臭氧脱硝的介绍
SCRSNCRNCR臭氧脱硝技术比对

SCR、SNCR、PNCR、臭氧脱硝技术比对目前烟气脱硝技术可分为干法和湿法两大类,其中干法脱硝中的选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是市场应用最广(约占60%烟气脱硝市场)、技术最成熟的脱硝技术。
其原理是向烟气中喷氨或尿素等含有NH3自由基的还原剂,在高温下直接(或催化剂的协同下)与烟气中的NOx发生氧化还原反应,把NOx还原成氮气和水。
但该技术也有其巨大的局限性,由于化学反应需要在高温下进行,而对于中小型锅炉以及工业锅炉来说,排烟温度远不能达到化学反应所需要的高温。
一、低温脱硝技术低温烟气脱硝技术以低温氧化技术(LoTOx)最为简单有效,由于烟气中的氮氧化物主要组成是NO(占95%),NO难溶于水,而高价态的NO2、N2O5等可溶于水生成HNO2和HNO3,溶解能力大大提高,很容易通过碱液喷淋等手段将其从烟气中脱出。
将烟气中的NO转化为高价态,需引入较强的氧化剂,在众多氧化剂中,臭氧是最环保清洁的强氧化剂,在高效转化NO至高价态的过程中不遗留任何二次污染物,另外不同于OH、HO2 等,工作环境恶劣,自由基存活时间非常短,能耗较高,O3的生存周期相对较长,将少量氧气或空气电离后产生O3,然后送入烟气中,可显着降低能耗。
新大陆臭氧脱硝技术比传统烟气脱硫脱硝工艺更适应环保日益严格的要求,通过特殊工艺控制脱硝反应过程,使碱液吸收反应的产物以固体形式存在,实现了气态污染物(氮氧化物)的固化处理,不产生二次污染。
采用臭氧的高级氧化技术不仅对NOX具有良好的脱除效果,而且对烟气中的其他有害污染物,比如重金属汞也有一定的去除能力;在低温下进行氧化吸收等脱硝过程,有利于锅炉的能源回收利用,降低工程施工难度。
利用国内现有较为成熟的湿法脱硫工艺并加以改进,使脱硫脱硝同时进行。
低温脱硝技术是今后脱硝技术的发展方向。
二、SCR(选择性催化还原)、SNCR(非选择性催化还原)两种技术1、SCR主要应用在大型锅炉等的烟气处理,脱硝率可达80%以上,但投资大,维护成本高,催化剂3年一换;SCR多为国外引进。
臭氧与双氧水脱硝比较

序号 1 脱硝机理 臭氧脱硝 利用臭氧氧化性,臭氧具有很高的氧化 电位2.07V,将烟气中的NO氧化为NO2, 并进一步氧化为N2O5,NO2与N2O5被碱液 吸收,经过曝气形成硝酸盐。 双氧水脱硝 利用双氧水的氧化性,双氧水氧化电位为 1.7V,氧化性低于臭氧,将烟气中的NO氧化为 NO2,少量氧化为N2O5,NO2与N2O5被碱液吸 收,经过曝气形成硝酸盐。 由于双氧水氧化性低于臭氧,在脱硝时SO2氧化 为SO3量远少于臭氧脱硝 需要投资双氧水储罐(PE罐),输送泵和喷枪, 成本很低
5 药剂消耗
6 维护成本 7 脱硫脱硝塔形式
无复杂昂贵设备,维护费用极低 专利技术,脱硫脱硝一体化,在一个塔内完成 脱硫脱硝
8 副产物 9 适用锅炉 10 工艺成熟度
氮氧化物被氧化后被Mg(OH)2吸收,最终 氮氧化物被氧化后被Mg(OH)2吸收,最终转化为 转化为硝酸镁Mg(NO3)2,无毒无害 硝酸镁Mg(NO3)2,无毒无害 因运行维护成本高,只适合小型锅炉 相对较新的工艺,国内有应用,技术较 成熟 液氧储罐属于压力容器,需安监局备 案,并定期检验。臭氧发生器电离辐射 较强,臭氧泄漏会刺激呼吸系统,造成 神经中毒,破坏免疫力,加快人体衰老 。 适合于各型锅炉 相对较新的工艺,国内有应用,技术成熟
11 安全性ຫໍສະໝຸດ 27.5%的双氧水因浓度相对较低,不需报备。
由于臭氧氧化性很强,在脱硝的同时会 2 脱硫脱硝的选择性 将烟气中的SO2氧化为SO3,同时脱硫脱 硝 3 投资费用 需要投资臭氧发生器和液氧储罐(压力 容器)等设备,安全要求高,维护成本 高,投资成本高达几百万
4 电能消耗
电耗极高,以40Kg/h的臭氧发生器为 例,仅臭氧发生器的功率为220KW,按一 电耗低,仅循环水泵耗电,功率4KW,年电费 年运行7200h,电费0.65元/kw.h,一年电 1.87万元 费为102.96万元 需要液氧,约800元/吨,液氧/臭氧约为 10/1,按照40kg/h臭氧发生器不满负荷 产量为30kg/h条件下,每小时消耗液氧 300kg,年需液氧2160吨,费用172.8万元 臭氧发生器结构复杂,易耗件易损件较 多,价格昂贵,需要定期更换,维护成 本高 无需设置专门脱硝塔,可在烟道进行脱 硝,一般为一塔或者两塔 需要双氧水(27.5%浓度),约1500元/吨,每 小时消耗50kg,年消耗360吨,费用54万元。
SCR、SNCR、PNCR、臭氧脱硝技术比对

SCR、SNCR、PNCR、臭氧脱硝技术比对目前烟气脱硝技术可分为干法和湿法两大类,其中干法脱硝中的选择性催化还原(SCR)和选择性非催化还原(SNCR)技术是市场应用最广(约占60%烟气脱硝市场)、技术最成熟的脱硝技术。
其原理是向烟气中喷氨或尿素等含有NOx
、N2O5
传统烟气脱硫脱硝工艺更适应环保日益严格的要求,通过特殊工艺控制脱硝反应过程,使碱液吸收反应的产物以固体形式存在,实现了气态污染物(氮氧化
物)的固化处理,不产生二次污染。
采用臭氧的高级氧化技术不仅对NOX具有良好的脱除效果,而且对烟气中的其他有害污染物,比如重金属汞也有一定的去除能力;在低温下进行氧化
吸收等脱硝过程,有利于锅炉的能源回收利用,降低工程施工难度。
利用国内现有较为成熟的湿法脱硫工艺并加以改进,使脱硫脱硝同时进行。
低温脱硝技术是今后脱硝技术的发展方向。
二、SCR(选择性催化还原)、SNCR(非选择性催化还原)两种技术
1、SCR主要应用在大型锅炉等的烟气处理,脱硝率可达80%以上,但投
1、喷嘴下方水冷壁腐蚀严重。
2、空预器、过热器、省煤器积灰严重,影响锅炉对锅炉影响较大较小出力,
降低热效率
3、灰斗积灰渣严重。
4、影响布袋除尘器除尘效果,降低布袋使用寿命。
PNCR法避免了以上缺点。
SNCR法脱硝率一般30%-50%,并随运行时间加长降低;达不3mg/Nm以下排放标准;PNCR法脱硝率一般80%-90%,由于采用高分子材料不受运行时
间影响脱硝率。
臭氧催化氧化脱硫脱硝一体化技术

剂与硝酸分离,分离后的硝酸与氨水结合,生成硝酸铵,结晶干燥后形成
副产物硝酸铵化肥,反应如下: 2NO+O3 → N2O3+H2)或 NO+H2O2 → NO2+H2O(加入H2O2) HNO2+LCO → LCO.HNO2 2LCO.HNO2+O2 → 2LCO+2HNO3 HNO3+NH4OH → NH4NO3+H2O
无二次污染,无固体废弃物无废水排放;副产品为化肥。
运行成本低。其运行成本为石灰石/石膏法40%;
CAO半干法1/3,氨法1/2;SCR法70%。
2016/3/26
3
2016/3/26
山美水美
4
1、催化氧化技术介绍——技术背景
一、催化氧化一体化技术存在的必然性: 目前国内脱硝市场的兴起和脱硫改造严格 技术优势及其他常规脱硫方法的局限性 国家排放标准的要求日益严格 SNCR,SCR的缺点及催化剂的局限性(产能,热稳定性和化学稳定 性面临考验,二次污染) 补充:国内外很多机构一直都在研究一体化技术 国外:BECLO,苏联罗斯门捷列夫 国内:浙大,华北电力等
6、有机催化剂物理性质: 状态:油状; 沸点:300℃; 颜色:深棕色; 燃点:241.5℃
闪点:142℃;
相对密度:0.942g/ml
饱和蒸汽压:0.7mmHG(60℃);
粘度:14.5cp(20.8℃)4.72cp(60℃)
2016/3/26
26
2、催化氧化技术介绍——系统组成
7、催化氧化技术系统组成
水结合,生成硫酸铵,结晶干燥后形成副产物硫酸铵化肥,反应如下:
H2SO3+LCO → LCO.H2SO3 2LCO.H2SO3+O2 → 2LCO+2H2SO4。
臭氧氧化脱硝技术在烧结烟气中的应用

臭氧氧化脱硝技术在烧结烟气中的应用钢铁行业启动超低排放,烧结烟气的氮氧化物排放控制迫在眉睫,然而烧结烟气成分复杂、温度较低,应用常规的选择性催化还原脱硝技术存在局限性,需要开发科学、高效的脱硝技术。
主要介绍了适合烧结烟气的臭氧氧化脱硝技术的原理,以及该方法目前在其他行业烟气脱硝中的应用现状,并且对臭氧结合钙法脱硫副产物的资源化利用提出了可行的办法。
烧结工序是钢铁行业污染物排放的重要源头之一,烧结工序中产生的SO2、氮氧化物分别占钢铁行业总排放量的70%和50%左右。
因此,烧结工序已成为钢铁行业节能减排治理的重要领域。
政府工作报告中已明确提出2022年开展钢铁行业超低排放改造,明确烧结机头烟气、球团焙烧烟气颗粒物、二氧化硫、氮氧化物小时均值排放浓度分别不高于10mg/m3、35mg/m3、50mg/m3[1]。
目前,钢铁行业脱硫、除尘的工艺已经十分成熟,能够实现超低排放相应的指标,在技术路线上有很多的选择[2]。
由于烧结烟气温度、湿度和烟气的组成比较复杂,烟气脱硝技术不够成熟。
因此,针对烧结烟气中氮氧化物减排技术的开发是未来几年钢铁行业污染物控制的主要工作之一。
1烧结烟气的排放特点电厂对烟气除尘、脱硫、脱硝有比较了丰富宝贵的经验和比较成熟的工艺,可以为钢铁行业烧结烟气的治理提供一定的借鉴[3],但是钢铁行业的烧结烟气与电厂锅炉烟气各自有其特点,所以在烟气污染物控制处理工艺上存在一些差别。
烧结烟气的特点主要有[4]:(1)烟气量大且波动幅度大;(2)污染物成分复杂且浓度变化幅度较大;(3)烧结烟气温度相对较低,且不同风箱的烟气温度差异较大,最终混合后主烟道的烟气温度为120~180℃;(4)含湿量大且含氧量高。
烧结烟气成分复杂多变,且烟气温度较低、湿度较大,这些特点在一定程度上增加了钢铁烧结烟气脱硝的难度。
因此必须针对其自身的特点,进行综合考虑,开发适合烧结烟气脱硝的技术,使其既满足国家环保排放要求,又符合循环经济政策。
臭氧氧化吸收法脱硝技术研究

臭氧氧化吸收法脱硝技术研究摘要:目前,国内外学者对于臭氧氧化一体化脱除氮氧化物、二氧化硫的研究多停留在理论分析、实验室研究阶段,所模拟的烟气成分、反应条件与实际工程有较大差别,研究结果对工程实践指导作用有限。
本文以工程化项目为基础,研究臭氧结合氧化镁湿法脱硫一体化脱除技术中关键参数对脱除效率的影响,通过数据分析总结了臭氧量(O3/NOx)、反应温度、入口NOx/SO2浓度、停留时间对脱除效率的影响,并对一体化脱除过程中的氧化和吸收进行机理分析,从而指导工程设计。
关键词:臭氧氧化脱硝适应性经济性关键因素1.研究背景1.1 技术背景锅炉或窑炉运行过程会产生大量氮氧化物(NOx),如不加以治理,随烟气进入大气的氮氧化物会对自然环境造成极大危害,影响人类生存环境。
目前应用广泛的脱硝技术为选择性催化还原脱硝(SCR)和选择性非催化还原(SNCR)技术,目前在各大电厂中大型锅炉脱硝均为采用这两种技术。
这两种技术能在一定程度上满足烟气脱硝需求,但也存在一定的适应性问题如下:(1)还原剂危害SCR和SNCR工艺均要使用还原剂NH3,虽然有的工艺系统采用尿素热解作为氨原,但仍不可避免的存在氨逃逸的问题,环境会造成二次污染。
特别的对于某些氮氧化物排放过高的机组,为了满足环保要求,会增大还原剂喷射量,导致氨逃逸过高,对周边环境污染严重。
热电联产机组或市政过暖机组多位于市区或市郊,采用SCR或SNCR脱硝技术不仅有氨逃逸的危险,氨水或液氨本身就是重大危险源,氨水或液氨一旦发生泄露将对周围环境造成破坏,威胁周围居民安全。
(2)机组适应性限制SNCR脱硝工艺要求烟气温度区间为850℃~1150℃,还原剂与烟气混合停留时间高于0.5秒;SCR脱硝工艺要求烟气温度区间为320~420℃,同时要求机组具备必须的改造空间。
对于大型工业锅炉或电站锅炉(大于300MW)机组,无论是煤粉锅炉或循环流化床锅炉基本都可满足相关改造条件,但相当数量的中小型燃煤锅炉或其他形式窑炉,由于炉型结构紧凑,难以满足SCR或SNCR技术要求。
臭氧脱硝对臭氧污染的影响

存在于地球的平流层中的臭氧,是对人类有益的臭氧,是需要人类保护的,而在对流层中的臭氧是 对人类的健康有危害的。臭氧具有强氧化性,可严重影响人类的健康,主要是刺激和损害深部呼吸道, 并可损害中枢神经系统。同时臭氧也对植物有危害,抑制植物生长,影响生态环境。
那么,臭氧脱硝会不会加剧臭氧污染呢? 臭氧污染中的臭氧污染物是典型的二次污染物,不是由污染源直接排放产生的,而是经由排放到空 气中的氮氧化物和挥发性有机化合物在光化学反应下衍生的。在城市生活中,机动车尾气、化石燃料燃 烧、工业生产,都会产生氮氧化物。挥发性有机物的来源就更多了,汽车喷涂、印刷厂油墨挥发、加油 站油气挥发、化工行业生产过程、溶剂使用等都有所影响。为了降低臭氧污染,各行各业对于氮氧化物 的排放都有一定的标准。 臭氧的化学性质很不稳定,在常温下会慢慢分解,含量为 1%以下的臭氧,在常温常态常压的空气中 分解半衰期为 20~30 分钟左右。臭氧分解速度随着温度的升高而加强,当温度超过 100℃时,臭氧分解
DOI: 10.12677/aep.2019.92028
192
环境保护前沿
樊孝华 等
将会非常的剧烈,臭氧立即转化为氧气的温度是 270℃。臭氧在空气中的分解速度远不及水中的分解速 度。在含有杂质的水溶液中臭氧迅速分解成氧气。由于臭氧脱硝工艺在湿法脱硫之前,反应温度通常在 100℃以上,且在脱硫塔还会被浆液再次洗涤,未与 NO 充分反应的臭氧会在后续的工艺流程中分解为氧 气,因此从烟囱排入大气的臭氧几乎可以忽略[3]。
臭氧氧化吸收法脱硝的技术特点和应用分析

臭氧氧化吸收法脱硝的技术特点和应用分析近两年火电、钢铁等行业均出台了大气污染物超低排放标准,将NOx排放控制在50mg/m3,对烟气脱硝提出了更高的要求。
目前常见的脱硝技术为SNCR和SCR,在各行业应用广泛,但这两种技术均存在效率偏低、氨逃逸、改造场地限制等问题,不能满足所有烟气脱硝的需求。
臭氧(O3)氧化吸收法是一种新型脱硝技术,基于其自身具备的诸多优势,得到了逐步推广。
1原理介绍臭氧氧化吸收法脱硝技术利用O3的强氧化性将烟气中占95%以上的难溶于水NO氧化为易溶于水、易与碱液反应的高价NOx(NO2、NO3、N2O5),随烟气进入后续脱硫系统,在脱硫塔内与SO2一同被碱液吸收;生成的硝酸盐进入后处理系统完成处理。
2技术特点2.1温度要求低脱硝反应对温度有严格的要求,SNCR的反应温度为800~1100℃,SCR为280~400℃,限制了设备布置和脱硝效率。
臭氧氧化法要求反应温度低于250℃,最正确反应温度区间为≤150℃。
因此臭氧的喷射及混合设备可布置在除尘器和余热回收系统后,不会降低系统的热效率和经济性,适应性更广,对于某些低温烟气(如150℃烧结烟气)尤其适用。
2.2脱硝效率高传统烟气脱硝技术根据运行环境不同,脱硝效率有所波动,SNCR为30%~70%,SCR不超过85%,当NOx浓度偏高时难以达标。
臭氧氧化法由于其化学反应可在常温常压下开展,无需高温、催化等特殊环境,故只要保证足够的臭氧量以及与烟气的均匀混合,即可获得很好的脱硝效果。
以往项目的运行实践说明,该技术脱硝效率能保持在≥90%,最高可到达99%。
2.3反应速率快臭氧氧化吸收法采用氧化反应路径,所需活化能远低于SNCR和SCR的复原反应,因此臭氧氧化反应迅速,理论上完全反应时间约为0.1s,在实际工程运行中,停留时间为1s时即可保证完全反应。
因此在现阶段大部分的脱硝反应条件下,O3均能保证将NO完全氧化。
2.4改造难度小由于臭氧氧化NOx的反应极其迅速,使得该技术所需的反应空间更小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
臭氧脱硝的介绍一.前言目前成熟的脱硝工艺有低氮燃烧系统、选择性催化还原法(SCR)、选择性非催化还原法(SNCR)、臭氧脱硝等各种工艺。
每种工艺都有个人的优缺点和适用的条件。
对于大型的燃煤锅炉最佳的技术手段是选择性催化还原法(SCR),对于垃圾焚烧、水泥窑炉和循环流化床锅炉(CFB),选择性非催化还原法(SNCR)是一个比较经济的工艺。
除此之外还有许多机组既不适用SCR也不适用SNCR,而臭氧氧化脱硝法正好适合此类机组。
本文将从原理、化学反应过程、主要影响因素、系统构成和CFD辅助设计等方面介绍臭氧脱硝工艺。
二.臭氧脱硝原理在介绍臭氧脱硝的原理前,首先要介绍一下臭氧。
臭氧(O3)是氧的高能态存在形式,无色,有特殊臭味,极不稳定,具备奇特的强氧化性,可以有效的去除氮氧化物、二氧化硫、氯氟有机物等,同时可以灭菌、去污、漂白、除臭等,臭氧的分解化学物质的过程当中还原成(O2)或生成水(H2O),不产生二次污染。
在自然界中,主要由雷电所产生,它是“天赐的净化剂”。
由于臭氧的这种净化特性,采用人工的臭氧发生器使得臭氧在水处理行业得到了广泛的应用。
臭氧在水中对细菌、病毒等微生物杀灭率高、速度快,对有机化合物等污染物质去除彻底而又不产生二次污染,因此饮用水杀菌消毒是臭氧应用的最主要部门,自来水行业是臭氧的最大市场。
除了在水处理方面的应用,臭氧还能有效的治理氮氧化物污染,而且是无催化剂,无还原剂,零排放的循环清洁工艺。
臭氧脱除氮氧化物已经在FCC(石油化工的催化裂化)得到了广泛的应用,是具备零吸收剂,零催化剂,零污染的先进清洁工艺。
臭氧的氧化能力极强,从下表可知,臭氧的氧化还原电位仅次于氟,比过氧化氢、高锰酸钾等都高。
此外,臭氧的反应产物是氧气,所以它是一种高效清洁的强氧化剂。
臭氧脱硝系统采用臭氧作为脱硝的反应物,把臭氧通过臭氧格栅均匀的注入烟气中,把不溶性的氮氧化物(NO)转变成为水溶性氮氧化合物(NO2或N2O3,或N2O5)。
臭氧可通过臭氧发生器在现场按烟气中的氮氧化物浓度来定量生产。
臭氧脱除氮氧化物是一个低温系统,不需要像SCR和SNCR系统那样需要较高的温度窗口。
臭氧发生器可以是对生产过程当中烟气中的NOx量做出及时的响应。
无论烟气流量或者氮氧化物含量的波动,臭氧发生系统都可以在线及时响应,在节省能量的同时控制净烟气中氮氧化物的排放量。
臭氧脱硝系统对酸性气体或微粒没有不良的敏感性,一些微粒甚至可能提高反应,这些微粒会促进催化氧化反应。
通过一系列的反应不溶性NO转化为了NO2并会形成可溶性N2O5。
N2O5是高度可溶性,并快速与烟气中的水分发生反应,形成硝酸。
NO经臭氧转化后进入脱硫塔,在脱硫塔中NO2、N2O5等氮氧化物快速的与喷淋下来的碱性浆液接触反应,生成硝酸盐等物质,随着脱硫副物硫酸盐一起进入脱硫后处理装置。
臭氧与NOx的反应是非常快速的,这使臭氧成为在处理NOx时具备较高的选择性,通过控制反应时间和臭氧的数量很容易控制对CO和SOx等化合物的氧化反应,使得在脱硝中臭氧利用率高。
NO和NO2溶解度:当臭氧数量足够多时,可以将NOx氧化成为N2O5,然后生成硝酸(或者硝酸盐),主要的化学反应如下:NO+O3→NO2+O22NO2+O3→N2O5+O2N2O5+H2O→2HNO3N2O5和HNO3是非常易溶于水。
N2O5与水瞬间反应形成硝酸。
由于硝酸具备高的可溶性(接近无穷大),所以它难以衡量,因此,可靠的溶解度数据在发表的文献上是不可使用的。
然而,硝酸与水可以按各种比例混合,因此在有水存在的情况下,N2O5到硝酸的反应不可逆转。
考虑到工程上的经济性,工程实施时一般选择是把NOx氧化成为NO2,然后通过脱硫塔内的碱性吸收剂进行酸碱中和反应生成亚硝酸盐。
本工程后续烟气脱硫采用湿式氨法的脱硫工艺,具体的化学反应如下:NO+O3→NO2+O22NO2+2NH3H2O+1/2O2→2NH4NO3+H2O实际过程当中并不需要完全的脱除烟气中所有的氮氧化物,所以可以依据烟气中的氮氧化物浓度,同时依据环保的要求,来定量的加入臭氧。
这样即达到环保的要求,同时又保证了运转的经济性。
四.臭氧脱硝的主要影响因素利用臭氧脱硝的影响因素主要有摩尔比、浓度场、反应温度、反应时间、吸收液性质等,这些因素对脱硝和脱硫效率都有不同程度的影响。
1)摩尔比摩尔比(O3/NO)是指O3与NO之间摩尔数的比值,它反映了臭氧量相对于一氧化氮量的高低。
NO的氧化率随O3/NO的升高直线上升。
目前已有的研究中,在0.9≤O3/NO<1的情况下,脱硝率可达到85%以上,有的甚至几乎达到100%。
依据反应方程式,O3与NO完全反应的摩尔比理论值为1,但在实际中,由于其他物质的干扰,可发生一系列其他反应,使得O3不能100%与NO进行反应。
2)浓度场在选定好合适摩尔比之后,并不意味就一定能够达到设计的脱硝效率。
要想达到设定的脱硝效率还需要均匀的浓度场,也就是要由合理的臭氧格栅设计。
后面会专门讲到如果通过CFD模拟去优化臭氧格栅的设计。
3)温度由于臭氧的生存周期关系到脱硝效率的高低,所以考察臭氧对温度的敏感性具备重要意义。
依据国内处对臭氧的认识和研究,依据臭氧的热分解特性,在150℃的低温条件下,臭氧的分解率不高,但随着温度增加到250℃甚至更高时,臭氧分解速度明显加快;而臭氧在25℃时臭氧的分解率只有0.5%。
4)停留时间臭氧在烟气中的停留时间只要能够保证氧化反应的完成即可。
依据国内外臭氧脱硝实际工程应用,反应时间在1~104s之间对反应器出口的NO摩尔数没有什么影响,而且增加停留时间并不能增大NO的脱除率。
这主要是因为关键反应的反应平衡在很短时间内即可达到,不需要较长的臭氧停留时间。
5)吸收剂的性质利用臭氧将NO氧化为高价态的氮氧化物后,需要进一步地吸收。
常见的吸收液有NH3H2O、NaOH、Ca(OH)2等碱液。
不同的吸收剂产生的脱除效果会有一定的差异。
五.臭氧脱硝系统的构成1)臭氧制备储存系统臭氧脱硝系统主要有空压机系统、臭氧制备储存系统;臭氧喷射系统;仪表采集检测控制系统;脱硝洗涤反应系统(与脱硫系统共用);辅助安全系统等。
由于臭氧在工业上得到了广泛的应用,目前臭氧制备和储运系统都是成熟可靠的,也有便于商业购买和维护更新的。
臭氧一般是通过纯氧或者空气为来制备的。
现场一般使用臭氧发生器来制备臭氧。
臭氧发生器现在普遍用于饮用水,废水和游泳池水的处理。
臭氧发生器是安全的,可靠的工业零部件,并可以保证长时间的连续运转。
臭氧发生器的结构与壳管式换热器类似。
氧气通过壳式热交换器来制造出臭氧。
管道内是玻璃介质,它含有电极并连接到电源。
当电流通过玻璃管时,沿其表面产生电晕。
当氧气通过电晕,氧分子分离,释放氧原子,氧原子在氧气流中很快与可利用的氧分子结合形成臭氧分子。
臭氧始终存在于不锈钢臭氧发生器,工艺管道,或气流过程的反应部分中,在氮氧化物脱除过程当中被完全消耗,不会构成环境威胁。
2)臭氧分配扩散反应系统(臭氧格栅)臭氧通过不锈钢管道被输送到烟道分配扩散系统,通过均匀分布的分配器被注入到含有氮氧化物的原烟气反应系统中。
反应系统提供臭氧的均匀分布,并且足够混合,使之急速反应。
因臭氧与NOx的反应速度极快,在反应器的设计时不需考虑很长的停留时间,使臭氧与氮氧化物充分反应,将不溶性的NO氧化成为NO2。
臭氧的在均匀分配器中均匀分布,与烟气中的氮氧化物充分接触碰撞进行反应是整个脱硝系统的核心和关键。
一般需要进行反应器的流场模拟(CFD)和化学反应模拟(CKM),依据模拟的情况结合以往的工程经验进行优化设计,以确保脱硝的效率。
一般情况下我们会对整个工程的各个工况的温度场、压力场、速度场、浓度场进行模拟,来辅助确定合适的整个反应器和臭氧分配系统的设计参数。
3)仪表采集检测控制系统基于人机界面并采用DCS/PLC控制,对烟气中的流量、温度、烟尘、NOx、SOx、O2、O3等进行在线分析和检测,依据烟气中的流量和氮氧化物的浓度采样抽样发生系统的生成量。
4)脱硝洗涤反应系统本工程中采用现有湿式碱法脱硫吸收装置,含NOx的烟气经臭氧氧化后可直接进入湿法的脱硫装置,被臭氧氧化成的高价氮氧化物被脱硫吸收塔中的碱性吸收剂吸收掉。
这个洗涤吸收过程效率高,且液相反应是不可逆的,变成了可利用的盐类。
5)辅助安全系统及臭氧特性臭氧属于有毒气体,臭氧浓度的允许值定为0.1ppm/8h。
浓度为0.3mg/m3时,对眼、鼻、喉有刺激的感觉;浓度3~30mg/m3时,出现头疼及呼吸器官局部麻痹等症;浓度为15~60mg/m3时,则对人体有危害。
由于臭氧的臭味很浓而容易感知,因此世界上使用臭氧已有一百五十多年的历史,至今也没有发现一例因臭氧中毒而导致死亡的报道。
六.CFD模拟在臭氧脱硝系统设计中的重要性前面讲到臭氧氧化法有两个关键点需要注意:一个是烟气温度的控制,一个臭氧格栅的设计,这两个关键点都需要CFD的辅助设计。
我们首先来商讨烟气温度。
臭氧在自然条件下会自动分解,臭氧分解速率和温度息息相关,温度越高,分解速率越高,则臭氧和NO接触的机会就变少了,因此要想达到较高的设计效率,必须控制烟气温度,而大多项目烟气温度都超过允许值,因此需要通过喷水降温来控制烟气温度。
本文对某项目的喷水减温做了CFD模拟。
为了确保烟气在达到臭氧格栅前的截面上每个点的温度都不超标,喷水采用了过量喷水的方式,而模拟的结果显示,如果喷枪按照原经验位置设计,即便过喷也不能保证所有点的温度都不超标。
液滴颗粒没有到达的区域温度几乎没有降低,而另外的区域由于液滴过量,当这部分烟气的湿度达到100%时就再也无法蒸发液滴,温度也不再降低,如下图所示。
导致这个结果的原因就是喷枪的位置不合理。
依据现有的结果我们对喷枪的位置进行了调整,调整的目的是让喷枪喷出的雾化液滴颗粒可以尽可能均匀分布在烟道中与烟气换热,将烟气温度降低。
优化的结果如图下图所以,在烟气到达臭氧格栅前烟气温度相对均匀,液滴基本被蒸发,无明显的液态水存在。
由此可知喷枪的布置对于喷水减温非常重要,如果是老机组改造空间有限那么喷枪的布置就更加重要了。
通过喷枪位置的优化可以确保烟气温度不超标为臭氧氧化奠定基础。
接着再商讨臭氧格栅的问题。
臭氧反应是一个快速反应,可以简单的认为喷出之后遇到NO即刻就反应,因此臭氧格栅的设计和SCR的喷氨格栅设计思路是不一样的。
SCR的喷氨格栅喷出来的氨随烟气流动到催化剂才与NOx反应,而这之前有一定距离可以再次混合,另外可以采用各类混合器促进混合。
而臭氧格栅喷出臭氧即反应,既没有很长距离可供再次混合,也无法布置混合器促进混合,因此需要做精细化的设计确保喷出就尽可能的均匀。
本文对某项目的臭氧格栅进行了精细化的设计,使得从臭氧格栅每个喷口喷出的臭氧尽可能均匀,这样减少臭氧设计的过量系数,减少设备投资和运转费用。