2021年齐鲁工业大学生物工程学院821生物化学考研核心题库之论述题精编

特别说明

本书根据历年考研大纲要求并结合历年考研真题对该题型进行了整理编写,涵盖了这一考研科目该题型常考试题及重点试题并给出了参考答案,针对性强,考研复习首选资料。

版权声明

青岛掌心博阅电子书依法对本书享有专有著作权,同时我们尊重知识产权,对本电子书部分内容参考和引用的市面上已出版或发行图书及来自互联网等资料的文字、图片、表格数据等资料,均要求注明作者和来源。但由于各种原因,如资料引用时未能联系上作者或者无法确认内容来源等,因而有部分未注明作者或来源,在此对原作者或权利人表示感谢。若使用过程中对本书有任何异议请直接联系我们,我们会在第一时间与您沟通处理。

因编撰此电子书属于首次,加之作者水平和时间所限,书中错漏之处在所难免,恳切希望广大考生读者批评指正。

重要提示

本书由本机构编写组多位高分在读研究生按照考试大纲、真题、指定参考书等公开信息潜心整理编写,仅供考研复习参考,与目标学校及研究生院官方无关,如有侵权请联系我们立即处理。一、2021年齐鲁工业大学生物工程学院821生物化学考研核心题库之论述题精编1.举例说明竞争性抑制作用的特点。

【答案】酶的竞争性抑制作用是指抑制剂与酶的正常底物结构相似,因此抑制剂与底物分子竞争地结合酶的活性中心,从而阻碍酶与底物结合形成中间产物,这种抑制作用称为竞争性抑制作用。竞争性抑制作用具有以下特点:

(1)抑制剂在化学结构上与底物分子相似,两者竞相争夺同一酶的活性中心;

(2)抑制剂与酶的活性中心结合后,酶分子失去催化作用;

(3)竞争性抑制作用的强弱取决于抑制剂与底物之间的相对浓度,抑制剂浓度不变时,通过増加底物浓度可以减弱甚至解除竞争性抑制作用;

(4)酶既可以结合底物分子也可以结合抑制剂,但不能与两者同时结合。

例如:丙二酸是二羧酸化合物,与琥珀酸结构很相似,丙二酸能与琥珀酸脱氢酶的底物琥珀酸竞争与酶的活性中心结合。由于丙二酸与酶的亲和力远大于琥珀酸的亲和力,当丙二酸的浓度为琥珀酸浓度1/50时,酶的活性可被抑制50%。若增加琥珀酸的浓度,此种抑制作用可被减弱。

2.比较嘌呤与嘧啶核苷酸合成区别。

【答案】相同点:(1)合成原料基本相同;(2)合成部位对高等动物来说主要在肝脏;(3)都有两种合成途径;(4)都是先合成一个与之有关的核苷酸,然后在此基础上进一步合成核苷酸。

不同点:(1)嘌呤在PRPP基础上合成嘌呤环,嘧啶是先合成嘧啶环再与PRPP结合;(2)嘌呤先合成IMP,嘧啶先合成UMP;(3)嘌呤在IMP基础上合成AMP和GMP,嘧啶是在UMP 基础上合成CMP和TMP。

3.当胰蛋白酶102位的Asp突变为Ala时将对该酶与底物的结合和对底物的催化有什么影响?

【答案】胰蛋白酶通过一个、一个和一个,它们成串排列,通过氢键网络

成一个所谓的催化三联体,催化三联体在功能上起转移电荷的作用。通过底部残基的负电

荷吸引碱性氨基酸残基的侧链,如果胰蛋白酶102位的Asp突变为Ala时,改变了催化三联体的转移电荷的作用,Ala为疏水性氨基酸,在空间结构形成过程中位于分子内侧,对活性中心的空间结构改变影响不大,所以对底物的结合无显著影响;但对底物的催化活性丧失。

4.阐述乙酰CoA参与了哪些生物化学反应过程?

【答案】(1)乙酰CoA在线粒体中与草酰乙酸生成柠檬酸进入TCA循环;

(2)乙酰CoA参与酮体生成;

(3)乙酰CoA参与乙醛酸循环;

(4)乙酰CoA参与脂肪酸从头合成途径;

(5)乙酰CoA参与固醇的合成;

(6)乙酰CoA通过TCA循环参与氨基酸代谢;

(7)乙酰CoA参与柠檬酸-丙酮酸转运系统的生化过程。

5.下列物质对呼吸链的电子传递和氧化磷酸化分别有什么影响?(1)鱼藤酮,(2)抗霉素A,(3)叠氮化物,(4)寡霉素,(5)DNP,(6)缬氨霉素,(7)DCCD(二环己基碳二亚胺)。

【答案】(1)阻断复合物的电子传递和跨膜质子梯度的形成;

(2)阻断复合物Ⅲ中的电子传递和跨膜质子梯度的形成;

(3)阻断复合物Ⅳ中的电子传递和跨膜质子梯度的形成;

(4)通过对的抑制阻断质子梯度的利用,从而抑制ATP的生成和ADP刺激氧的利用;

(5)不影响呼吸链的电子传递,甚至刺激氧的利用,但通过消除跨膜质子梯度而阻断ATP 合成;

(6)不影响呼吸链电子传递,通过把钾离子转运到基质中消除跨膜质子梯度产生的高能状态,从而阻断ATP合成;

(7)与寡霉素作用相似。

6.简述DNA芯片技术的基本原理及其应用。

【答案】DNA芯片技术的基本原理是:将大量已知寡核苷酸或DNA探针按特定的排列方式固化在固相支持物表面,按碱基互补配对的原则,与标记的特异的单链DNA或RNA分子杂交形成双链,通过对杂交信号的检测分析,即可得出样品分子的数量和序列信息。DNA芯片上固定的探针可以是cDNA、寡核苷酸或来自基因组的基因片段,且这些探针固化于芯片上形成基因探针阵列,因此,DNA芯片又被称为基因芯片、DNA阵列、cDNA芯片、寡核苷酸阵列等。

主要应用在如下方面。

(1)DNA序列测定:在DNA芯片上不同序列的寡核苷酸,可以与靶DNA序列的不同部位结合,根据杂交信号产生的位置获知和靶序列杂交互补的寡核苷酸序列。

(2)突变及多态性分析:DNA突变须考察基因序列上的每一个核苷酸,所以根据已知基因序列信息,设计出所有可能突变的系列化寡核苷酸探针。

(3)基因表达分析:将不同条件下生物体中转录出的mRNA标记后与代表它所有基因而制成的DNA芯片杂交,通过分析杂交位点及其信号强弱,就可得出不同条件下各基因的表达情况,比较不同组织间、病理组织与正常组织间,以及细胞经各种化学试剂或药物处理前后基因表达水平的变化。

(4)基因组研究:基因组研究的主要内容是研究人类基因组的结构与功能,其中主要包括作图、测序、基因鉴定和基因功能分析等四个方面。

(5)基因诊断:通过对比正常人基因组DNA与病人基因组DNA芯片的杂交图谱,就可得出病变的DNA信息,不仅可以在DNA水平上寻找和检测与疾病相关的基因,而且可以在RNA 水平上检测致病基因的表达异常,因而在遗传病、感染性疾病、肿瘤等疾病的基因诊断中可得到

广泛应用。

(6)药物研究与开发:药物的毒性和副作用往往涉及基因或基因表达的改变,应用DNA芯片技术做大规模的表达研究可以查找药物的毒性和副作用,进行毒理学研究,鉴定药物开发研究的可行性。利用DNA芯片技术可比较正常组织(细胞)与病变组织(细胞)中大量相关基因表达的变化,从而发现一组疾病相关基因作为药物筛选靶标。

7.简述原核生物转录终止的两种方式。

【答案】转录是在DNA模板某一位置上停止的,人们比较了若干原核生物RNA转录终止位点附近的DNA序列,发现DNA模板上的转录终止信号有两种情况。

(1)不依赖于蛋白质因子而实现的终止作用:这类终止信号的序列特征是在转录终止位点之前核苷酸处有一段富含GC碱基对的回文结构,回文序列是一段方向相反、碱基互补的序列。这段互补序列由几个碱基隔开,其转录生成的RNA链可形成二级结构即发夹结构,这样的二级结构可能与RNA聚合酶某种特定的空间结构相嵌合,阻碍了RNA聚合酶进一步发挥作用。在其下游有个A,转录生成端的寡聚U。此时RNA与模板链的配对是最不稳定的,杂化链解离,RNA链脱落,转录终止。体外实验显示,如果掺入其他碱基以阻止发夹形

成时,终止即不发生。通常只要有一个核苷酸的改变破坏了规则的双螺旋的茎时,即可破坏终止子的功能。对终止子突变的分析亦显示DNA模板上多聚dA序列的重要性。

(2)依赖蛋白质辅因子才能实现的终止作用:这种蛋白质辅因子称为释放因子,通常又称因子,是由相同的6个亚基组成的六聚体蛋白质,具有解旋酶和ATP酶的活性,能特异地与延长中的单链RNA结合,整个因子结合约72个核苷酸的长度。依赖因子的终止序列中GC碱基对含量较少,其下游也没有固定的特征,并且也不是都能形成稳定的发夹。现在还不清楚因子的

作用机制,可能因子与RNA转录产物结合后使RNA聚合酶停顿,利用ATP水解释放的能量,发挥解旋酶的活性,将RNA链从酶和模板中释出。已知RNA聚合酶本身能识别DNA模板中依赖的终止序列,而因子是在以后才发挥作用而释出RNA的。即使没有时,RNA聚合酶也在依赖的终止子处暂停,不过以后仍继续向前进。故有人认为,即使有一个很弱的发夹也可使RNA 聚合酶停止前进。此时因子即可与之结合而将聚合酶和RNA解离下来。所以因子也是一种酶。

8.应用竞争性抑制的原理阐明某些药物的作用机理。

【答案】如磺胺类药物和磺胺增效剂便是通过竞争性抑制作用抑制细菌生长的。对磺胺类药物敏感的细菌在生长繁殖时不能利用环境中的叶酸,而是在细菌体内二氢叶酸合成酶的作用下,利用对氨苯甲酸(PABA)、二氢蝶呤及谷氨酸合成二氢叶酸(),后者在二氢叶酸还原酶的作用下进一步还原成四氢叶酸(),四氢叶酸是细菌合成核酸过程中不可缺少的辅酶。磺胺类药物与对氨苯甲酸结构相似,是二氢叶酸合成酶的竞争性抑制剂,可以抑制二氢叶酸的合成;磺胺增效剂(TMP)与二氢叶酸结构相似,是二氢叶酸还原酶的竞争性抑制剂,可以抑制四氢叶酸的合成。磺胺类药物与其增效剂在两个作用点分别竞争性抑制细菌体内二氢叶酸的合成及四氢叶酸的合成,影响一碳单位的代谢,从而有效地抑制了细菌体内核酸及蛋白质的生物合成,导致

相关文档
最新文档