混凝土耐久性技术

混凝土耐久性技术
混凝土耐久性技术

混凝土耐久性技术

黄维蓉

重庆交通大学材料实验教学中心

内容

一、概述

二、混凝土碳化

三、混凝土钢筋锈蚀

四、混凝土冻融破坏

五、混凝土化学侵蚀破坏

一、概述(续

1.土木工程结构的安全性

(2构件的整体牢固性

防止自然和人为灾难

1976年唐山地震: 22万座(建筑物80%、25万人死亡1998年长江洪灾: 479万座房屋

1999年綦江彩虹桥整体垮塌: 40人死亡

1.土木工程结构的安全性

(3混凝土材料的耐久性

混凝土与钢筋等结构材料性能劣化混凝土与钢筋等结构材料性能劣化((环境因素环境因素一、概述(续

?单因素作用

冻融冻融、、碳化碳化、、锈蚀锈蚀、、硫酸盐硫酸盐、、碱骨料反应碱骨料反应、、磨损?多因素作用

盐冻破坏盐冻破坏、、含盐环境干湿循环含盐环境干湿循环、、荷载下的耐久性

一、概述(续

2. 混凝土结构的耐久性

(1定义

混凝土耐久性混凝土耐久性::在实际使用条件下抵抗各种环境因素作用在实际使用条件下抵抗各种环境因素作用,,

能长期保持外观的完整性和使用性能的能力

一、概述(续

2. 混凝土结构的耐久性

(2产生耐久性问题的原因

混凝土=人造石人造石::耐久耐久、、实用实用、、价廉

①内在因素

硅酸盐水泥矿相和水化产物硅酸盐水泥矿相和水化产物::高碱高碱、、不稳定混凝土结构混凝土结构::多孔和不均质多孔和不均质,,有害物质容易进入

一、概述(续

2. 混凝土结构的耐久性

(3工程结构工程结构耐久性耐久性耐久性现状现状

混凝土与钢筋等结构材料性能劣化混凝土与钢筋等结构材料性能劣化((环境因素环境因素哈绥高速公路: 1996年亚冬会, 一个冬季破坏

一、概述(续

2. 混凝土结构的耐久性

(3工程结构工程结构耐久性耐久性耐久性现状现状

混凝土与钢筋等结构材料性能劣化混凝土与钢筋等结构材料性能劣化((环境因素环境因素

新疆塔城机场新疆塔城机场::19951995年通航仅半年年通航仅半年年通航仅半年,,跑道严重剥蚀

一、背景(续

2. 混凝土结构的耐久性

(3工程结构工程结构耐久性耐久性耐久性现状现状

混凝土与钢筋等结构材料性能劣化混凝土与钢筋等结构材料性能劣化((环境因素环境因素北京西直门立交桥: 10年后严重剥蚀和锈蚀, 1999年重建

一、背景(续

2. 混凝土结构的耐久性

(3工程结构耐久性现状

二、混凝土碳化

空气空气、、土壤土壤、、水等环境中的酸性气体或液体

侵入混凝土并与水化产物进行中和反应

导致混凝土中导致混凝土中pH pH pH值降低值降低值降低((中性化过程中性化过程

二、混凝土碳化(续

1. 1. 碳化机理碳化机理(1(1水泥水化产物水泥水化产物

Ca(OH2和CSH CSH凝胶凝胶CSH CSH是不稳定的是不稳定的

硅胶硅胶((溶于水溶于水 + + + Ca(OHCa(OH2

二、混凝土碳化(续

2. 2. 影响因素影响因素(1(1材料因素材料因素

①W/C 比: 随W/C 比增大, 碳化增加

二、混凝土碳化(续

2. 2. 影响因素影响因素(1(1材料因素材料因素

②水泥用量: 碳化随水泥用量增加而稍有降低

二、混凝土碳化(续

2. 2. 影响因素影响因素(1(1材料因素材料因素

③水泥品种和外加剂

二、混凝土碳化(续2.

2. 影响因素影响因素

(1(1材料因素材料因素

④强度051015202530354001020304050607080

碳化深度(m m 抗压强度(MPa MPa加掺合料基准

二、混凝土碳化(续

2. 2. 影响因素影响因素

(2(2环境因素环境因素

①相对湿度: 通过液相进行反应(混凝土内部的饱水度(a 湿度很低:CO 2扩散速度↑↑,但缺乏液相进行碳化反应(b 湿度很高:CO 2扩散速度↓↓

二、混凝土碳化(续

2. 2. 影响因素影响因素

(2(2环境因素环境因素

②CO 2浓度

CO 2浓度↑↑混凝土碳化↑↑: X~C 0.5(a 自然环境CO 2浓度: 农村0.03%, 城市0.04%, 室内0.1%(b 碳化试验CO 2浓度:20%

二、混凝土碳化混凝土碳化((续

2. 2. 影响因素影响因素

(2(2环境因素环境因素

③温度

温度↑, 碳化↑(反应和扩散速度反应和扩散速度

(3(3其它因素其它因素

①施工质量

振捣不密实振捣不密实、、蜂窝蜂窝、、微裂纹等导致混凝土碳化↑↑②早期养护条件

湿养护时间对碳化影响很大对碳化影响很大((粉煤灰、矿渣等水泥等水泥矿渣水泥混凝土湿养3d 的碳化比湿养7d 的大50%

二、混凝土碳化(续

3. 3. 碳化产生的影响碳化产生的影响

(1(1素混凝土素混凝土

①力学性能(强度: 明显提高(抗压强度可增加30~70%②孔结构: 总孔隙率明显降低, 孔结构明显粗化③渗透性: 增加

二、混凝土碳化(续

3. 3. 碳化产生的影响碳化产生的影响

(2(2钢筋混凝土钢筋混凝土

①钢筋锈蚀: 碳化因中性化将钢筋钝化膜破坏而增加锈蚀②渗透性: 因碳化增加渗透性, 有害物质更容易进入

三、钢筋混凝土锈蚀

三、钢筋混凝土锈蚀钢筋混凝土锈蚀((续

1.1.钢筋锈蚀产生的必要条件钢筋锈蚀产生的必要条件●钢筋表面钝化膜破坏(先决条件条件●

有氧气存在●有水存在

三、钢筋混凝土锈蚀(续

2.2.钢筋锈蚀机理钢筋锈蚀机理

三、钢筋混凝土锈蚀(续

2.2.钢筋锈蚀机理钢筋锈蚀机理

三、钢筋混凝土锈蚀(续

3.3.钢筋锈蚀的后果钢筋锈蚀的后果

三、钢筋混凝土锈蚀(续

4. Cl -离子引起的钢筋锈蚀(1(1Cl Cl -离子浓度

●缺乏Cl -离子时离子时::pH ≥11.5,钢筋钝化膜是稳定的●当Cl -离子存在时离子存在时::钢筋钝化膜很容易破坏(2混凝土中Cl -离子的来源①原材料引入

②环境中扩散和渗透进入(3混凝土中Cl -离子的扩散

(4影响Cl -离子进入混凝土中的因素●W/C 比●水泥成分●掺合料种类

三、钢筋混凝土锈蚀钢筋混凝土锈蚀((续

5.影响混凝土钢筋锈蚀的因素

三、钢筋混凝土锈蚀钢筋混凝土锈蚀((续

5.影响混凝土钢筋锈蚀的因素

(1 材料参数②水泥中C 3A 含量

三、钢筋混凝土锈蚀钢筋混凝土锈蚀((续

5.影响混凝土钢筋锈蚀的因素

(1 材料参数③掺合料

三、钢筋混凝土锈蚀钢筋混凝土锈蚀((续

5.影响混凝土钢筋锈蚀的因素

(2 其它参数①Cl -离子浓度

三、钢筋混凝土锈蚀钢筋混凝土锈蚀((续

5.影响混凝土钢筋锈蚀的因素

(2 其它参数②饱水度

三、钢筋混凝土锈蚀钢筋混凝土锈蚀((续

5.影响混凝土钢筋锈蚀的因素

三、钢筋混凝土锈蚀钢筋混凝土锈蚀((续

四、混凝土冻融和盐冻破坏混凝土冻融和盐冻破坏((续

1.1.破坏机理破坏机理

冻融和盐冻破坏的根本原因冻融和盐冻破坏的根本原因::混凝土有可冻水* 混凝土不含水或很少时:不会因冻融而破坏* 混凝土长期冻结混凝土长期冻结::一般破坏很小

四、混凝土冻融破坏混凝土冻融破坏((续

1.1.破坏机理破坏机理

(1 普通冻融破坏

* 水结冰产生9.1%的体

* 在约束条件下: 水结* 结冰压随着

四、混凝土冻融破坏混凝土冻融破坏((续

1.1.破坏机理破坏机理

①静水压理论(POWERS

* 水结冰产生9%体积膨胀:使未结冰的孔溶液向外迁移* 当迁移受阻:产生静水压P 静水

浅谈高耐久性混凝土的配制

浅谈高耐久性混凝土的配制 介绍混凝土高耐久性指标和要求,从原材料选择、配合比设计方面阐述高耐久混凝土的配制和质量控制思路。 标签:混凝土高耐久性配制 从上世纪中期以来,混凝土成为了使用最广泛的建筑材料之一。以往工程中都比较重视混凝土的强度而容易忽视混凝土的耐久性,但调查显示[1~5],许多国家的混凝土构筑物都受到不同程度的侵蚀与破坏,严重的导致强度下降,结构破坏甚至倒塌。采用高性能混凝土替代传统混凝土结构物和建筑,改善混凝土耐久性能,延长混凝土构筑物使用寿命,研制并应用高耐久混凝土,不仅能够大大提高项目的投资效益,而且功在当代,利在千秋,具有深远的经济效益和社会效益。 1 混凝土高耐久性的指标和要求 1.1 考虑当地环境要素,为确保混凝土构筑物100年设计使用寿命的要求,依据环境作用等级,确定混凝土耐久性所涉及到的抗冻、碱集料反应等的设计指标为:①混凝土56d电通量:C35~C45<1500库仑;C50<1000库仑。②混凝土的抗冻等级(56d)≥F300。③混凝土的抗裂性应通过对比试验。④混凝土首选非碱活性骨料。若使用碱活性骨料,混凝土中的最大碱含量为3.0kg/m3。 1.2 高耐久性混凝土要求的原材料品质、配合比参数限值如下:①混凝土强度等级≥C35。②严格控制水泥用量:C35胶凝材料用量≥320kg/m3、≤400kg/m3,水胶比≤0.5;C40水胶比≤0.45;C50水胶比≤0.36。③混凝土中的最大氯离子含量为0.08%。④大体积混凝土避免采用高水化热水泥,优先采用双掺技术。 2 高耐久混凝土的配制思路 针对混凝土的耐久性指标和要求,应以配合比设计为重点,尽可能降低混凝土的单位用水量,实现低水胶比和低浆体用量[6],并将单位用水量作为控制混凝土耐久性的一项首要控制手段,贯穿于混凝土生产的过程控制和施工管理。如下分别从原材料选择、配合比设计方面阐述高耐久混凝土的配制和质量控制。 2.1 原材料优选 2.1.1 水泥。细颗粒较多的水泥,水化后在混凝土内部产生微小毛细孔,可以使有害孔隙减小,从而提高混凝土的抗渗性,但需注意水泥细度的增加对降低水灰比不利,使混凝土抗裂性下降。配置混凝土时,优先采用水化热低的普通硅酸盐水泥。对水泥技术指标的要求:除基本技术指标满足国家标准(GB175-2007)对普通硅酸盐水泥的要求外,在细度上要求水泥不宜过细。此外还控制对体积安定性有较大影响的游离石灰、三氧化硫和氧化镁的含量,以及水化速度快、水化

相关高性能混凝土方面的问题

高性能混凝土 简介 高性能混凝土(High performance concrete,简称HPC)是一种新型高技术混凝土,是在大幅度提高普通混凝土性能的基础上采用现代混凝土技术制作的混凝土。它以耐久性作为设计的主要指标,针对不同用途要求,对下列性能重点予以保证:耐久性、工作性、适用性、强度、体积稳定性和经济性。为此,高性能混凝土在配置上的特点是采用低水胶比,选用优质原材料,且必须掺加足够数量的矿物细掺料和高效外加剂。 定义 1950年5月美国国家标准与技术研究院(NIST)和美国混凝土协会(ACI)首次提出高性能混凝土的概念。但是到目前为止,各国对高性能混凝土提出的要求和涵义完全不同。 美国的工程技术人员认为:高性能混凝土是一种易于浇注、捣实、不离析,能长期保持高强、韧性与体积稳定性,在严酷环境下使用寿命长的混凝土。美国混凝土协会认为:此种混凝土并不一定需要很高的混凝土抗压强度,但仍需达到55MPa以上,需要具有很高的抗化学腐蚀性或其他一些性能。 日本工程技术人员则认为,高性能混凝土是一种具有高填充能力的的混凝土,在新拌阶段不需要振捣就能完善浇注;在水化、硬化的早期阶段很少产生有水化热或干缩等因素而形成的裂缝;在硬化后具有足够的强度和耐久性。 加拿大的工程技术人员认为,高性能混凝土是一种具有高弹性模量、高密度、低渗透性和高抗腐蚀能力的混凝土。 综合各国对高性能混凝土的要求,可以认为,高性能混凝土具有高抗渗性(高耐久性的关键性能);高体积稳定性(低干缩、低徐变、低温度变形和高弹性模量);适当的高抗压强度;良好的施工性(高流动性、高粘聚性、自密实性)。 中国在《高性能混凝土应用技术规程》(CECS207-2006)对高性能混凝土定义为:采用常规材料和工艺生产,具有混凝土结构所要求各项力学性能,具有高耐久性、高工作性和高体积稳定性的混凝土。 高性能混凝土的技术路线 高性能混凝土是由高强混凝土发展而来的,但高性能混凝土对混凝土技术性能的要求比高强混凝土更多、更广乏,高性能混凝土的发展一般可分为三个阶段:

提高混凝土结构耐久性的技术措施

提高混凝土结构耐久性的技术措施 混凝土结构的设计寿命要求一般为40~50年,有的要求上百年。而现实中,处于腐蚀环境中的混凝土远远达不到设计寿命要求,有的在15~20年就出现了钢筋锈蚀破坏,甚至不足五年就开始修复。此方面的花费是惊人的,已经是一个重大经济问题。因此,提高混凝土结构耐久性的意义是不言而喻的。 提高混凝土结构耐久性措施主要包括两大类:基本措施和补充措施。基本措施的基本内容是:通过仔细设计与施工,最大限度地提高混凝土本身的耐久性,在使用中保持低渗透性,以限制环境侵蚀介质渗透混凝土,从而预防钢筋锈蚀。 ①最大限度地改善混凝土本身性能,是提高混凝土结构耐久性的许多措施中最经济合理的。 (1)结构采用耐久性设计。 (2)提高混凝土保护层厚度和质量。 (3)采用高性能混凝土。 ②补充措施是指:环境侵蚀作用特别严重时,或设计、施工不当,单靠上述基本措施还不能保护混凝土结构必要的耐久性时,需要另外增加的其他防护措施。有以下几方面: (1)采用耐腐蚀钢筋。 (2)对混凝土进行表面处理。 (3)混凝土中掺加阻锈剂。 (4)电化学保护

结构设计 1、结构选型和细部设计 频繁地干温交替会加剧钢筋锈蚀,所以在结构选型和细部设计时,应昼限制混凝土表面、接缝和密封处积水,加强排水,尽量减少受潮和溅湿的表面积。 由于环境侵蚀介质在构件棱角或突出部分可以同时从多方面侵入混凝土,而凹入部分易积存侵蚀介质、应力异常,因此从提高混凝土结构耐久性角度出发,混凝土构件选型应力戒单薄、复杂和多棱角。预计腐蚀破坏严重的构件应便于检测、维护和更换。 2、控制裂缝 不可控制的裂缝包括混凝土塑性收缩、沉降或过载造成的裂缝,常为较宽的裂缝,应针对成因采取措施预防开裂,即使难以预料也应加以引导,使其发生于次要部位或便于处理的位置。 可控制裂缝是靠传统的结构设计知识,按结构几何尺寸与荷载可以合理预防和控制的裂缝。 七、提高海工混凝土耐久性的技术措施 国内外相关科研成果和长期工程实践调研显示,当前较为成熟的提高海洋钢筋混凝土工程耐久性的主要技术措施有: (1)高性能海工混凝土 其技术途径是采用优质混凝土矿物掺和料和新型高效减水剂复合,配以与之相适应的水泥和级配良好的粗细骨料,形成低水胶比,低缺陷,高密实、高耐久的混凝土材料。高性能海工混凝土较高的抗

乌鲁木齐市高性能混凝土相关技术要求

乌鲁木齐市高性能混凝土相关技术要求 一、原材料 1.1 水泥 1.1.1在一般情况下,配制高性能混凝土必须选用硅酸盐水泥(P.Ⅰ型、P.Ⅱ型)或普通硅酸盐水泥(P.O型),不得使用P.SA、P.SB、P.P、P.F、P.C等种类的水泥。选用的水泥应符合现行国家标准《通用硅酸盐水泥》(GB175-2007)的规定,且其比表面积应小于380m2/kg。 1.l.2配制C80及其以上强度的高性能混凝土,应选用强度等级不低于5 2.5MPa的水泥。 1.1.3根据《抗硫酸盐硅酸盐水泥》(GB748-1996),对混凝土所处环境水中SO42-浓度高于20250mg/L或环境土中SO42-浓度高于30000mg/L的高性能混凝土,宜采用高抗硫酸盐硅酸盐水泥+辅助胶凝材料的形式或直接使用)中硫铝酸盐水泥(《硫铝酸盐水泥》,GB 20472-2006)的方式解决,其他情况下建议使用普通硅酸盐水泥+辅助胶凝材料的方法解决。具体配合比需满足本文 2.4条的规定。 1.1.4 根据《中热硅酸盐水泥、低热硅酸盐水泥、低热矿渣硅酸盐水泥》(GB200-2003),对于水化热或绝热温升要求很低的大体积高性能混凝土,可以选用中低热硅酸盐水泥。 1.1.5 由于骨料资源条件所限,不得已使用高碱活性骨料(即《普通混凝土长期性能或耐久性能试验方法标准》GB/T50082-2009碱-骨料反应实验中,当52周的测试龄期内,膨胀率超过0.04%时,或《普通混凝土用砂、石质量及检验方法标准》JGJ52-2006碱活性试验快速法中,当14天膨胀率大于0.20%,引起AAR)时,可选用低碱水泥。水泥中的碱含量应不大于0.60%或由买卖双方协商确定。

耐久性分析

三亚市凤凰水城道路工程桥梁结构耐久性设计的探讨 赵巍 (上海市政工程设计研究总院海南分院海口) 摘要:随着国际旅游岛的建设和发展,海南的城市建设在相当一段时期内成为行业内人士 关注的热点。桥梁作为城市建设的重要组成部分,其耐久性也成为海南国际旅游岛长期稳 定发展不容忽视的影响因素。本文以三亚凤凰路桥梁设计为依托,分析了影响桥梁结构耐 久性的因素,从设计角度提出了桥梁在耐久性方面的设计原则和改进方向。 关键字:桥梁设计耐久性腐蚀 1. 前言 混凝土结构是世界上应用最为广泛的结构形式之一。长期以来,由于“重强度薄耐久”设计思想的影响,我国某些地区已建的部分钢筋混凝土桥梁在服务一段时间后,出现了结构开裂、膨胀,钢筋锈蚀,混凝土老化、疏松等等的缺陷和问题。这些耐久性问题的出现从表面看不影响结构的稳定,但如不加维修任其发展,则将直接影响到结构的安全度,特别是近一两年,一些桥梁重大事故的发生,给国民经济和人民生命财产造成了重大的损失。因此,桥梁在设计过程中,一定要注重耐久性的设计。目前我国正处于桥梁等基础设施建设的高峰时期,特别是海南地区国际旅游岛的建立,将有大量的待建桥梁及建筑设施面临着如何确保寿命周期的耐久、安全和经济的严峻问题,关于桥梁耐久性问题的研究十分紧迫并且具有现实的意义。 2. 耐久性的定义 依据桥梁的重要性、使用期限、所处工作环境等因素考虑,提出了耐久性设计的概念。结构耐久性是指结构在可能引起其性能变化的各种作用(荷载、环境、材料内部因素等)下,在预定的使用年限和适当的维修条件下,能够长期抵御性能劣化的能力。 结构耐久性对于桥梁的安全运营和经济性起着决定性作用。混凝土结构因耐久性差等原因造成的负面影响和经济损失,近年来引起了越来越多的学者和工程技术人员的关注。2004年,交通部颁布《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTGD62-2004),明确提出了桥梁100年设计基准期的要求。2006年9月交通部出台了《公路工程钢筋混凝土结构防腐蚀技术规范》(JTG/TB07—01-2006),2006年10月天津市出台了《天津市钢筋混凝土桥梁耐久性设计规程》(DB/T29-165-2006),这些规程和规范的颁布实施,对保障桥梁耐久性起到了指导性作用。 规范提出:混凝土结构除承受荷载的作用外,同时要承受环境因素的作用。荷载与各

耐久性混凝土施工方案

混凝土施工方案 1?范围 本方案囊括了满足铁路客运专线工程结构耐久性要求的混凝土 技术要求,施工控制要点等。 本施工方案适用于客运专线新建桥梁、隧道、涵洞、轨道、路基支挡等结构混凝土。 2?规范性引用文件 铁路工程施工技术指南TZ210-2005 客运专线高性能混凝土暂行技术条件 3?混凝土的耐久性指标 混凝土的耐久性指标一般是指混凝土的抗烈性、护筋性、耐蚀性、耐磨性及抗碱-骨料反应等。具体的混凝土耐久性指标应根据结构的设计使用年限、所处的环境类别及作用等级等确定。 3.1混凝土耐久性的一般要求: 1?混凝土的电通量: 32 混凝土应进行抗裂形对比试验。

33钢筋混凝土保护层厚度应满足设计规定。 34混凝土的抗碱-骨料反应性能应符合下列规定: 混凝土最大碱含量 (1).骨料的碱一硅酸反应砂浆棒膨胀率或碱一碳酸盐反应岩石柱膨胀率应小于0.10%; (2)当骨料的碱一硅酸反应砂浆棒膨胀率在0.10?0.20 %时,混凝土碱含量应满足上表的规定;当骨料的碱一硅酸反应砂浆棒膨胀率在 0.20?0.30 %时,除了要满足上表的规定外,还应在混凝土中掺加具有明显抑制效能的矿物掺合料和复合外加剂,并经试验证明其有效。 4?混凝土的施工工序:

5?耐久性混凝土施工步骤: 5.1施工前的准备 5.1.1混凝土正式施工前,施工单位应完成原材料的选定、复检工作,并应充分考虑试验周期和可能出现的原材料变化,尽早完成混凝 土配合比工作的选定工作。 5.1.2重要混凝土结构施工前应进行混凝土浇筑,以便对混凝土配合比、施工工艺、施工机具的适应性进行检验,对有代表性的混凝土结构内部混凝土温升过程进行测定,发现问题及时调整。 5.2原材料的储存与管理 521混凝土原材料进厂(场)后,应对原材料的品种、规格、数

高耐久性混凝土

高耐久性混凝土施工技术 高耐久性混凝土程混凝土施工具有配合比设计难度大、施工控制要求高等特点。因此,从原材料、混凝土配置关键环节、配合比设计三个方面进行配合比试验,并从把握原材料质量、计量、搅拌、振捣与抹面和养护等方面介绍施工控制措施。 一、高耐久性混凝土配制关键环节 对高耐久性混凝土的要求很高,其所处环境及工程的特点又有许多不利因素,超出了现行的一般规范标准。耐久混凝土的配合比设计应采用试验-计算的方法。 二、高耐久性混凝土配合比设计 1、混凝土原材料选择 对于高耐久性混凝土水泥、水、骨料、外加剂应符合现行国家标准,同时符合设计要求。 2、配合比计量 经过实验室试验确定试验设计配合比。由国家建筑材料质量监督检验测试中心对混凝土配合比试验。在施工过程中采取如下控制配合比计量措施:1)由检测机构对搅拌站的计量器具进行测试,确保测试合格,出具检测报告; 2)施工过程中派遣两名经验丰富、责任心比较强的质量检查员,进驻搅拌站,进行旁站计量,适时测试砂石子的含水率,及时调整施工配合比,确保计量准确,配比正确; 3)认真进行开盘鉴定,每调整一次施工配合比,必须进行一次开盘鉴定。 三、高耐久性混凝土施工过程管理

混凝土采用预拌混凝土,混凝土罐车运输至施工现场,汽车泵泵送混凝土到浇筑地点。 1、原材料控制 实际使用的各种原材料必须与配合比设计相一致。材料进场后,按材料控制程序进行登记,并收集、保留相关资料。所有原材料做到先检后用;集料堆放场地先硬化、分仓,后堆放原材料;粗骨料按要求分级采购、分级运输、分级堆放、分级计量,并对其检验状态进行标识;胶凝材料、外加剂储存罐采用顶部搭设遮阳棚和四周棉被包裹防晒。骨料在使用前必须进行筛洗,严格控制含泥量、级配,并用钢结构雨棚覆盖,降低集料的含水量差异和温度。 2、拌合过程控制 依据试验配合比和施工配合比,核查各种材料质量、搅拌设备系统及仪表精度。对微机控制搅拌站计量参数资料要及时分析,动态校正计量。验证混凝土的和易性、可泵性,测试坍落度。 混凝土搅拌工艺:细骨料、水泥、粉煤灰、外加剂(第一搅拌阶段)→加水(第二搅拌阶段)→加粗骨料(第三搅拌阶段)→搅拌出料。搅拌时按上述顺序投料。每一搅拌阶段不少于30s,总搅拌时间为3min。拌制第一盘混凝土时,增加水泥和细骨料用量10%,保持水胶比不变以便搅拌机持浆。操作手进行岗前培训,持证上岗。拌合时,有技术人员在搅拌站全过程值班,随时处理出现的各种情况。 3、运输及泵送过程控制 本工程混凝土运输采用混凝土输送泵泵送和混凝土搅拌车运输两种形式。混凝土搅拌车通过施工道路运输,要求保持运输混凝土的道路平坦畅通,保证混凝土在运输过程中保持均匀性,运到浇筑地点时不分层、不离析、不漏浆,并应

耐久性混凝土质量保证措施

耐久性混凝土质量保证措施 制定关键工序的质量控制措施:搅拌工序、运输工序、浇筑工序、振捣工序、养护工序。 耐久混凝土施工前,事先确定并培训专门从事耐久混凝土关键工序过程施工的操作人员和记录人员。 混凝土搅拌过程中,每一工作班正式称量前,对计量设备进行零点校核。定期或随时(雨天)测定骨料的含水率,每一工作班不少于二次。当含水率有显著变化时,增加测定次数,并依据检测结果及时调整用水量和骨料用量。搅拌耐久混凝土时,先向搅拌机中投入细骨料、水泥和矿物掺和料,搅拌均匀后,加水并将其搅拌成砂浆,再向搅拌机投入外加剂,充分搅拌后,再投入粗骨料,并继续搅拌均匀为止。上述每一投料阶段的搅拌时间不少于30s,总搅拌时间不少于3min。原材料的投放顺序及混凝土的搅拌时间严格执行,不无故更改,未经批准不得任意延长和缩短搅拌时间。 耐久混凝土运输设备能确保浇筑工作连续进行,其运输能力与搅拌设备的搅拌能力配合适宜。确保运输设备不漏浆和不渗水。在运输混凝土过程中,保持混凝土的均匀性,做到不分层、不离析、不漏浆。泵送施工根据施工进度安排,加强组织和调度工作,确保连续均匀供料。 浇筑前,仔细检查保护层垫块的位置、数量及其紧固程度,并指定专人作重复性检查。保护层垫块的尺寸保证钢筋混凝土保护层厚度的准确性,其形状(工字形或锥形)有利于钢筋的定位。混凝土的入模温度视气温而调整,一般不超过25℃。对于构件最小断面尺寸在300mm以上的结构,尽可能降低混凝土的入模温度。负温气候条件下施工时,混凝土的入模温度不低于12℃。控制新浇混凝土

与邻接的己硬化混凝土介质间的温差不大于20℃。 预应力混凝土梁体采用快速、稳定、连续、可靠的浇筑方式一次浇筑成型。 采用插入式高频振捣器时,采用垂直点振方式振捣。每点的振捣时间以表面泛浆或不冒大气泡为准,一般不超过30s,避免过振。振捣按规定的工艺设计路线和方式进行,防止随意加密振点和漏振及任意延长同一振点的振捣时间。 混凝土振捣完毕后,立即对暴露面混凝土进行覆盖,并及时采取适当的保温保湿养护措施对混凝土进行养护。 对采用带模养护的混凝土结构,保证模板按接缝处混凝土不失水干燥。新浇立面混凝土振捣24~48h后且强度发展至对结构安全性无不利影响时,可略微松开模板,并浇水养护7d以上。对于具有大面积暴露面的结构,振捣结束后,立即将暴露面混凝土抹平,再用土工布、草帘等覆盖后,及时采取洒水喷雾等保湿措施养护14d以上,以减少混凝土的暴露时间,防止表面水分过分蒸发。混凝土拆模后,迅速采用土工布、草帘等将暴露面混凝土进行覆盖,并采取切实措施,保证混凝土表面保持潮湿状态,然后再用塑料布将土工布、草帘等保湿材料包裹完好,进一步对混凝土进行养护28d以上。保护覆盖物完好无损,且彼此搭接完好,其内表面具有凝结水珠。混凝土养护期间,选择有代表性的结构进行温度监控,定时测定混凝土芯部温度、表层温度以及环境气温、相对湿度、风速等环境参数,并根据混凝土温度和环境参数的变化情况及时调整养护制度,严格控制混凝土内外温差满足规范的要求。

高性能混凝土的耐久性技术分析2

高性能混凝土的耐久性技术分析 韩韶硕方0708-3 17号 摘要:介绍了混凝土耐久性破坏的主要因素以及提高其耐久性的途径,从氯离子的扩散性、胶凝材料与集料的界面结构、胶凝材料的水化热及矿物细掺料协调混凝土的膨胀与强度的发展等方面对高性能混凝土的耐久性进行了分析,以推广高性能混凝土的应用。 关键词:高性能混凝土,耐久性,膨胀剂,矿物细掺料 0 引言 高强混凝土[1]是指用常规的水泥、砂石作为原材料,使用常规的工艺生产配置,主要靠外加高效减水剂或同时掺加一定数量的活性矿物材料,使拌合料具有良好的工作性,并在硬化后具有高强性能现代混凝土。高强混凝土于1964年首先在日本兴起的。由于现代混凝土克服了以往不能预拌生产和泵送施工等问题,所以很快在世界各地推广应用。 1. 材料 1.1水泥 高性能混凝土所用的水泥要求质量稳定、需水量低、活性较高,且具有良好的流变性能[2]。一般来说,高性能混凝土必须使用525号以上的普通硅酸盐水泥或中热硅酸盐水泥。C50~C55的高强混凝土采用优质砂石集料时,依托高效减水剂和掺合料,采用425号水泥是完全可以制得的,而C60及以上的高性能混凝土采用525号水泥为宜。 1.2集料 配置高强混凝土的集料与普通混凝土的要求不同,集料本身水化热,7 d龄期时各双掺试样水化热大于对应单掺试样的水化热。试验数据表明,低钙粉煤灰较磨细矿渣具有更好的降低水化热的效果,而高钙粉煤灰由于具有较高活性,较磨细矿渣的水化热要高;这个规律在CSA存在时及CSA与细掺料复掺情况下仍然成立。双掺膨胀剂与细掺料不仅能降低体系总的水化热,特别是可以较大幅度地降低体系的早期水化热,降低了混凝土的温升和内外温差,同时在混凝土内部形成的膨胀应力又可以在一定程度上补偿混凝土的冷缩,从而形成“抗放兼施”的对于大体积混凝土的裂缝控制措施,这对早期的水化热控制和温度裂缝控制无疑是有好处的。 2混凝土耐久性破坏的主要因素 混凝土耐久性主要是指混凝土建筑物在使用期间抵抗环境介质的侵蚀而导致混凝土结构丧失安全使用功能的能力。由于环境介质的不同遭破坏的主要因素有:碳化作用、钢筋锈蚀、硫酸盐侵蚀、碱骨料反应、冻融循环、延迟钙矾石形成、火灾等。事实上混凝土结构物的破坏往往不是单一因素造成的,而常常是多种因素复合作用结果。因此,混凝土耐久性问题应根据其环境与条件综合分析、预防、处理。 3提高混凝土耐久性的主要途径 提高混凝土耐久性的主要途径有两个方面:1)提高混凝土抵抗侵蚀性介质进入其内部的能力即低渗透性;2)提高混凝土结构内部主要组分在侵蚀介质作用下的稳定性即尺寸稳定性。几乎所有耐久性问题最终均可归结为混凝土材料的渗透性和尺寸稳定性。 4 高性能混凝土的耐久性技术分析 4.1大大提高混凝土的抗渗透性 影响混凝土耐久性的各种破坏过程几乎都与水有密切的关系,因此,混凝土的抗渗透性被认为是评价混凝土的耐久性的重要指标。侵蚀性离子在混凝土中的传输严重影响着混凝土的耐久性,最典型的为氯离子,其在钢筋和混凝土界面的富集会导致钢筋腐蚀,因而侵蚀性氯离子的扩散系数是用来评价高性能混凝土渗透性以至耐久性的重要参数之一。通过试验和分析

混凝土耐久性

混凝土耐久性 混凝土是水利水电工程建设及其它建筑工程中用途最广,用量最大的建筑材料之一。混凝土的强度和耐久性是混凝土结构的两个重要指标,在设计施工中往往把混凝土的抗压强度作为主要技术指标而对混凝土的耐久性重视不够。混凝土的耐久性是指组成混凝土的材料在长期使用过程中,抵抗其自身及环境因素长期破坏作用,保持其原有性能而不变质、不破坏的能力,主要指抗渗性、抗冻性、抗碳性、抗化学侵蚀及碱集料反应等。以下根据国内外已有研究成果对混凝土各项耐久性能指标的影响进行评述。 1. 混凝土工程耐久性不足的后果 混凝土因其工程量大,将会因耐久性不足对未来社会造成极为沉重的负担。据美国一项调查显示,美国的混凝土基础设施工程总价值约为6万美元,每年所需维修费或重建费用约3千亿美元。美国50万座公路桥梁中20万座已损坏,平均每年有150~200座桥梁部分或完全坍塌,寿命不足20年;美国共建有混凝土水坝3000座,寿命30年,其中32%的水坝年久失修。美国对二战前后修建的混凝土工程,在使用30~50年后进行加固维修所投入的费用,约占建设总投资的40%~50%以上。中国50~60年代所建设的混凝土工程已使用40余年,如果我国混凝土工程的平均寿命30~50年计,在今后的10~30年内,为了维修建国以来所建基础设施的费用,将是极其巨大的。 日前,我国的基础设施建设工程规模宏大,每年高达2万亿元人民币以上,约30~50年后,这些工程也将进入维修期,所需的维修费用或重建费将更巨大。作为21世纪的高性能混凝土,更要从提高混凝土耐久性入手,以降低巨额的维修和重建费用。 2. 影响混凝土耐久性的因素 2.1混凝土的抗渗性。 混凝土的抗渗性,指混凝土抵抗压力水渗透的能力。混凝土阻碍液体向其内部流动的能力越好,混凝土的抗渗性越好。混凝土的耐久性与水和其它有害化学液体流入其内部的数量、范围等有关,因此抗渗性能高的混凝土,其耐久性就高。 2.2混凝土的冻融破坏。 当结构处于冰点以下环境时,部分混凝土内空隙中的水将结冰,产生体积膨胀,过冷的水发生迁移,形成各种压力,当压力达到一定程度时,导致混凝土的破坏。混凝土的抗冻性能与混凝土内部的气孔结构和气泡含量多少密切相关。气孔越少越小,破坏作用就越小,封闭气泡越多,抗冻性就越好。影响混凝土抗冻性的因素,除了气孔结构和含气量外,还与混凝土的饱和度、水灰比、混凝土的龄期、集料的空隙率及其间的含水率有关。 2.3混凝土的碳化。混凝土的碳化,是指混凝土中的Ca(OH)2与空气中的CO2起化学反应,生成中性的碳酸钙CaCO3。未碳化的混凝土呈碱性,混凝土中钢筋保持钝化最低(临界)碱度是PH值为11.50,碳化后的混凝土PH值为8.50~9.50。碳化使混凝土的碳度降低,同时,增加混凝土孔隙溶液中氢离子数量,使混凝土对钢筋的保护作用减弱。当碳化超过混凝土的保护层时,在水与空气存在的条件下,就会使混凝土失去对钢筋的保护作用,钢筋开始生锈。钢筋锈蚀后,锈蚀产生的体积比原来膨胀2~4倍,从而对周围混凝土产生膨胀应力,锈蚀越严重,铁锈越多,膨胀力越大,最后导致混凝土开裂形成顺筋裂缝。裂缝的产生使水和CO2得以顺利的进入混凝土内,从而加速了碳化和钢筋的锈蚀。 2.4混凝土侵蚀性。 当混凝土结构处在有侵蚀性介质作用的环境时,会引起水泥石发生一系列化学-物理和物理-化学变化,而逐步受到侵蚀,严重的使水泥石强度降低,以至破坏。常见的化学侵蚀可分为淡水腐蚀、一般酸性水腐蚀、碳酸腐蚀、硫酸盐腐蚀、镁盐腐蚀五类。淡水的冲刷,会溶解水泥石中的组分,使用使水泥石孔隙增加,密实度降低,造成对水泥石的破坏,因此,淡水冲刷会对水工建筑有一定影响;当水中溶有一些酸类时,水泥石就会受到溶淅和化学溶

高性能混凝土论文

试论高性能混凝土 姓名:*** 学院:************ 学号:**********

摘要 , 高性能混凝土是一种是以耐久性为主要指标同时具备高强、高早强、高施工性等优异性能的新型混凝土。应该通过制备的科学性以及提高浇筑、捣实等施工方法和工艺来提高混凝土的高施工性、高强度和体积稳定性从而提高道路桥梁的使用寿命和整体经济效益。 The high-performance concrete is based on durability as the main indicators, alongwith highstrength,high early strength, high workability andexcellent performanceofnew concrete.Through the preparation ofthe scientific and improve the casting, to trace the actualconstruction methods andprocess to improve concrete construction,high strengthand volumestability, therebyenhancing thelife and the overall economicbenefitsof roads and bridges. 关键字:高强、高性能混凝土 1 高性能混凝土的定义 高性能混凝土(HighPerformance Concrete,简称HPC)是在高强度混凝土(High Strength Concrete,简称HSC)的基础上发展起来的。在不同国家,甚至是同一国家的不同应用部门,对高性能混凝土的定义都有差别。美国和加拿大的学者认为高性能混凝土应该是高耐久性的,而不仅仅是高强度;除了强度之外,高耐久性还应包括高的体积稳定性、低渗透性和高工作性。日本学者更重视混凝土的工作性,认为高流态、免振自密实混凝土就是高性能混凝土。英国和北美学者则更重视混凝土的强度。 综合分析各种观点,我国学者提出:高性能混凝土是在大幅度提高常规混凝土性能的基础上采用现代(先进的预拌)混凝土技术,选用优质原材料,除水泥、水、集料外,必须掺加足够数量的活性细掺料和高效外加剂的一种新型高技术混凝土。高性能混凝土应具有几种性能:耐久性、工作性及各种力学性能。 但目前,高性能混凝土的概念又有了新的变化,清华大学冯乃谦教授提出普通混凝土也可能高性能化,其研究成果在工程实际中也得到了应用。因此,高性能混凝土并不一定强调高强,还包括普通混凝土的高性能化。 2 高性能混凝土产生的背景 传统的混凝土虽然已有近200 年的历史,也经历了几次大的飞跃,但今天却面临着前所未有的严峻挑战: (1)随着现代科学技术和生产的发展,各种超长、超高、超大型混凝土构筑物,以及在严酷环境下使用的重大混凝土结构,如高层建筑、跨海大桥、海底隧道、海上采油平台、核反应堆、有毒有害废物处置工程等的建造需要在不断增加。 这些混凝土工程施工难度大,使用环境恶劣、维修困难,因此要求混凝土不但施工性能要好,尽量在浇筑时不产生缺陷,更要耐久性好,使用寿命长。 (2) 进入20世纪70年代以来,不少工业发达国家正面临一些钢筋混凝土 结构,特别是早年修建的桥梁等基础设施老化问题,需要投入巨资进行维修或更新。1987 年美国国家材料咨询局的一份政府报告指出:在美国当时的57.5

提高混凝土耐久性的技术措施

提高混凝土耐久性的技术措施 前言 混凝土耐久性是指结构在规定的使用年限内,在各种环境条件作用下,不需要额外的费用加固处理而保持其安全性、正常使用和可接受的外观能力。现行国家标准《混凝土结构设计规范》(GB50010-2002)中,明确规定混凝土结构设计采用极限状态设计方法。混凝土耐久性与诸多因素有关,但在很大程度上取决于施工过程中的质量控制和质量保证以及结构使用过程中的正确维修与例行检测。就本文而言,重在从施工过程控制的方面来保证混凝土的耐久性,即根据混凝土结构所处的环境作用等级进行混凝土原材料选择、配合比选配,并加强施工工艺控制,特别是混凝土养护的温度、湿度控制等。 1 原材料选用 水泥 采用品质稳定、强度等级不低于级的低碱硅酸盐水泥或低碱普通硅酸盐水泥(掺合料仅为粉煤灰或磨细矿碴),禁止使用其它品种水泥。品质应符合GB175-2007规定:水泥的比表面积不宜超过350m2/kg,碱含量不应超过%,游离氧化钙含量不应超过%,水泥熟料中C3A 的含量不宜超过8%(强腐蚀环境下不应大于5%),C4AF含量小于7%、C3S、C2S含量宜在40%~45%之间的水泥。 粗骨料 选用质地坚硬、级配良好的石灰岩、花岗岩、辉绿岩等球形、吸水率低、空隙率小的碎石,压碎指标不大于10%,母岩立方体抗压强度与梁体混凝土设计强度之比应大于2,含泥量小于%,针、片状颗粒含量不大于5%,颗粒尽量接近等径状。粗骨料粒径宜为5~20mm,且分两级储存、运输、计量,5~10mm颗粒质量占(40±5)%,10~20mm颗粒质量占(60±5)%。选用无碱活性粗骨料(因条件所限不得不采用碱—硅酸反应砂浆棒膨胀率为~%的活性骨料时,由各种原材料带入混凝土中的总碱量不应超过3.0kg/m3)。 细骨料 细骨料应选择级配合理、质地均匀坚固的天然中粗砂(不宜使用机制砂和山砂,严禁使用海砂),细度模数~。严格控制云母和泥土的含量,砂的含泥量应不大于%,泥块含量应不大于%,选用无碱活性细骨料(因条件所限不得不采用碱—硅酸反应砂浆棒膨胀率为~%的活性骨料时,由各种原材料带入混凝土中的总碱量不应超过3.0kg/m3)。 矿物掺合料 适当掺用优质Ⅰ级粉煤灰、磨细矿渣、微硅粉等矿物掺合料或复合矿物掺合料,Ⅰ级粉

浅谈高性能混凝土耐久性的特点及应用

浅谈高性能混凝土耐久性的特点及应用 发表时间:2017-12-11T15:56:24.677Z 来源:《建筑学研究前沿》2017年第19期作者:刘颜峰 [导读] 通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。 齐鲁交通发展集团有限公司德州分公司山东省德州市 253000 摘要:高性能混凝土是指采用普通原材料、常规施工工艺,通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。 关键词:混凝土;耐久性;应用;控制措施 从去年在105国道到现在聊城路网改建,接触高性能混凝土也有两年时间了,对高性能混凝土耐久性有点皮毛认识。 高性能混凝土是指采用普通原材料、常规施工工艺,通过掺加外加剂和掺合料配制而成的具有高工作性、高强度、高耐久性的综合性能优良的混凝土。具体是: 1)拌合料呈高塑或流态、可泵送、不离析,在减河大桥40米箱梁混凝土坍落度180-220mm,便于浇筑密实; 2)在凝结硬化过程中和硬化后的体积稳定,水化热低,不产生微细裂缝,徐变小; 3)有很高的抗渗性。其中高工作性是高性能混凝土必须具备的首要条件,即高流动性、高抗分离性、高间隙通过性、高填充性、高密实性、高稳定性;并同时具备低成本的技术经济合理性。高性能混凝土具有很丰富的技术内容,其核心是保证耐久性。 1混凝土工程耐久性不足的后果 混凝土工程因其工程量浩大,将会因耐久性不足对未来社会造成极为沉重的负担。据我从网上搜索的资料美国一项调查显示,美国的混凝土基础设施工程总价值约为6万亿美元,每年所需维修费或重建费约为3千亿美元。美国50万座公路桥梁中20万座已有损坏,平均每年有150-200座桥梁部分或完全坍塌,寿命不足20年;美国共建有混凝土水坝3,000座,平均寿命30年,其中32%的水坝年久失修。 美国对二战前后兴建的混凝土工程,在使用30-50年后进行加固维修所投入的费用,约占建设总投资的40%-50%以上。中国50-60年代所建设的混凝土工程已使用40余年,如果我国混凝土工程的平均寿命按30-50年计,在今后的10-30年内,为了维修建国以来所建基础设施的费用,将是极其巨大的。 目前,我国的基础设施建设工程规模宏大,每年高达2万亿元人民币以上,约30-50年后,这些工程也将进入维修期,所需的维修费或重建费将更为巨大。作为21世纪的高性能混凝土,更要从提高混凝土耐久性入手,以降低巨额的维修和重建费用。 2影响混凝土耐久性的主要因素 一般混凝土工程的使用年限约为50-100年,不少工程在使用10-20年后,有的甚至使用9年以后,即需要维修。用普通水泥混凝土所完成的工程不能满足耐久性(超耐久)要求的根本原因,在于混凝土本身的内部结构。 首先,为满足混凝土施工工作性要求,即用水量大、水灰比高,因而导致混凝土的孔隙率很高,约占水泥石总体积的25%-40%,特别是其中毛细孔占相当大部分,毛细孔是水分、各种侵蚀介质、氧气、二氧化碳及其它有害物质进入混凝土内部的通道,引起混凝土耐久性的不足。 其次,水泥石中的水化物稳定性不足。水泥水化后的主要化合物是碱度较高的高碱性水化矽酸钙、水化铝酸钙、水化硫铝酸钙。此外,在水化物中还有数量很大的游离石灰,它的强度极低,稳定性极差,在侵蚀条件下,是首先遭到侵蚀的部分。要大幅度提高混凝土的耐久性,就必须减少或消除这些稳定性低的组分,特别是游离石灰。 3提高混凝土耐久性的技术途径 如前分析,要提高混凝土的耐久性,必须降低混凝土的孔隙率,特别是毛细管孔隙率,最主要的方法是降低混凝土的拌和用水量。但是如果纯粹的降低用水量,混凝土的工作性将随之降低,又会导致捣实成型工作困难,同样造成混凝土结构不致密,甚至出现蜂窝等宏观缺陷,不但混凝土强度降低,而且混凝土的耐久性也同时降低。目前减少孔隙率的途径往往是掺入高效减水剂。 3.1掺入高效减水剂 在保证混凝土拌和物所需流动性的同时,尽可能降低用水量,减小水灰比,使混凝土的总孔隙,特别是毛细管孔隙率大幅度降低。水泥在加水搅拌后,会产生一种絮凝状结构。在这些絮凝状结构中,包裹着许多拌和水,从而降低了新拌混凝土的工作性。施工中为了保持混凝土拌和物所需的工作性,就必须在拌和时相应地增加用水量,这样就会促使水泥石结构中形成过多的孔隙。当加入减水剂后,减水剂的定向排列,使水泥质点表面均带有相同电荷。在电性斥力的作用下,不但使水泥体系处于相对稳定的悬浮状态,还在水泥颗粒表面形成一层溶剂化水膜,同时使水泥絮凝状的絮凝体内的游离水释放出来,因而达到减水的目的。 3.2掺入高效活性矿物掺料 普通水泥混凝土的水泥石中水化物稳定性的不足,是混凝土不能超耐久的另一主要因素。在普通混凝土中掺入活性矿物的目的,在于改善混凝土中水泥石的胶凝物质的组成。活性矿物掺料(矿渣、粉煤灰等)中含有大量活性二氧化硅及活性三氧化二铝,它们能和水泥水化过程中产生的游离石灰及高碱性水化矽酸钙产生二次反应,生成强度更高,稳定性更优的低碱性水化矽酸钙,从而达到改善水化胶凝物质的组成,消除游离石灰的目的。有些超细矿物掺料,其平均粒径小于水泥粒子的平均粒径,能填充于水泥粒子之间的空隙中,使水泥石结构更为致密,并阻断可能形成的渗透路。 3.3消除混凝土自身的结构破坏因素 除了环境因素引起的混凝土结构破坏以外,混凝土本身的一些物理化学因素,也可能引起混凝土结构的严重破坏,致使混凝土失效。例如,混凝土的化学收缩和干缩过大引起的开裂,水化热过性过高引起的温度裂缝,硫酸铝的延迟生成,以及混凝土的碱集料反应等。因此,要提高混凝土的耐久性,就必须减小或消除这些结构破坏因素。限制或消除从原材料引入的碱、硅酸、氯离子等可以引起结构破坏和钢筋蚀物质的含量,加强施工控制环节,避免收缩及温度裂缝产生,提高混凝土的耐久性。 3.4保证混凝土的强度 尽管强度与耐久性是不同概念,但又密切相关,它们之间的本质联系是基于混凝土的内部结构,都与水灰比这个因素直接相关。在混

高耐久性混凝土技术

高耐久性混凝土技术 2.1.1 技术内容 高耐久性混凝土是通过对原材料的质量控制、优选及施工工艺的优化控制,合理掺加优质矿物掺合料或复合掺合料,采用高效(高性能)减水剂制成的具有良好工作性、满足结构所要求的各项力学性能、且耐久性优异的混凝土。 (1)原材料和配合比的要求 1)水胶比(W/B)≤0.38。 2)水泥必须采用符合现行国家标准规定的水泥,如硅酸盐 水泥或普通硅酸盐水泥等,不得选用立窑水泥;水泥比22/kg。,不应大于380m表面积宜小于350m /kg3)粗骨料的压碎值≤10%,宜采用分级供料的连续级配,吸水率<1.0%,且无潜在碱骨料反应危害。 4)采用优质矿物掺合料或复合掺合料及高效(高性能)减 水剂是配制高耐久性混凝土的特点之一。优质矿物掺合料主要包括硅灰、粉煤灰、磨细矿渣粉及天然沸石粉等,所用的矿物掺合料应符合国家现行有关标准,且宜达到优品级,对于沿海港口、滨海盐田、盐渍土地区,可添加防腐阻锈剂、防腐流变剂等。矿物掺合料等量取代水泥的最大量宜为:硅粉≤10%,粉煤灰≤30%,矿渣粉≤50%,天然沸石粉≤10%,复合掺合料≤50%。

)混凝土配制强度可按以下公式计算:5. ≥f+1.645σf cu,kcu,0——混凝土配制强度(MPa);f式中 cu,0;——混凝土立方体抗压强度标准值(MPa)f k,cuσ——强度标准差,无统计数据时,预拌混凝土可按《普通混凝土配合比设计规程》JGJ 55的规定取值。 (2)耐久性设计要求 对处于严酷环境的混凝土结构的耐久性,应根据工程所处环 境条件,按《混凝土结构耐久性设计规范》GB/T 50467进行 耐久性设计,考虑的环境劣化因素及采取措施有: 1)抗冻害耐久性要求:a)根据不同冻害地区确定最大水胶 比;b)不同冻害地区的抗冻耐久性指数DF或抗冻等级;c) 受除冰盐冻融循环作用时,应满足单位面积剥蚀量的要求; d)处于有冻害环境的,应掺入引气剂,引气量应达到3%~5%。 2)抗盐害耐久性要求:a)根据不同盐害环境确定最大水胶 比;b)抗氯离子的渗透性、扩散性,宜以56d龄期电通量 或84d氯离子迁移系数来确定。一般情况下,56d电通量宜 ≤800C,84d氯离子迁移系数宜≤;c)混凝2?12s.25?10/m土表面 裂缝宽度符合规范要求。 3)抗硫酸盐腐蚀耐久性要求:a)用于硫酸盐侵蚀较为严重 的环境,水泥熟料中的CA不宜超过5%,宜掺加优质3)根 据不同硫酸盐腐蚀环境,b的掺合料并降低单位用水量;

提高混凝土耐久性的措施

提高混凝土耐久性的措施 在土建工程中,商品混凝土是用途最广、用量最大的建筑材料之一。近百年来,商品混凝土强度不断的提高成为它主要的发展趋势。发达国家越来越多的使用50MPa以上的高强商品混凝土。有些远见卓识的专家考虑到某些工程的需要, 在提出高强度的同时,也提出耐久性和施工和易性的要求,尤其是近5年,在很多重要工程中都成功地采用高性能商品混凝土。 高性能商品混凝土具有丰富的技术内容,尽管同业对高性能商品混凝土有不同的定义和解释,但彼此均认为高性能商品混凝土的基本特征是按耐久性进行设计, 保证拌和物易于浇筑和密实成型,不发生或尽量少发生由温度和收缩产生的裂缝,硬化后有足够的强度,内部孔隙结构合理而有低渗透性和高抗化学侵蚀。 基于上述特点,高性能商品混凝土成为我国近期商品混凝土技术的主要发展方向。高性能商品混凝土的核心是保证耐久性。耐久性对工程量浩大的商品混凝土工程来说意义非常重要,若耐久性不足,将会产生极严重的后果,甚至对未来社会造成极为沉重的负担。据美国一项调查显示,美国的商品混凝土基础设施工程总价值约为6万亿美元,每年所需维修费或重建费约为3千亿美元。美国50万座公路桥梁中20万座已有损坏,平均每年有150-200座桥梁部分或完全坍塌,寿命不足20年;美国共建有商品混凝土水坝3000座,平均寿命30年,其中32%的水坝年久失修;而对二战前后兴建的商品混凝土工程,在使用30-50年后进行加固维修所投入的费用,约占建设总投资的40%-50%以上。回看中国,我国50年代所建设的商品混凝土工程已使用40余年。如果平均寿命按30-50年计,那么在今后的10-30年间,为了维修这些建国以来所建的基础设施,耗资必将是极其

混凝土结构耐久性浅谈

网络教育学院 本科生毕业论文(设计) 题目:混凝土结构耐久性浅谈 学习中心:奥鹏学习中心 层次:专科起点本科 专业:土木工程 年级: 2013年春季 学号: 131511303972 学生: 指导教师:王伟 完成日期: 2015年1月 26日

混凝土结构耐久性浅谈 内容摘要 混凝土结构是应用非常广泛的一种结构形式,但是由于其结构自身和使用环境的特点,使得混凝土存在严重的耐久性问题。混凝土的耐久性是指混凝土在实际使用条件下抵抗各种破坏因素的作用,长期保持强度和外观完整性的能力。影响结构耐久性的因素很多,砼质量及其保护层是内在因素;环境与载荷作用则是外在因素,不同的原因会造成不同的后果。首先通过对国内外钢筋混凝土工程耐久性现状的介绍,讨论了混凝土耐久性的概念,接着分析了影响混凝土耐久性的因素﹑混凝土缺陷检测﹑提高混凝土耐久性的措施,最后对现有混凝土结构设计施工的思考。 关键词:混凝土结构耐久性;环境;混凝土的碳化

目录 内容摘要 ........................................................................................................................... I 引言 .......................................................................................... 错误!未定义书签。 1 绪论 .......................................................................................................................... IV 1.1 混凝土耐久性问题的提出 ........................................................................... IV 1.2 混凝土耐久性的概念 ................................................................................... IV 2 混凝土结构耐久性问题的分析 ................................................................................V 2.1 混凝土冻融破坏 .............................................................................................V 2.1.1 破坏机理 ............................................................ 错误!未定义书签。 2.1.2 影响因素 ............................................................ 错误!未定义书签。 2.2 混凝土渗透破坏 ........................................................... 错误!未定义书签。 2.2.1 破坏原因 ............................................................ 错误!未定义书签。 2.2.2 影响因素 ............................................................ 错误!未定义书签。 2.3 碱骨料反应 ................................................................... 错误!未定义书签。 2.3.1 破坏原因 ............................................................ 错误!未定义书签。 2.3.2 影响因素 ............................................................ 错误!未定义书签。 2.4 混凝土的碳化 ............................................................... 错误!未定义书签。 2.4.1 破坏原因 ............................................................ 错误!未定义书签。 2.4.2 影响因素 ............................................................ 错误!未定义书签。 2.5 钢筋锈蚀 ....................................................................... 错误!未定义书签。 2.5.1 破坏原因 ............................................................ 错误!未定义书签。 2.5.2 影响因素 ............................................................ 错误!未定义书签。 2.6 化学侵蚀 ....................................................................... 错误!未定义书签。 2.6.1 产生原因 ............................................................ 错误!未定义书签。 2.6.2 影响因素 ............................................................ 错误!未定义书签。 3 提高混凝土耐久性的措施 ........................................... V 3.1 原材料的选择................................................ V 3.2 预防钢筋的锈蚀............................. 错误!未定义书签。 3.3 避免或减轻碱集料反应....................... 错误!未定义书签。

相关文档
最新文档