盒子里装有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是“摸到白色球”的频率折线统计图.(1)请估计:当n 很大时,摸到白球的频率将会接近 (精确到0.01),假如你摸一次,你摸到白 球的概率为 ;(2)试估算盒子里白、黑两种颜色的球各有多少个?(3)在(2)条件下如果要使摸到白球的概率为35,需要往盒子里再放入多少个白球?18. (11分)新年联欢会,班里组织同学们进行才艺展示如图所示的转盘被等分成四个扇形,每个扇形区域代表一项才艺:1-唱歌;2-舞蹈;3-朗诵;4-演奏,每名同学要随机转动转盘两次,转盘停止后,根据指针指向的区域确定要展示的两项内容(若两次转到同一区域或分割线上,则重新转动,直至得出不同结果).求小明恰好展示“唱歌”和“演奏”两项才艺的概率.19. (14分) 小明和小刚用如图所示的两个转盘做配紫色游戏,游戏规则是:分别旋转两个转盘,若其中一个转盘转出了红色,另一个转出了蓝色,则可以配成紫色,此时小刚得1分,否则小明得1分.(1)用列表(或树状图)法分别求出小明和小刚的得分;(2)这个游戏公平吗?请说明理由;如果不公平,如何修改规则才能使游戏双方公平?20.(15分)为了参加中考体育测试,甲、乙、丙三位同学进行足球传球训练,球从一个人脚下随机传到另一个人脚下,且每位传球人传球给其余两人的机会是均等的,由甲开始传球,共传球三次.(1)请利用树状图列举出三次传球的所有可能情况; (2)求三次传球后,球回到甲脚下的概率;(3)三次传球后,球回到甲脚下的概率大还是传到乙脚下的概率大.答案一、1-5 BDBCD 6-10 ABCCC二、11、61 12、32 13、 0.881 14、31 15 、65 16、 800 三、解答题.17. (1)根据题意得:当n 很大时,摸到白球的概率将会接近0.50;假如你摸一次,你摸到白球的 概率为0.5;(2)40×0.5=20,40﹣20=20;答:盒子里白、黑两种颜色的球分别有20个、20个; (2)设需要往盒子里再放入x 个白球;根据题意得:534020=++x x ,解得:10=x ;经检验,10=x 是原方程的解. 答:需要往盒子里再放入10个白球.18. 解:转动转盘两次所有可能出现的结果列表如下:(树状图同样得分)由列表可知共有12种结果,每种结果出现的可能性相同.小明恰好展示“唱歌”和“演奏”才艺的结果有2 种:(1,4),(4,1) 所以小明恰好展示“唱歌”和“演奏”才艺的概率是16.19. (1)根据题意列表如下:一共有9种结果,每种结果出现的可能性相同,能配成紫色的有2种结果,配不成的有7种结果,所以小刚可能得2分,小明可能得7分. (2)这个游戏不公平,由(1)可知P (小刚赢)=92,P (小明赢)=97. 9792 ,所以游戏不公平.可修改游戏规则为:两个转盘都转出红色,小刚得1分,两个转盘都转出蓝色,小明得1分.20. (1)列树状图如下.(2)P (“三次传球后,球回到甲脚下”)=82=41.第二次 红白 蓝 红 (红,红) (红,白) (红,蓝) 黄(黄,红) (黄,白) (黄,蓝)蓝(蓝,红)(蓝,白)(蓝,蓝)第一次(3)P (“三次传球后,球回到甲脚下”)=41,P (“三次传球后,球传到乙脚下”)=83,因此球传到 乙脚下的概率大.。
《第三章概率的进一步认识》单元评估检测试题(有答案)-(北师大版数学九年级)AlPPwK

2018-2019学年度第一学期北师大版九年级数学上册第三章概率的进一步认识单元评估检测试题考试总分: 120 分考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(共 10 小题,每小题 3 分,共 30 分)1.如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,指针都落在奇数上的概率是()A.2 5B.310C.320D.152.一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()A.6B.10C.18D.203.5月19日为中国旅游日,宁波推出“读万卷书,行万里路,游宁波景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从奉化溪口、象山影视城、宁海浙东大峡谷中随机选择一个地点;下午从宁波动物园、伍山石窟、东钱湖风景区中随机选择一个地点游玩,则王先生恰好上午选中宁海浙东大峡谷,下午选中东钱湖风景区这两个地的概率是()A.19B.13C.23D.294.一个不透明的袋子中装有4张卡片,卡片上分别标有数字−3,1,√2,2,它们除所标数字外完全相同,摇匀后从中随机摸出两张卡片,则两张卡片上所标数字之积是正数的概率是()A.1 2B.13C.14D.345.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A.1 6B.14C.13D.126.茗茗做抛掷硬币的游戏,抛一枚硬币三次,出现两正一反的概率是()A.18B.38C.14D.127.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是()A.24B.18C.16D.68.在同一平面内,从①AB // CD,②BC // AD,③AB=CD,④BC=AD.这四个条件中任选两个能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种9.某口袋里现有8个红球和若干个绿球(两种球除颜色外,其余完全相同),某同学随机的从该口袋里摸出一球,记下颜色后放回,共试验50次,其中有20个红球,估计绿球个数为()A.6B.12C.13D.2510.在一个不透明的口袋里装着只有颜色不同的黑、白两种颜色的球共20只,某学习小组作摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,A.8B.9C.12D.13二、填空题(共 10 小题,每小题 3 分,共 30 分)11.随机掷两枚硬币,落地后全部正面朝上的概率是________.12.在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,把它放回袋中,搅匀后,再摸出一球,…通过多次试验后,发现摸到黑球的频率稳定于0.5,则n的值大约是________.13.有红黄蓝三种颜色的小球各一个,它们除颜色外完全相同,将这三个小球随机放入编号为①②③的盒子中,若每个盒子放入一个小球,且只放入一个小球,则黄球恰好被放入③号盒子的概率为________.14.一个不透明的口袋里有10个黑球和若干个黄球,从口袋中随机摸出一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共试验200次,其中有120次摸到黄球,由此估计袋中的黄球有________个.15.标有1,1,2,3,3,5六个数字的立方体的表面展开图如图所示,掷这个立方体一次,记朝上一面的数为x,朝下一面的数为y,得到平面直角坐标系中的一个点(x, y).已知小华前二次掷得的两个点所确定的直线经过点P(0, −1),则他第三次掷得的点也在这条直线上的概率为________.16.同学们,你们都知道猜“石头、剪子、布”的游戏吧!如果你和某同学两人做这个游戏,随机出手一次,你获胜的概率是________.17.小红、小明、小芳在一起做游戏时,需要确定做游戏的先后顺序,他们约定用“剪刀、布、锤子”的方式确定,则在一回合中三个人都出“剪刀”的概率是________.18.一只不透明的袋子中装有1个白球和2个红球,这些球除颜色外都相同.(1)搅匀后,从中任意摸出一个球,恰好是红球的概率是________;(2)搅匀后,从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出一个球.①求两次都摸到红球的概率;②经过了n次“摸球-记录-放回”的过程,全部摸到红球的概率是________.19.学校安排三辆车,组织九年级学生团员去敬老院慰问老人,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为________.三、解答题(共 6 小题,每小题 10 分,共 60 分)21.在一个不透明的盒子里,装有四个分别写有数字−2、−1、1、2的乒乓球(形状、大小一样),先从盒子里随机取出一个乒乓球,记下数字后放回盒子,然后搅匀,再从盒子里随机取出一个乒乓球,记下数字.(1)请用树状图或列表的方法求两次取出乒乓球上的数字相同的概率;(2)求两次取出乒乓球上的数字之和等于0的概率.22.在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.(1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”.甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件________;乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球________;(2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为12,你认同吗?请画树状图或列表计算说明.23.长城公司为希望小学捐赠甲、乙两种品牌的体育器材,甲品牌有A、B、C三种型号,乙品牌有D、E两种型号,现要从甲、乙两种品牌的器材中各选购一种型号进行捐赠.(1)写出所有的选购方案(用列表法或树状图);(2)如果在上述选购方案中,每种方案被选中的可能性相同,那么A型器材被选中的概率是多少?24.在一个不透明的盒子里装有三个分别写有数字6,−2,7的小球,它们的形状、大小、质地完全相同,先从盒子里随机抽取一个小球,记下数字后放回盒子,摇匀后再随机取出一个小球,记下数字,请你用画树状图或列表的方法求两次取出小球上的数字和大于10的概率.25.用如图所示的A,B两个转盘进行“配紫色”游戏(红色和蓝色在一起配成了紫色).小亮和小刚同时转动两个转盘,若配成紫色,小亮获胜,否则小刚获胜.这个游戏对双方公平吗?画树状图或列表说明理由.26.某商场为了吸引顾客,设立了一个可以自由转动的转盘(如图,转盘被平均分成20份),并规定:顾客每购物满200元,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得50元、30元、20元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转盘,那么可直接获得10元的购物券.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?答案1.B2.D3.A4.A5.A6.B7.C8.B9.B10.C11.1412.1013.1314.1515.2316.1317.12718.23.(2)①画树状图得:∵共有9种,它们出现的可能性相同.所有的结果中,满足“两次都是红球”(记为事件B )的结果只有4种,∴P(B)=49;②∵经过了n 次“摸球-记录-放回”的过程,共有3n 种等可能的结果,全部摸到红球的有2n 种情况,∴全部摸到红球的概率是:(23)n . 故答案为:(23)n .19.13 20.0.9521.解:(1)画树形图得:所以两次取出乒乓球上的数字相同的概率=416=14(2)由(1)可知:两次取出乒乓球上的数字之和等于0的概率P =14. 22.√×(2)不认同. 画树状图得:∵共有6种等可能的结果,摸出的球中有白球的有2种情况,∴P (摸出的球中有白球)=23≠12. 故不认同.23.解:(1)如图所示:(2)所有的情况有6种,A 型器材被选中情况有2中,概率是26=13. 24.解:P (两数和大于10)=925.解:游戏不公平,理由如下:游戏结果分析如下:“√”表示配成紫色,“×”表示不能够配成紫色.P(配紫色)=6=3,P(没有配紫色)=6,∵1 3≠23,∴这个游戏对双方不公平.26.解:(1)整个圆周被分成了20份,转动一次转盘获得购物券的有9种情况,所以转动一次转盘获得购物券的概率=920;(2)根据题意得:转转盘所获得的购物券为:50×120+30×320+20×520=12(元),∵12元>10元,∴选择转盘对顾客更合算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单元测试(三) 概率的进一步认识(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.将一枚质地均匀的硬币抛掷两次,则两次都是正面向上的概率为( )A.12B.13C.23D.142.在一个口袋中有4个完全相同的小球,把它们分别标号为①,②,③,④.随机地摸出一个小球,记录后放回,再随机摸出一个小球,则两次摸出的小球的标号相同的概率是( )A.116B.316C.14D.5163.中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽一项,从50米、50×2米、100米中随机抽一项,恰好抽中实心球和50米的概率是( )A.13B.16C.23D.194.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B.14C.16D.1125.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )A.12 B.15 C.18 D.216.用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是( )A.14B.34C.13D.127.假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( )A.16B.38C.58D.238.一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( )A.49B.13C.16D.199.学校组织校外实践活动,安排给九年级三辆车,小明与小红都可以从这三辆车中任选一辆搭乘,小明与小红同车的概率是( )A.19B.16C.13D.1210.有一箱子装有3张分别标示为4,5,6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个两位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成两位数的每一种结果发生的机会都相同,则组成的两位数为6的倍数的概率为( )A.16B.14C.13D.1211.小明和小亮做游戏,先是各自背着对方在纸上写一个不大于100的正整数,然后都拿给对方看.他们约定:若两人所写的数都是奇数或都是偶数,则小明获胜;若两个人所写的数一个是奇数,另一个是偶数,则小亮获胜.这个游戏( )A.对小明有利 B.对小亮有利C.是公平的D.无法确定对谁有利12.如图,随机闭合开关S1,S2,S3中的两个,则灯泡发光的概率是( )A.34B.23C.13D.1213.从1,2,3,4中任取两个不同的数,其乘积大于4的概率是( )A.16B.13C.12D.2314.如图,直线a∥b,直线c与直线a、b都相交,从所标识的∠1、∠2、∠3、∠4、∠5这五个角中任意选取两个角,则所选取的两个角互为补角的概率是( )A.35B.25C.15D.2315.某口袋中有20个球,其中白球x个,绿球2x个,其余为黑球.甲从袋中任意摸出一个球,若为绿球则甲获胜,甲摸出的球放回袋中,乙从袋中摸出一个球,若为黑球则乙获胜.则当x=________时,游戏对甲、乙双方公平( ) A.3 B.4 C.5 D.6二、填空题(本大题共5小题,每小题5分,共25分)16.学校要从小明、小红与小华三人中随机选取两人作为升旗手,则小明和小红同时入选的概率是________.17.小颖妈妈经营的玩具店某次进了一箱黑白两种颜色的塑料球共3 000个,为了估计两种颜色的球各有多少个,她将箱子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,她发现摸到黑球的频率在0.7附近波动,据此可以估计黑球的个数约是________.18.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是________.19.“服务社会,提升自我”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队.若从该小分队任选两名同学进行交通秩序维护,则恰是一男一女的概率是________.20.让图中两个转盘分别自由转动一次,当转盘停止转动时,两个指针分别落在某两个数所表示的区域,则这两个数的和是2的倍数或是3的倍数的概率等于________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)一只不透明的袋子中,装有分别标有数字1,2,3的三个球,这些球除所标的数字外都相同,搅匀后从中摸出1个球,记录下数字后放回袋中并搅匀,再从中任意摸出1个球,记录下数字,请用列表方法,求出两次摸出的球上的数字之和为偶数的概率.22.(8分)如图的方格地面上,标有编号A、B、C的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同.(1)一只自由飞行的鸟,将随意地落在图中的方格地面上,则小鸟落在草坪上的概率是________;(2)现从3个小方格空地中任意选取2个种植草坪,则刚好选取A和B的2个小方格空地种植草坪的概率是多少?(用树形图或列表法求解)23.(10分)在四边形ABCD中,①AB∥CD;②AD∥BC;③AB=CD;④AD=BC,在这四个条件中任选两个作为已知条件,能判定四边形ABCD是平行四边形的概率是多少?24.(12分)“石头、剪子、布”是小朋友都熟悉的游戏,游戏时小聪、小明两人同时做“石头、剪子、布”三种手势中的一种,规定“石头”(记为A)胜“剪子”,“剪子”(记为B)胜“布”,“布”(记为C)胜“石头”,同种手势不分胜负,继续比赛.(1)请用树状图或表格列举出同一回合中所有可能的对阵情况;(2)假定小聪、小明两人每次都等可能地做这三种手势,那么同一回合中两人“不谋而合”(即同种手势)的概率是多少?25.(12分)一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有3、4、5、x,甲、乙两人每次同时从袋中各随机摸出1个小球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验,试验数据如表:摸球总10 20 30 60 90 120 180 240 330 450(1)如果试验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近,估计出现“和为8”的概率是________;(2)如果摸出的这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表法或画树状图说明理由;如果x 的值不可以取7,请写出一个符合要求的x 值.26.(14分)某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级(1)班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或树状图等方法说明理由.(骰子:六个面上分别刻有1、2、3、4、5、6个小圆点的小正方体)27.(16分)为决定谁获得仅有的一张电影票,甲和乙设计了如下游戏:在三张完全相同的卡片上,分别写上字母A,B,B,背面朝上,每次活动洗均匀.甲说:我随机抽取一张,若抽到字母B,电影票归我;乙说:我随机抽取一张后放回,再随机抽取一张,若两次抽取的字母相同电影票归我.(1)求甲获得电影票的概率;(2)求乙获得电影票的概率;(3)此游戏对谁有利?参考答案1.D 2.C 3.D 4.C 5.B 6.D 7.B 8.D 9.C10.A 11.C 12.B 13.C 14.A 15.B 16.13 17.2 100个 18.12 19.35 20.5821.1 2 3 1 2 3 4 2 3 4 5 3456∴两次摸出的球上的数字之和为偶数的概率为59. 22.(1)23(2)P(编号为A 、B 的2个小方格空地种植草坪)=26=13.23.画树状图如下:由树状图可知,所有等可能的结果共12种,满足条件的结果有8种.所以能判定四边形ABCD 是平行四边形的概率是812=23. 24.(1)略.(2)P(不谋而合)=13.,3,4,5,7 3,,7,8,10 4,7,,9,11 5,8,9,,12 7,10,11,12, 25.(1)0.33 (2)不可以取7.∵当x =7时,列表如下(也可以画树状图):∴两个小球上数字之和为9的概率是212=16≠13,当x =5时,两个小球上数字之和为9的概率是13.(答案不唯一,也可以是4). 26.(1)P =36=12.(2)游戏公平.理由如下:小亮 小丽1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6)4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6)5 (5,1) (5,2) (5,3) (5,4) (5,5)(5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果. ∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的. 27.(1)P(甲获得电影票)=23.(2)可能出现的结果如下(列表 A B B A (A ,A) (A ,B) (A ,B) B (B ,A) (B ,B) (B ,B) B(B ,A)(B ,B)(B ,B)共有9种等可能结果,其中两次抽取字母相同的结果有5种.∴P(乙获得电影票)=59.(3) ∵23>59, ∴此游戏对甲更有利.。