概率随机事件及其概率章习题

概率随机事件及其概率章习题
概率随机事件及其概率章习题

第一章随机事件及其概率

典型例题分析

例1填空题

(1)若事件A,B互斥,且,则____________。

(2)若事件A,B相互独立,且,则

_____________。

(3)一个工人生产了3个零件,以事件表示他生产的第i个零件是合格品i=1, 2,

3,试用,i=1, 2, 3来表示下列事件:

只有第1个零件是合格品_____________;3个零件中只有1个合格品_______________;

3个零件中最多只有2个合格品______________;3个零件都是次品________________;

第1个是合格品,但后两个零件中至少有1个次品_________________;

3个零件中最多有1个次品________________________________________________。

(4)设,则___________;

_________________;_______________________________。

(5)设A,B为两事件,且,,则___________。

解 (1) 0.6。因为A与B互斥,有。

(2) 0.125。因为A与B独立时,有

(3) ;;

法一:考虑逆事件为“3个均为合格品”,故为,法二:直接考虑“3个零件中至少有1件次品”为;

;;

(4) ;;。

因为所以;。而,所以。

(5) 。由于,

又且,故。

例2单选题

(1) 已知且,则正确的是( )

A.

B.

C.

D.

(2) 已知以及,则= ( )

A. ;

B. ;

C. ;

D.

(3) 甲乙两人独立的同时对同一目标射击一次,其命中率分别为0.6和0.5,现在已知目标被命中,则它是甲射中的概率是 ( )

A. 0.8;

B. 0.65;

C. 0.75;

D. 0.25

(4) 如果事件A与B同时发生的概率为0,即,则下列情况成立的是 ( )

A. A与B互斥;

B. AB为不可能事件;

C. 或;

D. AB未必为不可能事件。

解 (1) B。因为;而

,故B为正确答案。

(2) D。由,而

知,故

(3) C。设A=“甲命中”,B=“乙命中”,则A+B=“目标被命中”,所求为

(4) D。因为不可能事件的概率为0,但概率为0的事件未必为不可能事件,所以A,B 不对。特别容易混淆的是A,互斥要求。又由也推不出或

。故选D。

以下几个例题为古典概型的概率计算

古典概型的概率计算,既有问题的多样性,又有方法与技巧的灵活性,在概率论的长期发展与实践中,人们发现实际中许多具体问题可以大致归纳为三类,这三类问题是:1)摸球问题

例3袋中装有A个白球 B个黑球。(1) 从袋中任取a+b个球,试求所取的球恰有a个白球和b个黑球的概率 ();(2) 从袋中任意的接连取出k+1 ()个球,如果每球被取出后不放回,试求最后取出的球是白球的概率。

解 (1) 从A+B个球中取a+b个球,总共有种取法。

设={恰好取中a个白球,b黑球},故中所含样本点数为。从而。

(2) 从A+B个球中接连不放回的取出k+1个球,由于注意了次序,所以应考虑排列。因此总共有种取法。

设={最后取出的球是白球},则中所含样本点可以通过乘法原理来计算:即先从A个白球中任取一个(即第k+1个球为白球),有A种取法;而其余的k个在余下的

个中任取k个,有种取法(同样要考虑排列)。因而中包含的样本点共有个。

故。

[注] (1) 摸球问题通常要注意区分是有放回抽样,还是不放回抽样;摸球时是考虑了顺序,还是不考虑顺序;

(2) 从该例题知,在计算样本点总数以及有利事件所含样本点的数目时,必须在同一确定的样本空间中考虑;

(3) 如果我们将“白球”、“黑球”换成“合格品”、“次品”等,就得到各种各样的摸球问题,这就是摸球问题的典型意义所在。

2)分房问题

例4将个人等可能的分配到N个房间中的任意一个去住,求下列事件的概率:A={某指定的n间房中各有一人};B={恰有n间房,其中各有一人};C={某指定的房中恰有个人}。

解:把个人等可能的分配到N个房间中去,由于并没有限定每一间房中的人数,故是一可重复的排列问题,这样的分法共有种。

对于事件A,只要考虑n个人的全排列,对应放入指定的n个房间中即可,故。对于事件B,分两步:第一选出n个房间,第二按照事件A的方法分配人,故。对于事件C,首先选出m人,有种方法,而其余个人可任意的

分配到其余的间房中,共有种方法,故。

[注] 可归入“分房问题”来处理的古典概型的实际问题非常多,例如:

(1) 生日问题:n个人的生日的可能情形,这时天();

(2) 乘客下车问题:一客车上有n名乘客,它在N个站上都停,乘客下车的各种情形;

(3) 印刷错误问题:n个印刷错误在一本有N页的书中的一切可能的分布(n不超过每一页的字符数);

(4) 放球问题:将n个球放入N个盒子的可能情形。

值得注意的是,在处理这类问题时,要分清什么是“人”,什么是“房”,不能颠倒。

3)匹配问题

例5从5双不同号码的鞋子中任取4只,求4只鞋子中至少有2只配成一双的概率。

解从5双10只鞋子中任取4只,共有种取法。设A={4只鞋子中至少有2只配成一双},则={4只鞋子不成双}。易知中的基本事件数为(其中表示从

5双中任取4双,表示从每双中任取一只),故。

[注] 注意问题中含有“至多或至少”字样时,可以考虑该事件的逆事件。

例6四张彩票,其中三张空门,一张中奖。四个人先后摸取彩票,求每个人中奖的概率。

解设={第i个人中奖},。则

,,

由常识知,抽签具有公平对等性,每个人抽到中奖彩票的机会相等,故抽签不必争先恐后。这里我们用概率知识证明了这种公平对等性。这也是用概率论知识解决实际问题的一个很好的例子。

例7用一支步枪射击飞机,击中的概率,问用250支步枪彼此独立的同时射击同一飞机,击中飞机的概率是多少?

解设={第i支步枪击中飞机},,A={250支步枪至少有一支击中飞机}。则由题意,相互独立。故

此题利用了n个事件相互独立的性质。一般的要求,首先考虑是

否两两互斥,如果是,则利用有限可加性;否则考虑是否相互独立,如果是,则先求逆事件的概率,结合德.摩根律转变为乘积的概率,利用独立性求解。否则可考虑用n个事件的加法公式求得。

全概率公式和贝叶斯公式是概率计算的重要公式,其方法与思想值得大家重点掌握。

例8某种仪器上装有大、中、小三个不同功率的灯泡,已知当三个灯泡完好时,仪器发生故障的概率仅为1%,当烧坏一个灯泡时,仪器发生故障的概率为25%,当烧坏两个灯泡及三个灯泡时,仪器发生故障的概率分别为65%和90%,设每个灯泡被烧坏与否互不影响,并且它们被烧坏的概率分别为0.1,0.2,0.3,求仪器发生故障的概率。

解由题意,仪器发生故障与否和三个灯泡的完好情况有密切关系,将三个灯泡被烧坏的数量视为导致仪器发生故障的重要因素来考虑。

设事件表示“三个灯泡中有i个灯泡被烧坏”,,B表示仪器发生故障。显然,是一个完备事件组,并且有

由于各灯泡寿命相互独立,有

由全概率公式有。

由此例可以看到,计算一个较复杂事件的概率时,仅仅应用乘法公式或概率的加法公式有时是不能解决的。全概率公式是乘法公式与加法公式的综合结果。应用全概率公式计算概

率时,关键是要正确的确定出对于事件B的发生有直接影响的完备事件组

例9玻璃杯成箱出售,每箱20只,假设各箱含0,1,2只次品的概率分别为0.8,0.1和0.1,一顾客欲购一箱玻璃杯,在购买时,售货员随意取一箱,而顾客开箱随机的查看4只,若无次品,则买下该箱玻璃杯,否则退回。试求 (1) 顾客买下该箱的概率;(2) 在

顾客买下的一箱中,确实没有次品的概率。

思路:由于玻璃杯箱总共三类,分别含0,1,2只次品。而售货员取的那一箱可以是这三类中的任一箱,顾客是在售货员取的一箱中检查的,顾客是否买下这一箱是与售货员取的是哪一类的箱子有关,这类问题的概率计算一般可用全概率公式解决,第二问是条件概率问题。

解引入下列事件:A={顾客买下所查看的一箱};={售货员取的箱中恰好有i件次品},。显然,是一个完备事件组,且

(1) 由全概率公式,有

(2) 由贝叶斯公式,得。

本题是考查全概率公式与贝叶斯公式的典型试题。一般来说,全概率公式是由因索果,而贝叶斯公式实际上是在已知结果发生的条件下,来找各“原因”发生的概率大小的。

例10设有白球与黑球各4只,从中任取4只放入甲盒,余下的4只放入乙盒,然后分别在两盒子中各任取一只,颜色正好相同,试问放入甲盒的4只球中有几只白球的概率最大。

解设A={从甲、乙两盒中各取一球,颜色相同},={甲盒中有i只白球},。显然,是一个完备事件组。又由题设知

。且

从而,由全概率公式得。再由贝叶斯公式得

即放入甲盒的4只球中有两只白球的概率最大,最大值为。

例11由射手对飞机进行4次独立射击,每次射击命中的概率为0.3,一次命中时飞机被击落的概率为0.6,至少两次命中时飞机必被击落,求飞机被击落的概率。

思路:由于飞机是否被击落是与飞机被命中几次有关,因此,这个问题首先是一个利用全概率公式计算概率的问题,而飞机被命中的次数又是一个伯努利概型的问题,故本题是一个全概率公式与伯努利公式的综合应用题。

解设A={飞机被击落},={飞机被命中i次},。显然的概率可由4重伯努利概型问题来计算,即。

又由题设知

因此由全概率公式可得

故。

例12设,试证:。

思路:通常用逆推法来考虑这类不等式的证明。若不等式成立,则有

即,即。

证明由于,即,从而由乘法公式知

因而有。由于,因此得。

三、自我检测题

1. 填空题

(1) 已知,则_____________。

(2) 设A、B互不相容,且则

(3) 设A、B、C表示三个随机事件,试以A、B、C的运算来表示下列事件:A、B、C恰有一个发生表示为________________________

A、B、C不多于一个发生表示为________________________.

(4) 两个相互独立的事件,A,B都不发生的概率为,A发生B不发生的概率与B发生

A不发生的概率相等,则______________。

(5) 袋中有50个小球,其中黄球20个,白球30个。今有两人依次随机的从袋中各取一球,取后不放回,则第二人取得黄球的概率是___________。

2. 选择题

(1) 设A,B为两随机事件,且,则下列式子正确的是 ( )

A. B.

C. D.

(2) 设A,B是两个随机事件,且,则一定有( )

A. B.

C. D.

(3) 一个班级中有8名男生和7名女生,今要选出3名学生参加比赛,则选出的学生中,男生数多于女生数的概率为 ( )

A. ;

B. ;

C. ;

D.

(4) 在某一问卷调查中,有50%的被访者会立刻答完并上交问卷表,在没有立刻上交问卷表的被访者中,有40%的人会在调查人员的电话提醒下送回问卷表。如果只有4人参加这样的问卷调查,则至少有3人没有任何回音的概率为 ( )

A. B.

C. D.

3. 有一个问题,甲先回答,答对的概率为0.4,如果答错,由乙答,答对的概率为0.5,求问题由乙解答出的概率。

4. 一间宿舍中住有6名学生,计算下列事件的概率:

(1) 6个人中至少1人生日在十月份的概率;

(2) 6个人中恰好有4个人的生日在十月份的概率;

(3) 6个人中恰好有4个人的生日在同一个月份的概率。

(假定每人生日在各个月的可能性相同)

5. 设有甲、乙、丙三门炮,同时独立的向某目标射击,各炮的命中率分别为0.2,0.3和0.5,目标被命中一发而被击毁的概率为0.2,被命中两发而被击毁的概率为0.6,被命中三发而被击毁的概率为0.9,求:(1) 三门炮在一次射击中击毁目标的概率;(2) 在目标被击毁的条件下,只由甲炮击中的概率。

6. 在空战训练中,甲机先向乙机开火,击落乙机的概率为0.2;若乙机未被击落,就进行还击,击落甲机的概率是0.3;若甲机也没被击落,则再进攻乙机,此时击落乙机的概率是0.4,求这几个回合中:(1) 甲机被击落的概率;(2) 乙机被击落的概率。

7. 有枪8支,其中5支经过试射校正,校正过的枪,击中靶的概率为0.8,未经校正的枪,击中靶的概率是0.3。今任取一支枪射击,结果击中靶,问此枪为校正过的概率是多少?

8. 已知每枚地对空导弹击中敌机的概率为0.96,问需要发射多少枚导弹才能保证至少有一枚导弹击中敌机的概率大于0.999。

自检题答案或提示

1. 填空题 (1); (2) 0,; (3) ; (4)

; (5) 。

2. 选择题 (1) A; (2) C; (3) A; (4) A。

3. 0.3。

4.

5. (1) 0.253,(2) 0.0554。

6. (1) 0.24; (2) 0.424。

7. 。

8. 3。

《随机事件及其概率》教学设计

《随机事件及其概率》教学设计 【教学目标】 知识与技能: 1.了解必然事件、不可能事件、随机事件的概念以及随机事件的发生存在规律性. 2.理解随机事件的概率的统计定义. 过程与方法: 通过概率统计定义的形成过程,提高探究问题、分析问题的能力,体会归纳过程,掌握对实验数据进行有效的分析和处理的方式和方法. 情感态度价值观: 通过概念的形成过程,渗透归纳思想,优化思维品质,体会“实践出真知”的含义,了解偶然性寓于必然性之中的辩证唯物主义思想. 教学重点:了解随机现象及其概率的意义. 教学难点:概率定义的形成过程. 【教学方法】 教学方法:引导发现法直观演示法 学习指导:学会学习 【教学手段】通过多媒体辅助教学 【教学过程】 一、问题情境: (1)、生活中到处充斥着随机现象,大到国计民生,小到日常生活,如08春节雪灾、四川地震、前不久英法核潜艇相撞事故;我们身边的出行、考试合格率、掷硬币、投骰子、摸彩票等等。随机事件的结果虽然无法预知,但是如果能够通

过数据加以衡量其发生可能性的大小,就可以采取有针对性的措施,做好预案,兴利除弊。那么,可以通过什么加以衡量随机事件发生可能性的大小呢? (2)、物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映. 引入课题:《随机事件及其概率》 例1试判断以下事件发生的可能性(必然发生?不可能发生?有可能发生?)(1)木柴燃烧,产生热量; (2)明天,地球仍会转动; (3)实心铁块丢入水中,铁块浮; (4)在标准大气压00C以下,雪融化; (5)转动转盘后,指针指向黄色区域; (6)两人各买1张彩票,均中奖. 二、概念提炼 我们将(1)(2)称作必然事件.(3)(4)称作不可能事件.(5)(6)称作随机事件.请学生归纳出这三种事件的定义.强调“在一定条件下”. 必然事件:在一定条件下必然要发生的事件叫必然事件. 不可能事件:在一定条件下不可能发生的事件叫不可能事件. 随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件. 分析事件(5)的条件和结果,给出试验的定义:在数学里对于某个事件让它的条件实现一次就称为做了一次试验. 引导学生分析随机事件和试验结果的关系:一个随机事件包括试验结果的一个或多个但不是全部. 三、试验研究随机事件发生的频率

随机事件及其概率(知识点总结)Word版

随机事件及其概率 一、随机事件 1、必然事件 在一定条件下,必然会发生的事件叫作必然事件. 2、不可能事件 在一定条件下,一定不会发生的事件叫作不可能事件. 3、随机事件 在一定条件下,可能发生,也可能不发生的事件叫作随机事件,一般用大写字母A,B,C来表示随机事件. 4、确定事件 必然事件和不可能事件统称为相对于随机事件的确定事件. 5、试验 为了探索随机现象发生的规律,就要对随机现象进行观察或模拟,这种观察或模拟的过程就叫作试验. 【注】(1)在一定条件下,某种现象可能发生,也可能不发生,事先并不能判断将出现哪种结果,这种现象就叫作随机现象. 应当注意的是,随机现象绝不是杂乱无章的现象,这里的“随机”有两方面意思:①这种现象的结果不确定,发生之前不能预言;②这种现象的结果带有偶然性. 虽然随机现象的结果不确定,带有某种偶然性,但是这种现象的各种可能结果在数量上具有一定的稳定性和规律性,我们称这种规律性为统计规律性. 统计和概率就是从量的侧面去研究和揭示随机现象的这种规律性,从而实现随机性和确定性之间矛盾的统一.

(2)必然事件与不可能事件反映的是在一定条件下的确定性现象,而随机事件反映的则是在一定条件下的随机现象. (3)随机试验满足的条件:可以在相同条件下重复进行;所有结果都是明确可知的,但不止一个;每一次试验的结果是可能结果中的一个,但不确定是哪一个. 随机事件也可以简称为事件,但有时为了叙述的简洁性,也可能包含不可能事件和必然事件. 二、基本事件空间 1、基本事件 在试验中不能再分的最简单的随机事件,而其他事件都可以用它们进行描述,这样的事件称为基本事件. 2、基本事件空间 所有基本事件构成的集合称为基本事件空间,常用大写字母Ω来表示,Ω中的每一个元素都是一个基本事件,并且Ω中包含了所有的基本事件. 【注】基本事件是试验中所有可能发生的结果的最小单位,它不能再分,其他的事件都可以用这些基本事件来表示;在写一个试验的基本事件空间时,应注意每个基本事件是否与顺序有关系;基本事件空间包含了所有的基本事件,在写时应注意不重复、不遗漏. 三、频率与概率 1、频数与频率 在相同条件S 下进行了n 次试验,观察某一事件A 是否出现,则称在n 次试验中事件A 出现的次数A n 为事件A 出现的频数;事件A 出现的比例()A n n f A n =为事件A 出现的频率.

概率论与数理统计教程习题(第一章随机事件与概率)

习题1(随机事件及其运算) 一.填空题 1. 设A ,B ,C 是三个随机事件,用字母表示下列事件: 事件A 发生,事件B ,C 不都发生为 ; 事件A ,B ,C 都不发生为 ; 事件A ,B ,C 至少一个发生为 ; 事件A ,B ,C 至多一个发生为 . 2. 某人射击三次,用A i 表示“第i 次射击中靶”(i =1,2,3).下列事件的含义是: 1A 表示 ; 321A A A 表示 ; 321321321A A A A A A A A A ++表示 ; 321A A A 表示 . 3. 在某学院的学生中任选一人,用A 表示“选到的是男生”,用B 表示“选到的是二年级的学生”,用C 表示“选到的是运动员”。则式子ABC=C 成立的条件是 . 二.选择题 1. 在事件A ,B ,C 中,B 与C 互不相容,则下列式子中正确的是( ). ① A BC A = ; ② A BC A = ; ③ Φ=BC A ; ④ Ω=BC A . 2. 用A 表示“甲产品畅销,乙产品滞销”,则A 表示( ). ① “甲产品滞销,乙产品畅销”; ② “甲、乙产品都畅销”; ③ “甲产品滞销或乙产品畅销”; ④ “甲、乙产品都滞销”. 3. 若概率0)(=AB P ,则必有( ). ① Φ=AB ; ② 事件A 与B 互斥; ③ 事件A 与B 对立; ④ )()()(B P A P B A P += .

三.解答题 1. 将一枚骰子掷两次,记录点数之和,写出样本空间Ω及事件=A {点数之和为偶数};=B {点数之和能被3整除}. 2. 将一枚骰子掷两次,观察点数的分布,写出样本空间Ω及事件=A {点数之和为6};=B {点数之差为2}. 3. 某城市发行日报和晚报两种报纸。有15%的住户订日报,25%的住户订晚报,同时订两种报纸的住户有8%,求下列事件的概率:C ={至少订一种报};D ={恰订一种报};E ={不订任何报}. 4. 若已知,2.0)(,0)()(,3.0)()()(======BC P AC P AB P C P B P A P 求概率)(ABC P ;)(C B A P ;).(C B A P

第一章 随机事件及其概率课后习题参考答案

第一章 随机事件及其概率 1. 1) {}01001,,,.n n n n Ω=L 2) {}{}10,11,12,13,,10.n n Z n Ω==∈≥L 3) 以"'',''"+-分别表示正品和次品,并以""-+--表示检查的四个产品依次为次品,正品,次品,次品。写下检查四个产品所有可能的结果S ,根据条件可得样本空间Ω。 , ,,,,,,,, ,,,,,,,,,,,,,,,. , ,,,S ++--++-++++-+++++---+--++-+-+-++?? =? ?-+---+-+-++--+++-------+--+---++??++--++-++++-+++++--+-+-+-++?? Ω=? ?-+---+-+-++--+++--?? 4) {}22(,)1.x y x y Ω=+< 2. 1) ()A B C ABC --=, 2) ()AB C ABC -=, 3) A B C A B C ++=U U , 4) ABC , 5) ()A B C ABC Ω-++=, 6) ()AB BC AC AB BC AC Ω-++=++, 7) ()ABC A B C Ω-=U U , 8) AB AC BC ++. 3. 解:由两个事件和的概率公式()()()()P A B P A P B P AB +=+-,知道 ()()()() 1.3(),P AB P A P B P A B P A B =+-+=-+ 又因为()(),P AB P A ≤ 所以 (1)当()()0.7P A B P B +==时,()P AB 取到最大值0.6。 (2)当()1P A B +=时,()P AB 取到最小值0.3。 4. 解:依题意所求为()P A B C ++,所以 ()()()()()()()() 1111 000(0()()0)44485.8 P A B C P A P B P C P AB P AC P BC P ABC P ABC P BC ++=++---+=++---+≤≤==Q 5. 解:依题意, ()()() () ()()()() ()()()() ()()0.70.5 0.25. ()()()0.70.60.5 P B A B P BA P B A B P A B P A B P BA BA BA A P A P B P AB P A P BA P A P B P AB ++= = ++=+=+---= ==+-+-Q 6. 解:由条件概率公式得到111()1()()(),(),34 12()2 P AB P AB P A P B A P B P A B ==?=== 所以1 111 ()()()().4 6123 P A B P A P B P AB +=+-=+-= 7. 解:

第1章 随机事件及其概率课后习题答案(高教出版社,浙江大学)

第1章 随机变量及其概率 1,写出下列试验的样本空间: (1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录 投掷的次数。 (2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次, 记录投掷的次数。 (3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。 (4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰 子,观察出现的各种结果。 解:(1)}7,6,5,4,3,2{=S ; (2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。 2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求 )])([(),(),(),(___ ___ AB B A P AB P B A P B A P ??。 解:625.0)()()()(=-+=?AB P B P A P B A P , 375 .0)()(])[()(=-=-=AB P B P B A S P B A P , 875.0)(1)(___ --=AB P AB P , 5 .0)(625.0)])([()()])([()])([(___ =-=?-?=-?=?AB P AB B A P B A P AB S B A P AB B A P 3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=??,所以所求得概率为 72 .0900 648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。 解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=??个。(1)该数是奇数的可能个数为 48 344=??个,所以出现奇数的概率为 48 .0100 48= (2)该数大于330的可能个数为48 454542=?+?+?,所以该数大于 330的概率为 48 .0100 48= 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。 (1)4只中恰有2只白球,1只红球,1只黑球。 (2)4只中至少有2只红球。 (3)4只中没有白球。 解: (1)所求概率为 33 8412 1 3 1 42 5= C C C C ;

随机事件与概率 考研试题

第一章 随机事件与概率 一、填空题 1.(1990年数学一)设随机事件A ,B 及其和事件A B 的概率分别是0.4,0.3和0.6若B 表示B 的对立事件,那么积事件AB 的概率P AB () =_________. 【解题分析】要求P AB ()时,一般应想到AB A B A AB =-=-,这是事件的差与事件的积之间常见的转化关系,AB A ?而,所以有, () ()()P AB P A P AB =-,这时只需要求出 ()P AB 即可. 解: ()()()()P A B P A P B P AB =+- , 又 () ()()P AB P AB P A +=, 所以 () ()()0.60.30.3P AB P A B P B =-=-= . 本题用文氏图考虑求解思路更为直观,见图10-1. 图10-1 注:本题()0.4P A =是多余的. 2.(1991年数学四)设A ,B 为随机事件,()0.7,P A =()0.3P A B -=,则 () P AB =________. 【解题分析】 要求() P AB ,由于AB AB 与是对立事件,只要求出()P AB 即可.利用关系A B A AB -=-,()()()P A B P A P AB -=-,可得()P AB . 解:由题设()()() 0.7,0.3P A P A B P AB =-==, 利用公式 AB AB A +=,知 ()()()0.70.30.4P AB P A P AB =-=-=, 故 () ()110.40.6P AB P AB =-=-=. 本题也可利用图10-1考虑求解思路. 3.(2000年数学一)设两个相互独立的事件A 和B 都不发生的概率为1 9 ,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =________.

初中数学教案随机事件与概率

第二十五章概率初步 25.1随机事件与概率 学习目标: 1.了解随机事件、必然事件、不可能事件的概念。 2.理解概率的概念和意义。 学习重点与难点:对概率定义的初步理解。 学习过程:自学指导1:看课本125页到127页问题3上面的内容。 自学检测(1): 1、在一定条件下,有些事件____________________, 这样的事件称为必然事件。 2、在一定条件下,有些事件____________________, 这样的事件称为不可能事件。___________和____________统称为确定事件。 3、在一定条件下,有些事件__________________________________的事件,称为随机事件。 4.必然事件发生的可能性是,不可能事件发生的可能性是________,随机事件发生的可能性. 学习过程:自学指导2:看课本127页到131页问题3上面的内容 自学检测(2): 1、对于一个随机事件A,我们把刻画其发生可能性大小的_________,称为随机事 件A发生的概率。 2、一般地,如果在一次试验中,有______种可能的结果,并且它们发生的可能 性都相等,事件A包含其中的种结果,那么事件A发生的概率 P(A)= 。 达标测试 1.(梅州)下列事件中,必然事件是() A.任意掷一枚均匀的硬币,正面朝上 B.黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门 C.通常情况下,水往低处流 D.上学的路上一定能遇到同班同学 2.(台州市)下列事件是随机事件的是()

A .台州今年国庆节当天的最高气温是35℃ B .在一个装着白球和黑球的袋中摸球,摸出红球 C .抛掷一石头,石头终将落地 D .有一名运动员奔跑的速度是20米/秒 3.(甘肃省白银市)如图,小红和小丽在操场上做游戏,她们先在地上画出一个 圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,则投一次就正好投到圆圈内是( ) A .必然事件(必然发生的事件) B .不可能事件(不可能发生的事件) C .确定事件(必然发生或不可能发生的事件) D .不确定事件(随机事件) 4.(湘潭) 将五张分别印有北京2008年奥运会吉祥物 “贝贝,晶晶,欢欢,迎 迎,妮妮”的卡片(卡片的形状、大小一样,质地相同)放入盒中,从中随机抽取一张卡片印有“妮妮”的概率为( ) A. 1 2 B. 13 C. 14 D. 15 5、(宜宾市)一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 ( ) A. 9 4 B. 92 C. 3 1 D. 3 2 6.(广东湛江市)从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是 12 ,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 7.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 8. ( 宁夏回族自治区)从-1,1,2三个数中任取一个,作为一次函数y=kx+3的

数学随机事件与概率知识点归纳

数学随机事件与概率知识点归纳 一、随机事件 主要掌握好(三四五) (1)事件的三种运算:并(和)、交(积)、差;注意差A-B可以表示成A与B的逆的积。 (2)四种运算律:交换律、结合律、分配律、德莫根律。 (3)事件的五种关系:包含、相等、互斥(互不相容)、对立、相互独立。 二、概率定义 (1)统计定义:频率稳定在一个数附近,这个数称为事件的概率; (2)古典定义:要求样本空间只有有限个基本事件,每个基本事件出现的可能性相等,则事件A所含基本事件个数与样本空间所含基本事件个数的比称为事件的古典概率; (3)几何概率:样本空间中的元素有无穷多个,每个元素出现的可能性相等,则可以将样本空间看成一个几何图形,事件A看成这个图形的子集,它的概率通过子集图形的大小与样本空间图形的大小的比来计算; (4)公理化定义:满足三条公理的任何从样本空间的子集集合到[0,1]的映射。 三、概率性质与公式 (1)加法公式:P(A+B)=p(A)+P(B)-P(AB),特别地,如果A与B互不相容,则P(A+B)=P(A)+P(B); (2)差:P(A-B)=P(A)-P(AB),特别地,如果B包含于A,则 P(A-B)=P(A)-P(B); (3)乘法公式:P(AB)=P(A)P(B|A)或P(AB)=P(A|B)P(B),特别地,如果A与B相互独立,则P(AB)=P(A)P(B); (4)全概率公式:P(B)=∑P(Ai)P(B|Ai).它是由因求果, 贝叶斯公式:P(Aj|B)=P(Aj)P(B|Aj)/∑P(Ai)P(B|Ai).它是由果索因;

如果一个事件B可以在多种情形(原因)A1,A2,....,An下发生,则用全概率公式求B发生的概率;如果事件B已经发生,要求它是由Aj引起的概率,则用贝叶斯公式. (5)二项概率公式:Pn(k)=C(n,k)p^k(1-p)^(n-k),k=0,1,2,....,n. 当一个问题可以看成n重贝努力试验(三个条件:n次重复,每次只有A与A的逆可能发生,各次试验结果相互独立)时,要考虑二项概率公式.

概率论第一章随机事件及其概率答案2

概率论与数理统计练习题 系 专业 班 姓名 学号 第一章 随机事件及其概率(一) 一.选择题 1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ] (A )不可能事件 (B )必然事件 (C )随机事件 (D )样本事件 2.下面各组事件中,互为对立事件的有 [ B ] (A )1A ={抽到的三个产品全是合格品} 2A ={抽到的三个产品全是废品} (B )1B ={抽到的三个产品全是合格品} 2B ={抽到的三个产品中至少有一个废品} (C )1C ={抽到的三个产品中合格品不少于2个} 2C ={抽到的三个产品中废品不多于2个} (D )1D ={抽到的三个产品中有2个合格品} 2D ={抽到的三个产品中有2个废品} 3.下列事件与事件A B -不等价的是 [ C ] (A )A AB - (B )()A B B ?- (C )AB (D )AB 4.甲、乙两人进行射击,A 、B 分别表示甲、乙射中目标,则A B ?表示 [ C ] (A )二人都没射中 (B )二人都射中 (C )二人没有都射着 (D )至少一个射中 5.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件A 为. [ D ] (A )“甲种产品滞销,乙种产品畅销”; (B )“甲、乙两种产品均畅销”; (C )“甲种产品滞销”; (D )“甲种产品滞销或乙种产品畅销 6.设{|},{|02},{|13}x x A x x B x x Ω=-∞<<+∞=≤<=≤<,则AB 表示 [ A ] (A ){|01}x x ≤< (B ){|01}x x << (C ){|12}x x ≤< (D ){|0}{|1}x x x x -∞<

习题1 随机事件及其概率

习题一 随机事件及其概率 一、填空题 1.设随机试验E 对应的样本空间S ,与其任何事件不相容的事件为φ,而与其任何事件相互独立的事件为φP (A|B )=1, 则A 、B 两事件的关系为 A=B ;设E 为等可能型试验,且S 包含 10 个样本点,则按古典概率的定义其任一基本事件发生的概率为 0.1 。 2.若A 表示某甲得100分的事件,B 表示某乙得100分的事件,则 (1)A 表示 甲未得100分的事件; (2)A B ?表示 甲乙至少有一人得100分的事件; (3)AB 表示 甲乙都得100的事件; (4)AB 表示 甲得100分,但乙未得100分的事件; (5)AB 表示 甲乙都没得100分的事件; (6)AB 表示 甲乙不都得100分的事件; 3.若事件,,A B C 相互独立,则()P A B C ??= ()()()()()()()()()()P A P B P C P A P B P A P C P B P C P A P B P C ++---+。 4.若事件,A B 相互独立,且()0.5,()0.25,P A P B ==则 ()P A B ?=0.625。 5.设111()()(),()()(),(),4816 P A P B P C P AB P AC P BC P ABC =======则 ()P A B C ??=167;()P ABC =169 ;(,,)P A B C =至多发生一个43;(,,P A B C =恰好发生一个)163 ;(|)P A A B C ??=74。 6.袋中有 50 个乒乓球,其中 20 个是黄球,30 个白球,今有两人依次随机地从袋中各取1球,取后不放回,则第二个人取得黄球的概率是 0.4 。 7.将 C ,C ,E ,E ,I,N,S 七个字母随机地排成一行,则恰好排成英文单词 SCIENCE 的概率为11260 。 8.10 件产品有 4 件次品,现逐个进行检查,则不连续出现 2 个次品的概

随机事件及其概率习题

第一章 随机事件及其概率 习题一 一、填空题 1.设样本空间}20|{≤≤=Ωx x ,事件}2 3 41|{ },121|{<≤=≤<=x x B x x A ,则B A Y 1 3{|0}{| 2}42x x x x =≤<≤≤U , B A 113{|}{|1}422 x x x x =≤≤<

(第一章)随机事件与概率习题

第一章 随机事件与概率 亲量圭尺,躬察仪漏,目尽毫厘,心穷筹策。 ──祖冲之 内容提要 1. 事件间的关系与运算(四种关系:包含关系、互不相容、对立和相互独立;三种运算:和、积与差;若干运算规律:交换律、结合律、分配律和对偶律:1111,n n n n i i i i i i i i A A A A ===== = ) 2. 确定概率的三种方法:频率方法((()(),n k A P A f A n n ≈=出现的次数)充分大(试验的总次数) );古典方法(用于求古典概型的随机试验中各种结果出现的概率:()k A P A n =(中的样本点数)(样本点总数)); 几何方法(用于求几何概型的随机试验中各种结果出现的概率:()A S A P A S Ω=Ω(的度量)(的度量) ); 3. 概率的公理化定义及其简单性质 (1) 公理化定义:概率是定义在事件域Φ 上的非负、规范、可列可加的实值函数: ()()()()()o o 1:P A 021 o 3,,() 1212P P A A P A P A A A i j i j ≥Ω==++=?≠ 非负性规范性:可列可加性: (2) 性质: 11 1111. ()0,2.:,,()3.()()()()() 4.()1(), 5. 6.()()()()()(n n n i i i i n n i i i j i i i P A A P A P A A B P B A P B P A P A P B P A P A P A B P A P AB P A B P A P B P AB P A P A P A A ===≤=?=??= ?????-=-≤=--=-=+-??=- ???∑∑ o o o o o o 1有限可加性若互不相容,则单调性:且()()(),加法公式:,一般地 111)()(1)n n i j k i j n i j k n i P A A A P A -<≤≤<<≤=??+++- ??? ∑∑ 4. 条件概率及三大公式(乘法公式,全概率公式,Bayes 公式) (1) 条件概率的定义 直观上的定义:已知A 出现的条件下B 发生的概率称为在A 发生的条件下B 的条件概率,记

概率论与数理统计练习题随机事件与古典概型

概率论与数理统计练习题 第一次 随机事件与古典概型 一.填空 1. 设S 为样本空间,A,B,C 是任意的三个随机事件,根据概率的性质,则(1)P(A )=_______;(2)P(B-A)=P(B A )=_______;(3)P(A U B U C)= _____; 2. 设A,B,C 是三个随机事件,试以A ,B ,C 的运算来表示下列事件:(1)仅有A 发生_______;(2)A ,B ,C 中至少有一个发生_______;(3)A ,B ,C 中恰有一个发生_______;(4)A ,B ,C 中最多有一个发生_______;(5)A ,B ,C 都不发生_______;(6)A 不发生,B ,C 中至少有一个发生_______; 3. A,B,C 是三个随机事件,且p(A)=p(B)=p(C)=1/4, P(AC)=1/8;P(AB)=P(BC)=0,则A ,B ,C 中至少有一个发生的概率为: _______;A ,B ,C 中都发生的概率为: _______;A ,B ,C 都不发生的概率为: _______; 4. 袋中有n 只球,记有号码 1,2,3,…………n . (n>5) 则事件(1)任意取出两球,号码为1,2的概率为_______;(2)任意取出三球,没有号码为1的概率为_______;(3) 任意取出五球,号码1,2,3中至少出现一个的概率为_______; 5. 从一批由此及彼5件正品,5件次品组成的产品中,任意取出三件产品,则其中恰有一件次品的概率为_______; 二.某码头只能容纳一只船,现预知将独立来到两只船,且在24小时内各时刻来到的可能性都相同,如果他们需要的停靠时间分别为3小时与4小时,试求有一只船要在江中等待的概率? 三.已知A ,B 两个事件满足条件P(AB)=P(A B ),且P(A)=p; 求P(B). 第二次 条件概率 乘法公式 全概率公式 贝叶斯公式 一.填空 1. 条件概率的计算公式P(B|A)= _______;乘法公式P(AB)= _____; 2. 12,,,n A A A 为样本空间S 的一个事件组,若 12,,,n A A A 两两互斥,且 1 2 n A A A =S,则对S 中的事件B 有全概率公式_______; 3. 设B 为样本空间S 的一个事件, 123,,A A A 为样本空间 S 的一个事件组,且满足:(1) 123,,A A A 互不相容,且P(i A )>0 (I=1,2,3) ; (2) S=1 23A A A 则贝叶斯公式为___; 4 两事件A,B 相互独立的充要条件为_______; 5 已知在10只晶体管中,有2只次品,在其中取两次,每次随机地取一只,做不放回抽样,则(1) 两只都是正品的概率为_______;(1)一只正品,一只为次品的概率为_______;(3)两只都为次品的概率为_______;(4)第二次取出的是次品的概率_______; 二.某工厂有甲,乙,丙3个车间,生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,3 个车间中产品的废品率分别为5%,4%,2%,求全厂产品的废品率。 已知男人中有5%的是色盲患者,女人中有0.25%是色盲患者,今从男女人数相等的人群中随机挑选一人,恰好是色盲患者。问此人是男人的概率。 三.一个机床有1/3的时间加工零件A ,其余时间加工零件B ;加工A 时,停车的概率为0.3,加工B 时停

《随机事件及其概率》教案(1)

随机事件及其概率 教学目标: (1)通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念。(2)根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键; (3)理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法, 理解频率和概率的区别和联系; (4)通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识. 教学重点: 根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象, 理解频率和概率的区别和联系. 教学难点: 理解随机事件的频率和概率定义及计算方法, 理解频率和概率的区别和联系. 教学过程: 一、问题情境 1、观察下列现象发生与否,各有什么特点? (1)在标准大气压下,把水加热到100℃,沸腾; (2)导体通电,发热; (3)同性电荷,互相吸引; (4)实心铁块丢入水中,铁块浮起; (5)买一张福利彩票,中奖; (6)掷一枚硬币,正面朝上。 注:显然(1)、(2)两种现象必然发生的,(3)、(4)两种现象不可能发生,从而它们都是确定性现象。(5)、(6)两种现象可能发生,也可能不发生(是随机现象)。 2、实验1:奥地利遗传学家(G.Mendel)用豌豆进行杂交试验,下表为试验结果(其中F1 为第一子代,为F2第二子代): 性状F1的表现F2的表现 种子的形状全部圆粒圆粒5474 皱粒1850 圆粒︰皱粒≈2.96︰1 茎的高度全部高茎高茎787 矮茎277 高茎︰矮茎≈2.84︰1 子叶的颜色全部黄色黄色6022 绿色2001 黄色︰绿色≈3.01︰1 豆荚的形状全部饱满饱满882 不饱满299 饱满︰不饱满≈2.95︰1 孟德尔发现第一子代对于一种性状为必然事件,其可能性为100%,另一种性状的可能性为0,而第二子代对于前一种性状的可能性约为75%,后一种性状的可能性约为25%,通过进一步研究某种性状发生的频率作出估计,他发现了生物遗传的基本规律。 实验2 A B 1 模拟次数10 正面向上的频率0.3 2 模拟次数100 正面向上的频率0.53 3 模拟次数1000 正面向上的频率0.52 4 模拟次数5000 正面向上的频率0.4996

第一章 随机事件与概率-教案

第一章随机事件与概率-教案引言在这一章将介绍: ·《概率》中用到的基本概念和术语, ·随机事件之间的关系以及概率的基本关系式, ·再介绍应用非常广泛的两类概率问题:等可能概型、n重贝努利概型. 这一章是学习《概率》的基础. §1.1 随机事件 【教学目的】 1.理解《概率》研究的对象是随机现象的统计规律性,随机现象的特点具有不确定的一面,即试验前哪一个结果发生不知道,也有确定性的一面,即统计规律性,也称频率稳定性. 2.理解随机试验的条件,样本点、样本空间术语. 3.理解随机事件术语,掌握随机事件的关系、运算与运算律,注意 (1)从发生的角度清楚事件的关系与运算的涵义; (2)熟练掌握由简单事件表示复杂事件的方法; (3)掌握事件关系的常用变形,如 -=-=,A S A =+,A B A AB AB A B A AB B AB +=+=+,A AB AB =-; (4)理解事件互斥与对立不等价. 【教学内容】 一、随机现象与频率稳定性 确定性现象 ◆自然与社会存在两类现象不确定性现象随机现象 其他 随机现象的特点不确定性——事情发生之前,不清楚那一个结果会发生. 确定性——频率稳定性,也称作统计规律性. 《概率论与数理统计》研究的对象即随机现象的统计规律性. ◆又《概率论》是研究概率的,“概率”与“统计规律性”什么关系?以后解决. 二、随机试验、样本空间

1.随机试验 定义1对随机现象作实验或观察,且具有如下三个特点,统称为随机试验,记作E. (1)可以在相同条件下重复进行; (2)试验的可能结果不唯一,全部可能结果已知; (2)试验前不能确定哪一个结果发生. 注关于“相同”当然只能是相对而言,事实上正是因为有很多不确定因素的影响,才造成了结果的不确定性. 2.样本点样本空间 ·随机试验的每一个结果称为样本点,记作e、ω等. ·全部可能结果,即全体样本点组成的集合,称为样本空间,记为S,即S={e}. 例1看如下随机试验与相应的样本空间. (1) E:掷一颗色子,观察出现的点数. 1 E:一枚硬币掷两次,观察朝上一面的图案.记字面朝上为正,朝下为反. (2)2 (3) E:记录120急救站一个小时内接到的呼叫次数. 3 (4) E:对灯泡做破坏性试验,记录灯泡的寿命. 4 E:按户调查城市居民食品、穿衣的支出. (5) 5 其中, S,2S的样本点数为有限个,称为有限样本空间. 3S,4S,5S中样本点数为无限个,称为无 1 限样本空间. 又 S中样本点可按一定顺序排列,简称可列样本空间.4S,5S中样本点则不可排列. 3 三、随机事件的概念、关系与运算 1.随机事件 ◆随机试验E的样本空间S的子集,称为E的随机事件,通常记为A、B、C等. ◆随机事件发生是常用的一个术语,规定: 随机事件A发生的充分必要条件是随机试验时A中的一个样本点出现. 利用符号“?”表示“充分必要”也称“等价”,则随机事件发生的规定可以简记为: 随机事件A发生?随机试验时A中的一个样本点出现. ◆特殊的随机事件: e}或e; 基本事件:一个样本点构成的事件,记作{ 必然事件:每次试验都必然发生的事件,即样本空间S; 不可能事件:每次试验都不会发生的事件,即空集φ. 2.事件间的关系与运算

第一章 随机事件与概率(中山大学)

第一章 随机事件与概率 1.从0,1,2,,9十个数字中,先后随机取出两数,写出下列取法中的样本空间: (1)放回时的样本空间1Ω (2)不放回时的样本空间2Ω 解: (1) 100 01 02 0910 11 12 1990 91 92 99??????Ω=????????,(2)2 01 02 03 0910 12 13 1990 91 92 98??????Ω=???????? 2.一个袋内装有4个白球和5个红球,每次从袋内取出一球,直至首次取到红球为止。写出下列两种取法的样本空间: (1)不放回时的样本空间1Ω (2)放回时的样本空间2Ω 解:(1)Ω1={红,白红,白白红,白白白红,白白白白红} (2)Ωn 个 2={红,白红,,白白白红} 5.设样本空间{0,1,2,,9},A Ω=事件={2,3,4},B={3,4,5},C={4,5,6},求: (1)A B (2) ()A B C 解:(1) {2,3,4,5}A B A B A B === (2) ()(){4,5} {0,1,5,6,7,8,9}{4,5} {0,1,4,5,6,7,8,9}A B C A BC A ==== 11.小何买了高等数学、高等代数、解析几何、和大学英语四本书放到书架上,问各册自左向右或自右向左排列恰好是上述次序概率。 解: 214!12P == 15.在整数0-9中,任取4个,能排成一个四位偶数的概率。 解:4105040n A ==,3112 94882296k A C C A =+=

22960.465040k p n ∴= == 14. 设n 个人排成一行,甲与乙是其中的两个人,求这n 个人的任意排列中,甲与乙之间恰有r 个人的概率。如果n 个人围成一圈,试证明甲与乙之间恰有r 个人的概率与r 无关,都是1 1n -(在圆排列中,仅考虑从甲到乙的顺时针方向)。 解:(1)基本事件数为!n ,设甲排在第i 位,则乙排在第i+r+1位, 1,2,,1i n r =--,共1n r --中取法,其余n-2个位置是n-2个人的全排列,有(n-2)!种,甲乙位 置可调换,有12C 种,故有利事件数由乘法原理有 12C (n-r-1)(n-2)!,由古典概型的计算公式,得 1 22(1)(1)C n r P n n --== -(n-r-1)(n-2)!n! 甲乙相邻的概率为: 12(1)!2!C n P n n -== 另解1:先固定甲,有n 种,再放置乙,有n-1,基本事件数有(1)n n -,有利事件 数为2(n-r-1).故有 2(1)(1)n r P n n --= - 另解2:先在甲乙之间选出r 个人,然后将甲乙与这r 个人看成一个整体与剩下的n-r-2个人作全排列. 212212(1)!(1)r n r n n r A A A n r P n n n -------== - (2)环排列:甲乙按顺时针方向排列,中间相隔r 个人的基本事件数是 n 个位置取 2个人的排列,共有2n A 种,而甲的位置选取有n 种选法,故由古典概型的计算有 21 1n n P A n = =- 甲乙相邻的情形:设甲乙合一个位置,甲乙可互换,则甲乙相邻有2(2)!n -种排 列,故 2(2)!2(1)!1n P n n -== --. 另解:一圈有n 个位置,甲占一个后,乙还有n-1个,与甲相邻的共2个,故21P n = -(只考虑乙) 16.口袋内有2个伍分,3个贰分,5个壹分的硬币,任取其中5个,求总值超过一角的概率. 解: 基本事件数为 5 10252n C ==,有利事件数为 1) 2个伍分,其他任意,有23 2856C C = 2) 1个伍分,2个贰分:12223560C C C =

概率论与数理统计初步(第一节随机事件与概率)

第七章 概率论与数理统计初步 第一节 随机事件与概率 1.1 随机试验与随机事件 1.随机现象与随机试验 自然界和社会上发生的现象是多种多样的。有一类现象在一定的条件下必然发生或必然不发生,称为确定性现象。例如,沿水平方向抛出的的物体,一定不作直线运动。另一类现象却呈现出非确定性。例如,向地面抛一枚硬币,其结果可能是“正面向上”,也可能是“反面向上”。又如在有少量次品的一批产品中任意地抽取一件产品,结果可能抽得一件正品,也可能是抽得一件次品。这类现象可看作在一定条件下的试验或观察,每次试验或观察的可能结果不止一个,而且在每次试验或观察前无法事先知道确切的结果。人们发现,这类现象虽然在每次试验或观察中具有不确定性,但在大量重复试验或观察中,其结果却呈现某种固定的规律性,即统计规律性,称这类现象为随机现象。概率论与数理统计就是研究和揭示随机现象统计规律性的一门数学学科。 定义1 在概率统计中,我们把对随机现象的一次观测称为一次随机实验,简称试验。概率论中研究的试验具有如下特点: (1)可以在相同的条件下重复进行; (2)每次试验的结果具有多种可能,并且事先能明确试验的所有可能结果; (3)每次试验之前不能确定该次试验将出现哪种结果。 例1 掷一枚均匀 了,观察出现的点数。试验的所有可能的结果有6个:出现点1,出现点2,出现点3,出现点4,出现点5,出现点6。分别用1,2,3,4,5,6表示。 例2 将一枚均匀的硬币抛掷两次,观察出现正面、反面的情况。试验的所有可能结果有4个:两次都出现正面,两次都出现反面,第一次出现正面而第二次出现反面,第一次出现反面而第二次出现正面。分别用“正正”、“反反”、“正反”、“反正”表示。 2.随机事件 在随机试验中,每一个可能的基本结果称为这个试验的一个基本事件。全体基本事件的集合称为这个试验的样本空间,记为Ω。在例1中,该随机试验有6个基本事件,分别为1,2,3,4,5,6,故该试验的样本空间}6,5,4,3,2,1{=Ω。例2中的样本空间Ω= {“正正”,“反反”,“正反”,“反正”}。 在随机试验中,每一个可能的结果称为随机事件,简称事件,它是由随机试验的样

相关文档
最新文档