九上1.3反比例函数的应用同步练习
一次函数与反比例函数的综合应用(含答案)

一次函数与反比例函数的综合应用一、选择题1. (2011四川凉山,12,4分)二次函数2y ax bx c =++的图象如图所示,反比列函数ay x=与正比列函数y bx =在同一坐标系内的大致图象是( )考点:二次函数的图象;正比例函数的图象;反比例函数的图象. 专题:数形结合.分析:由已知二次函数y =ax 2+bx +c 的图象开口方向可以知道a 的取值范围,对称轴可以确定b 的取值范围,然后就可以确定反比例函数xay =与正比例函数y =bx 在同一坐标系内的大致图象.解答:解:∵二次函数y =ax 2+bx +c 的图象开口方向向下,∴a <0,对称轴在y 轴的左边,∴x =-ab2<0,∴b <0, ∴反比例函数xay =的图象在第二四象限, 正比例函数y =bx 的图象在第二四象限. 故选B .点评:此题主要考查了从图象上把握有用的条件,准确选择数量关系解得a 的值,简单的图象最少能反映出2个条件:开口向下a <0;对称轴的位置即可确定b 的值. 2. (2011•青海)一次函数y=﹣2x+1和反比例函数y=的大致图象是( )O xy O yxAO yxBO yxDO yxCA、B、C、D、考点:反比例函数的图象;一次函数的图象。
分析:根据一次函数的性质,判断出直线经过的象限;再根据反比例函数的性质,判断出反比例函数所在的象限即可.解答:解:根据题意:一次函数y=﹣2x+1的图象过一、二、四象限;反比例函数y=过一、三象限.故选:D.点评:此题主要考查了一次函数的图象及反比例函数的图象,重点是注意y=k1x+b中k1、b及y=中k2的取值.3.(2011山东青岛,8,3分)已知一次函数y1=kx+b与反比例函数y2=kx在同一直角坐标系中的图象如图所示,则当y1<y2时,x的取值范围是()A.x<﹣1或0<x<3 B.﹣1<x<0或x>3 C.﹣1<x<0 D.x>3 考点:反比例函数与一次函数的交点问题。
反比例函数的应用(2)

Y/L Y/L Y/L
Y/L
o
V(km/h)
o
(A)
V(km/h)
o
(B)
V(km/h)
o
V(km/h)
(C)
(D)
自主探索
6、你吃过拉面吗?实际上在做拉面的过程中 就渗透着数学知识:一定体积的面团做成拉面, 面条的总长度y (m)是面条的粗细(橫截面积)s(㎜2) 的反比例函数,其图象如图所示。 Y /m 100 80 (1)写出y与s的函数关系式; 60 (2)求当面条粗1.6㎜2时, 40 P(4,32) 20 面条的总长度是多少?
上有两点(- 2,y1)(- 8,y2)
y1> y2 则y1,y2的大小关系是_________
课前热身
6、已知反比例函数
6 y x
上有三点(- 3,y1),(- 1,y2), (3,y3),则y1,y2 ,y3的大小关系
是 y3 > y1 > y2 _________
自主探索
k 1、(08安徽中考)已知双曲线 y x
解:
(2)当S=1.6时, y 80 由图象可知,当S=4时,Y=32.∴K=4×32=128 1.6 128 所以,面条的总长度是80m. ∴所求函数关系式为 y s
k o y , (1)设y与s的函数关系式为 s 128
·
1 32
4 5
s/㎜2
自主探索
7、如图,A、C 是函数 作 记 的图象上的任意两点,过 A 轴的垂线,垂足为 D. 的面积为 ,则 与 轴的垂线,垂足为 B;过 C 作 的面积为 的关系是(C). (A) (C) (D) 不能确定. > = 与 的大小关系 (B) < ,
九上反比例函数专题复习

于x的函数关系式 的函数关系式
y=
48 x
;
o
8
x(min)
(2)研究表明,每立方米的含 )研究表明, 药量低于1.6mg时,学生方可进 药量低于 时 教室,那么从消毒开始, 教室,那么从消毒开始,至少 分钟后, 需要经过 30 分钟后,学生才 能回教室; 能回教室;
y 4Βιβλιοθήκη A(1,4)O P
B
x
(5)若D、E、F是此反比例函数在第三象限图像上 ) 、 、 是此反比例函数在第三象限图像上 的三个点, 分别作x轴的垂线 的三个点,过D、E、F分别作 轴的垂线,垂足分别 、 、 分别作 轴的垂线, 为M,N、K,连接 , 、 ,连接OD、OE、OF,设△ ODM、 、 、 , 、 的面积分别为S △OEN、 △OFK 的面积分别为 1、S2、S3,则下列 、 ) 结论成立的是 ( A S1﹤S2 ﹤ S3 C S1 ﹤ S3 ﹤ S3 B S1﹥S2 ﹥ S3 D S1=S2=S3 M N D E F K o x y A(1,4) ( , )
p
y
N
o x
M
),B(7、已知点A(-2,y1),B(2,y2)且x1<0<x2 已知点A(- 1,y1),B(x -1,y2) A( A(x 的大小关系(从大到小) 则y1与y2的大小关系(从大到小)
1 1 y2 为 yy>>0>y2
k4 = (k< 的图象上, 都在反比例函数 y y = x(k<0) 的图象上, x
x
能否同时落在① ②问点A、B能否同时落在①中的反 问点 、 能否同时落在 比例函数的图像上,若能, 比例函数的图像上,若能,求α 出的 若不能,请说明理由. 值;若不能,请说明理由
专题 反比例函数(10个考点)-九年级数学上学期期中期末考点大串讲(人教版)(原卷版)

专题06反比例函数(10个考点)【知识梳理+解题方法】一.反比例函数的定义(1)反比例函数的概念形如y=(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.(2)反比例函数的判断判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).二.反比例函数的图象用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值.(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴.三.反比例函数图象的对称性反比例函数图象的对称性:反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线Y=﹣X;②一、三象限的角平分线Y=X;对称中心是:坐标原点.四.反比例函数的性质反比例函数的性质(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.五.反比例函数系数k的几何意义比例系数k的几何意义在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.六.反比例函数图象上点的坐标特征反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.七.待定系数法求反比例函数解析式用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.八.反比例函数与一次函数的交点问题反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.九.根据实际问题列反比例函数关系式根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.十.反比例函数的应用(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.【专题过关】一.反比例函数的定义(共3小题)1.(2021秋•遵化市期末)下列函数关系式中属于反比例函数的是()A.y=4x B.2x+y=4C.y=x2+3D.2.(2022•东营模拟)函数y=(m﹣2)是反比例函数,则m=.3.(2022•西宁一模)函数的自变量x的取值范围是.二.反比例函数的图象(共4小题)4.(2021秋•大城县期末)反比例函数的图象如图所示,则k的值可以是()A.﹣2B.C.1D.35.(2021秋•大城县期末)二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数在同一平面直角坐标系内的大致图象是()A.B.C.D.6.(2021秋•襄州区期末)问题呈现:我们知道反比例函数的图象是双曲线,那么函数(k、m、n为常数且k≠0)的图象还是双曲线吗?它与反比例函数的图象有怎样的关系呢?让我们一起开启探索之旅……探索思考:我我们可以借鉴以前研究函数的方法,首先探索函数的图象.(1)画出函数图象.①列表:x…﹣6﹣5﹣4﹣3﹣201234…y…﹣1﹣2﹣4421…②描点并连线.(2)观察图象,写出该函数图象的两条不同类型的特征:①,②;(3)理解运用:函数的图象是由函数的图象向平移个单位,其对称中心的坐标为.(4)灵活应用:根据上述画函数图象的经验,想一想函数的图象大致位置,并根据图象指出,当x满足时,y≥3.7.(2022•市南区校级二模)二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=,点A的坐标为(1,0),AB垂直于x轴,连接CB,则下列说法一定正确的是()A.如图①,四边形ABCO是矩形B.在同一平面直角坐标系中,二次函数y=ax2+bx,一次函数y=ax+b和反比例函数y=的图象大致如图②所示C.在同一平面直角坐标系中,二次函数y=﹣x(ax+b)+c与反比例函数y=的图象大致如图③所示D.在同一平面直角坐标系中,一次函数y=bx﹣ac与反比例函数y=在的图象大致如图④所示三.反比例函数图象的对称性(共3小题)8.(2022•高要区一模)若正比例函数y=﹣2x与反比例函数y=图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为()A.(2,﹣1)B.(1,﹣2)C.(﹣2,﹣1)D.(﹣2,1)9.(2022春•洪泽区月考)如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是.10.(2022•自贡模拟)如图,半径为2的两圆⊙O1和⊙O2均与x轴相切于点O,反比例函数(k>0)的图象与两圆分别交于点A,B,C,D,则图中阴影部分的面积是.(结果保留π)四.反比例函数的性质(共6小题)11.(2021秋•政和县期末)反比例函数中,反比例常数k的值为.12.(2022秋•青浦区期中)已知正比例函数y=中,y的值随x的值的增大而增大,那么它和反比例函数y=在同一平面直角坐标系内的大致图象可能是()A.B.C.D.13.(2021秋•丰宁县期末)已知反比例函数,则下列描述不正确的是()A.图象位于第一、第三象限B.图象必经过点C.图象不可能与坐标轴相交D.y随x的增大而减小14.(2022•威县校级模拟)如图,矩形ABCO在平面直角坐标系中,点A(﹣5,0),点C(0,6),双曲线L1:y=﹣(x<0)和双曲线L2:y=(x<0).[把矩形ABCO内部(不含边界)横、纵坐标均为整数的点称为“优点”](1)若k=﹣12,则L2和L1之间(不含边界)有个“优点”;(2)如果L2和L1之间(不含边界)有4个“优点”,那么k的取值范围为.15.(2022•杞县模拟)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣3﹣2﹣10123…y…m12101n…其中,m=,n=.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点,在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值时y=1,求自变量x的值.16.(2022•沙市区模拟)探究分段函数y=的图象与性质.列表:x…﹣1﹣012…y…210121…描点:描出相应的点,并连线,如图所示结合图象研究函数性质,回答下列问题:(1)点A(3,y1),B(5,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1 x2;(填“>”、“=”或“<”)(2)当函数值y=2时,自变量x的值为;(3)在直角坐标系中作出y=x的图象;(4)当方程x+b=有三个不同的解时,则b的取值范围为.五.反比例函数系数k的几何意义(共5小题)17.(2022•茂南区二模)如图,两个反比例函数和在第一象限内的图象分别是l1和l2,设点P 在l1上,PC⊥x轴于点C,交l2于点A,PD⊥y轴于点D,交l2于点B,则四边形P AOB的面积为()A.k1+k2B.k1﹣k2C.k1k2D.k2﹣k118.(2022•河池)如图,点P(x,y)在双曲线y=的图象上,P A⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为.19.(2022•开远市二模)若图中反比例函数的表达式均为,则阴影面积为2的是()A.B.C.D.20.(2022•靖江市二模)反比例函数,(n<0)的图象如图所示,点P为x轴上不与原点重合的一动点,过点P作AB∥y轴,分别与y1、y2交于A、B两点.(1)当n=﹣10时,求S△OAB;(2)延长BA到点D,使得DA=AB,求在点P整个运动过程中,点D所形成的函数图象的表达式.(用含有n的代数式表示).21.(2022•德城区模拟)如图,A、B两点在反比例函数y=(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1(1)若k=2,则AO的长为,△BOD的面积为;(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.六.反比例函数图象上点的坐标特征(共9小题)22.(2022秋•合浦县期中)如图,点A是反比例函数图象上一点,则下列各点在该函数图象上的是()A.(﹣1,﹣1)B.(1,﹣1)C.D.(﹣2,1)23.(2021秋•碧江区期末)如图,△OAB、△BA1B1、△B1A2B2、…、△B n﹣1A n B n都是等边三角形,顶点A、A1、A2、…、A n在反比例函数(x>0)的图象上,则B2020的坐标是.24.(2022秋•杜集区校级月考)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于直线x=n(n为常数)对称,则把该函数称之为“X(n)函数“.(1)在下列关于x的函数中,是“X(n)函数”的是(填序号);①;②y=|4x|;③y=x2﹣2x﹣5.(2)若关于x的函数y=|x﹣h|(h为常数)是“X(3)函数”,与(m为常数,m>0)相交于A (x A,y A)、B(x B,y B)两点,A在B的左边,x B﹣x A=5,则m=.25.(2022•思明区校级二模)阅读理解:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.(1)若A(m,y1),B(m+1,y2),C(m+3,y3)三点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值;(2)若实数a,b,c是“和谐三数组”,且满足a>b>c>0,求点与原点O的距离OP的取值范围.26.(2022•牧野区校级三模)如图,矩形ABCD的边BC在x轴上,E为对角线AC,BD的交点,点A,C 的坐标分别为A(﹣3,3),C(﹣1,0).(1)反比例函数y1=在第三象限的图象经过D点,求这个函数的解析式;(2)点E是否在函数y1=的图象上?说明理由;(3)一次函数y2=k2+b的图象经过点B,点D,根据图象直接写出不等式k2x+b<的解集.27.(2022•荷塘区校级二模)如图,点A(a,a),B(b,b)是直线y=x上在第一象限的两点,过A,B两点分别作y轴的平行线交双曲线y=(x>0)于C,D两点.(1)当b=2,BD=1时,求k的值;(2)当k=1时:①若AC=BD,求a与b的数量关系;②若AC=2BD,求4OD2﹣OC2的值.28.(2021秋•梧州期末)在函数y=(其中a≠0,a为常数)经过点A(x1,y1),B(x2,y2),C(x3,y3),且x3<0<x1<x2,则把y1、y2、y3按从小到大排列为.29.(2022•营口)如图,在平面直角坐标系中,△OAC的边OC在y轴上,反比例函数y=(x>0)的图象经过点A和点B(2,6),且点B为AC的中点.(1)求k的值和点C的坐标;(2)求△OAC的周长.30.(2022秋•东湖区期中)如图,在平面直角坐标系中,正方形OABC的顶点O在坐标原点,顶点A在y 轴上,顶点C在x轴上,反比例函数y=k的图象过AB边上一点E,与BC边交于点D,BE=2,OE=10.(1)求k的值;(2)直线y=ax+b过点D及线段AB的中点F,点P是直线OF上一动点,当PD+PC的值最小时,直接写出这个最小值.七.待定系数法求反比例函数解析式(共4小题)31.(2021秋•平泉市期末)如图,矩形ABCD的两边AD,AB的长分别为3,8,E是DC的中点,反比例函数的图象经过点E,与AB交于点F.(1)若点B的坐标为(﹣6,0),求m的值.(2)若AF﹣AE=2,求反比例函数的解析式.32.(2022•蓬江区一模)如图,在平面直角坐标系中,正方形ABCD的顶点A、B分别在x轴、y轴的正半轴上,反比例函数的图象经过点C,OA=2,OB=4.(1)求反比例函数的解析式;(2)若将正方形ABCD沿x轴向右平移得到正方形A'B'C'D',当点D'在反比例函数的图象上时,请求出点B'的坐标,并判断点B'是否在该反比例函数的图象上,说明理由.33.(2022•睢阳区二模)如图,平行四边形ABCD的面积为12,AB∥y轴,AB,CD与x轴分别交于点M,N,对角线AC,BD的交点为坐标原点,点A的坐标为(﹣2,1),反比例函数的图象经过点B,D.(1)求反比例函数的解析式;(2)点P为y轴上的点,连接AP,若△AOP为等腰三角形,求满足条件的点P的坐标.34.(2021秋•孟村县期末)已知y与x成反比例,当x=﹣1时,y=﹣6.(1)y与x的函数解析式为;(2)若点A(a,﹣4),B(b,﹣8)都在该反比例函数的图象上,则a,b的大小关系是.八.反比例函数与一次函数的交点问题(共5小题)35.(2022•市南区校级一模)如图,直线y=kx+3与x轴、y轴分别交于点B、C,与反比例函数y=交于点A、D,过D作DE⊥x轴于E,连接OA,OD,若A(﹣2,n),S△OAB:S△ODE=1:2.(1)求反比例函数的表达式;(2)求点C的坐标;(3)直接写出关于x不等式:>kx﹣3的解为.36.(2022•宝安区校级模拟)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m ≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx>﹣b的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>237.(2022•仁怀市模拟)如图,直线y=x﹣4分别与x轴,y轴交于点A,B,与反比例函数y=的图象交于点D,过点A作AC⊥x轴与反比例函数的图象相交于点C,若AC=AD,则k的值为()A.3B.4C.D.38.(2022•市南区校级二模)如图,在平面直角坐标系中,点A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的表达式为y2=k2x+b,回答下列问题:(1)求双曲线y1=和直线AB的y2=k2x+b表达式;(2)当y1>y2时,求x的取值范围;(3)求△AOB的面积.39.(2022•吉阳区模拟)如图,函数y=与函数y=kx(k>0)的图象相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于()A.24B.18C.12D.6九.根据实际问题列反比例函数关系式(共3小题)40.(2022秋•滁州期中)某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.41.(2021•东胜区一模)A、B两地相距400千米,某人开车从A地匀速到B地,设小汽车的行驶时间为t 小时,行驶速度为v千米/小时,且全程限速,速度不超过100千米/小时.(1)写出v关于t的函数表达式;(2)若某人开车的速度不超过每小时80千米,那么他从A地匀速行驶到B地至少要多长时间?(3)若某人上午7点开车从A地出发,他能否在10点40分之前到达B地?请说明理由.42.(2021•杭州二模)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)一十.反比例函数的应用(共4小题)43.(2022秋•涟源市期中)如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流I(A)与电阻R(Ω)成反比例函数的图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是()A.当I<0.25时,R<880B.I与R的函数关系式是I=(R>0)C.当R>1000时,I>0.22D.当880<R<1000时,I的取值范围是0.22<I<0.2544.(2022•南阳二模)在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点P(4,3)在其图象上,则当力达到10N时,物体在力的方向上移动的距离是()A.2.4m B.1.2m C.1m D.0.5m45.(2022•邓州市二模)给定一个函数:y=x++1(x>0),为了研究它的图象与性质,并运用它的图象与性质解决实际问题,进行如下探索:(1)图象初探①列表如下x…1234…y…m3n…请直接写出m,n的值;②请在如下的平面直角坐标系中描出剩余两点,并用平滑的曲线画出该函数的图象.(2)性质再探请结合函数的图象,写出当x=,y有最小值为;(3)学以致用某农户要建造一个如图①所示的长方体无盖水池,其底面积为1平方米,深为1米.已知底面造价为3千元/平方米,侧面造价为0.5千元/平方米.设水池底面一边长为x米,水池总造价为y千元,可得到y与x的函数关系式为:y=x++3.根据以上信息,请回答以下问题:①水池总造价的最低费用为千元;②若该农户预算不超过5.5千元,请直接写出x的值应控制在什么范围?.46.(2021秋•丰南区期末)在工程实施过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成工程量x米的函数关系图象如图所示,是双曲线的一部分.(1)请根据题意,求y与x之间的函数表达式;(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠30米,问该工程队需要用多少天才能完成此项任务?(3)工程队在(2)的条件下工作5天后接到防汛紧急通知,最多再给5天时间完成全部任务,则最少还需调配几台挖掘机?。
反比例函数的应用试题

反比例函数的应用试题一.选择题(共4小题)1.(2013•黑龙江)如图,Rt △ABC 的顶点A 在双曲线y=的图象上,直角边BC 在x 轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA ,∠AOB=60°,则k 的值是( )2.(2012•漳州)在公式I=中,当电压U 一定时,电流I 与电阻R 之间的函数关系可用图象大致表示为( ) .C D .3.(2009•眉山)如图,点A 在双曲线y=上,且OA=4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ). D . 4.(2001•青岛)甲、乙两地相距100km ,如果把汽车从甲到乙地所用的时间y (h )表示为汽车的平均速度x (km ).C D .二.解答题(共16小题)5.(2014•梅州)已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).6.(2014•呼伦贝尔)如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数(x>0)的图象相交于点B(2,1).(1)求m的值和一次函数的解析式;(2)结合图象直接写出:当x>0时,不等式的解集.7.(2014•白银)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.8.(2014•南平)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.9.(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.10.(2014•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.11.(2014•自贡)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.12.(2013•攀枝花)如图,直线y=k1x+b(k1≠0)与双曲线y=(k2≠0)相交于A(1,2)、B(m,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<0<x2<x3,请直接写出y1,y2,y3的大小关系式;(3)观察图象,请直接写出不等式k1x+b<的解集.13.(2014•云南)将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?14.(2014•德州)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.15.(2013•鞍山)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.16.(2013•安顺)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.17.(2012•安徽)甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.18.(2012•东莞)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.19.(2012•天门)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数y2=图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.20.(2008•德阳)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.反比例函数的应用试题参考答案与试题解析一.选择题(共4小题)1.(2013•黑龙江)如图,Rt△ABC的顶点A在双曲线y=的图象上,直角边BC在x轴上,∠ABC=90°,∠ACB=30°,OC=4,连接OA,∠AOB=60°,则k的值是()OC=2AB=OB=2y=OB=OC=2AB=OB=2))代入得2.(2012•漳州)在公式I=中,当电压U 一定时,电流I 与电阻R 之间的函数关系可用图象大致表示为( ) . C D .3.(2009•眉山)如图,点A 在双曲线y=上,且OA=4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为( ). D .的方程组a+b=2=OC+AC=24.(2001•青岛)甲、乙两地相距100km ,如果把汽车从甲到乙地所用的时间y (h )表示为汽车的平均速度x (km ). C D .y=(二.解答题(共16小题)5.(2014•梅州)已知反比例函数y=的图象经过点M (2,1)(1)求该函数的表达式;(2)当2<x <4时,求y 的取值范围(直接写出结果). 中可得可得,再根据条件<的图象经过点y=;y=x=,<<6.(2014•呼伦贝尔)如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数(x>0)的图象相交于点B(2,1).(1)求m的值和一次函数的解析式;(2)结合图象直接写出:当x>0时,不等式的解集.(坐标代入一次函数解析式得:,>7.(2014•白银)如图,在直角坐标系xOy中,直线y=mx与双曲线相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.y=∴8.(2014•南平)如图,已知反比例函数y=与一次函数y=kx+b的图象相交于A(4,1)、B(a,2)两点,一次函数的图象与y轴的交点为C.(1)求反比例函数和一次函数的解析式;(2)若点D的坐标为(1,0),求△ACD的面积.上,∴)代入∴一次函数的解析式为AB9.(2014•南通)如图,正比例函数y=﹣2x与反比例函数y=的图象相交于A(m,2),B两点.(1)求反比例函数的表达式及点B的坐标;(2)结合图象直接写出当﹣2x>时,x的取值范围.y=y=.10.(2014•湖州)如图,已知在平面直角坐标系xOy中,O是坐标原点,点A(2,5)在反比例函数y=的图象上,过点A的直线y=x+b交x轴于点B.(1)求k和b的值;(2)求△OAB的面积.y=,得∴5=.11.(2014•自贡)如图,一次函数y=kx+b与反比例函数的图象交于A(m,6),B(3,n)两点.(1)求一次函数的解析式;(2)根据图象直接写出的x的取值范围;(3)求△AOB的面积.)代入,,时,×﹣12.(2013•攀枝花)如图,直线y=k1x+b(k1≠0)与双曲线y=(k2≠0)相交于A(1,2)、B(m,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<0<x2<x3,请直接写出y1,y2,y3的大小关系式;(3)观察图象,请直接写出不等式k1x+b<的解集.y=,即坐标代入直线解析式得:,的解集为13.(2014•云南)将油箱注满k升油后,轿车可行驶的总路程S(单位:千米)与平均耗油量a(单位:升/千米)之间是反比例函数关系S=(k是常数,k≠0).已知某轿车油箱注满油后,以平均耗油量为每千米耗油0.1升的速度行驶,可行驶700千米.(1)求该轿车可行驶的总路程S与平均耗油量a之间的函数解析式(关系式);(2)当平均耗油量为0.08升/千米时,该轿车可以行驶多少千米?中即可求得中,;得:==87514.(2014•德州)如图,双曲线y=(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.,,=2,=∴(y=,15.(2013•鞍山)如图所示,已知一次函数y=kx+b(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.(1)求点A、B、D的坐标;(2)求一次函数和反比例函数的解析式.可确定反比例函数的解析式.∴,(.16.(2013•安顺)已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(﹣2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连接BO,若S△AOB=4.(1)求该反比例函数的解析式和直线AB的解析式;(2)若直线AB与y轴的交点为C,求△OCB的面积.,得OAy=,可得反比例函数的解析式为:;再把OC×∴y=4=y=的坐标分别代入,得;OC×17.(2012•安徽)甲、乙两家商场进行促销活动,甲商场采用“买200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元;…,乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.,18.(2012•东莞)如图,直线y=2x﹣6与反比例函数y=的图象交于点A(4,2),与x轴交于点B.(1)求k的值及点B的坐标;(2)在x轴上是否存在点C,使得AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.,借此无理方程,y=∴,19.(2012•天门)如图,一次函数y1=﹣x﹣1的图象与x轴交于点A,与y轴交于点B,与反比例函数y2=图象的一个交点为M(﹣2,m).(1)求反比例函数的解析式;(2)求点B到直线OM的距离.×OM得:﹣×==h=.的距离为.20.(2008•德阳)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值>反比例函数的值的x的取值范围.y=n=。
九上反比例函数提高题及常考题型和压轴题含解析

反比例函数常考题型与解析一.选择题〔共14小题〕1.假设双曲线y=过两点〔﹣1,y1〕,〔﹣3,y2〕,则y1与y2的大小关系为〔〕A.y1>y2B.y1<y2C.y1=y2D.y1与y2大小无法确定2.二次函数y=﹣〔*﹣a〕2﹣b的图象如下图,则反比例函数y=与一次函数y=a*+b的图象可能是〔〕A.B.C.D.3.当k>0时,反比例函数y=和一次函数y=k*+2的图象大致是〔〕A.B.C.D.4.假设点A〔*1,1〕、B〔*2,2〕、C〔*3,﹣3〕在双曲线y=﹣上,则〔〕A.*1>*2>*3B.*1>*3>*2C.*3>*2>*1D.*3>*1>*25.如下图,两个反比例函数y=和y=在第一象限的图象依次是C1和C2,设点P在C1上,PC⊥*轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为〔〕A.k1+k2B.k1﹣k2C.k1•k2D.k1•k2﹣k26.如图,点A是反比例函数y=〔>0〕的图象上任意一点,AB∥*轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C,D在*轴上,则平行四边形ABCD的面积为〔〕A.2 B.3 C.4 D.57.如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于*轴,直线AC交*轴于点E,BC⊥AC,连接BE,反比例函数〔*>0〕的图象经过点D.S△BCE=2,则k的值是〔〕A.2 B.﹣2 C.3 D.48.如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,假设四边形EMON的面积为2,则经过点B的双曲线的解析式为〔〕A.y=﹣B.y=﹣C.y=﹣D.y=﹣9.点A〔﹣2,1〕,B〔1,4〕,假设反比例函数y=与线段AB有公共点时,k的取值围是〔〕A.﹣2≤k≤4 B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4 D.﹣2≤k<0或0<k≤410.如图,平面直角坐标系中,点A是*轴负半轴上一个定点,点P是函数y=〔*<0〕上一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会〔〕A.先增后减B.先减后增C.逐渐减小D.逐渐增大11.反比例函数y=,当1<*<3时,y的最小整数值是〔〕A.3 B.4 C.5 D.612.以下函数中,满足y的值随*的值增大而增大的是〔〕A.y=﹣2* B.y=3*﹣1 C.y=D.y=*213.如图,在反比例函数y=﹣的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限有一点C,满足AC=BC,当点A运动时,点C 始终在函数y=的图象上运动.假设tan∠CAB=2,则k的值为〔〕A.2 B.4 C.6 D.814.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△﹣S△BAD为〔〕OACA.36 B.12 C.6 D.3二.填空题〔共11小题〕15.如图,等腰直角三角形OAB的一条直角边在y轴上,点P是边AB上的一个动点,过点P的反比例函数y=的图象交斜边OB于点Q,〔1〕当Q为OB中点时,AP:PB=〔2〕假设P为AB的三等分点,当△AOQ的面积为时,k的值为.16.在函数〔k>0的常数〕的图象上有三个点〔﹣2,y1〕,〔﹣1,y2〕,〔,y3〕,函数值y1,y2,y3的大小为.17.如图,四边形ABCD与EFGH均为正方形,点B、F在函数y=〔*>0〕的图象上,点G、C在函数y=﹣〔*<0〕的图象上,点A、D在*轴上,点H、E在线段BC上,则点G的纵坐标.18.P1〔*1,y1〕,P2〔*2,y2〕两点都在反比例函数的图象上,且*1<*2<0,则y l y2〔填">〞或"<〞〕.19.如图,△AOB与反比例函数交于C、D,△AOB的面积为6,假设AC:CB=1:3,则反比例函数的表达式为.20.函数y=中,假设*>1,则y的取值围为,假设*<3,则y的取值围为.21.如图,点A为反比例函数y=﹣图象上一点,过A作AB⊥*轴于点B,连接OA,则△ABO的面积为.22.如图,点A为函数y=〔*>0〕图象上一点,连结OA,交函数y=〔*>0〕的图象于点B,点C是*轴上一点,且AO=AC,则△ABC的面积为.23.反比例函数y=〔k≠0〕的图象经过〔3,﹣1〕,则当1<y<3时,自变量*的取值围是.24.双曲线y=在每个象限,函数值y随*的增大而增大,则m的取值围是.25.如图,点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥*轴,AB,CD在*轴的两侧,AB=,CD=,AB与CD间的距离为6,则a﹣b的值是.三.解答题〔共15小题〕26.如图,在平面直角坐标系中,一次函数y=k*+b与反比例函数y=〔m≠0〕的图象交于点A〔3,1〕,且过点B〔0,﹣2〕.〔1〕求反比例函数和一次函数的表达式;〔2〕如果点P是*轴上一点,且△ABP的面积是3,求点P的坐标.27.如图,一次函数y1=﹣*+a与*轴、y轴分别交于点D、C两点和反比例函数交于A、B两点,且点A的坐标是〔1,3〕点B的坐标是〔3,m〕〔1〕求a,k,m的值;〔2〕求C、D两点的坐标,并求△AOB的面积.28.如图,一次函数y=﹣*+4的图象与反比例y=〔k为常数,且k≠0〕的图象交于A〔1,a〕,B两点.〔1〕求反比例函数的表达式及点B的坐标;〔2〕在*轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.29.如图,直线y1=k*+b与双曲线y2=交于A、B两点,它们的横坐标分别为1和5.〔1〕当m=5时,求直线AB的解析式及△AOB的面积;〔2〕当y1>y2时,直接写出*的取值围.30.如图,反比例函数y=的图象与一次函数y=k*+b的图象交于A,B两点,点A的坐标为〔2,6〕,点B的坐标为〔n,1〕.〔1〕求反比例函数与一次函数的表达式;〔2〕点E为y轴上一个动点,假设S△AEB=10,求点E的坐标.31.如图,一次函数y1=﹣*+2的图象与反比例函数y2=的图象相交于A,B 两点,与*轴相交于点C.tan∠BOC=.〔1〕求反比例函数的解析式;〔2〕当y1<y2时,求*的取值围.32.如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直*轴,垂足为Q,∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF⊥*轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.〔1〕求点B的坐标;〔2〕求四边形AOPE的面积.33.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点〔F不与A,B重合〕,过点F的反比例函数y=〔k>0〕的图象与BC边交于点E.〔1〕当F为AB的中点时,求该函数的解析式;〔2〕当k为何值时,△EFA的面积最大,最大面积是多少?34.如图,在平面直角坐标系中,OA⊥OB,AB⊥*轴于点C,点A〔,1〕在反比例函数y=的图象上.〔1〕求反比例函数y=的表达式;〔2〕在*轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;〔3〕假设将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E 的坐标,并判断点E是否在该反比例函数的图象上,说明理由.35.如图,在平面直角坐标系中,菱形OBCD的边OB在*轴上,反比例函数y=〔*>0〕的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为〔4,2〕.〔1〕求反比例函数的表达式;〔2〕求点F的坐标.36.如图,在平面直角坐标系中,直线AB与*轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥*轴,垂足为点E,tan∠ABO=,OB=4,OE=2.〔1〕求反比例函数的解析式;〔2〕假设点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.37.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为〔0,3〕,点A在*轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=k*+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.〔1〕求反比例函数和一次函数的表达式;〔2〕假设点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.38.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与*轴,垂足为点B,反比例函数y=〔*>0〕的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,〔1〕求反比例函数y=的解析式;〔2〕求cos∠OAB的值;〔3〕求经过C、D两点的一次函数解析式.39.如图,直线y=a*+b与反比例函数y=〔*>0〕的图象交于A〔1,4〕,B 〔4,n〕两点,与*轴、y轴分别交于C、D两点.〔1〕m=,n=;假设M〔*1,y1〕,N〔*2,y2〕是反比例函数图象上两点,且0<*1<*2,则y1y2〔填"<〞或"=〞或">〞〕;〔2〕假设线段CD上的点P到*轴、y轴的距离相等,求点P的坐标.40.如图,P1、P2是反比例函数y=〔k>0〕在第一象限图象上的两点,点A1的坐标为〔4,0〕.假设△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.〔1〕求反比例函数的解析式.〔2〕①求P2的坐标.②根据图象直接写出在第一象限当*满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.2017年03月20日初中数学3的初中数学组卷参考答案与试题解析一.选择题〔共14小题〕1.〔2017秋•市校级月考〕假设双曲线y=过两点〔﹣1,y1〕,〔﹣3,y2〕,则y1与y2的大小关系为〔〕A.y1>y2B.y1<y2C.y1=y2D.y1与y2大小无法确定【分析】根据反比例函数图象上点的坐标图特征得到﹣1•y1=2,﹣3•y2=2,然后计算出y1和y2比拟大小.【解答】解:∵双曲线y=过两点〔﹣1,y1〕,〔﹣3,y2〕,∴﹣1•y1=2,﹣3•y2=2,∴y1=﹣2,y2=﹣,∴y1<y2.应选B.【点评】此题考察了反比例函数图象上点的坐标特征:反比例函数y=〔k为常数,k≠0〕的图象是双曲线,图象上的点〔*,y〕的横纵坐标的积是定值k,即*y=k.2.〔2016•威海〕二次函数y=﹣〔*﹣a〕2﹣b的图象如下图,则反比例函数y=与一次函数y=a*+b的图象可能是〔〕A.B.C.D.【分析】观察二次函数图象,找出a>0,b>0,再结合反比例〔一次〕函数图象与系数的关系,即可得出结论.【解答】解:观察二次函数图象,发现:抛物线的顶点坐标在第四象限,即a>0,﹣b<0,∴a>0,b>0.∵反比例函数y=中ab>0,∴反比例函数图象在第一、三象限;∵一次函数y=a*+b,a>0,b>0,∴一次函数y=a*+b的图象过第一、二、三象限.应选B.【点评】此题考察了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出a>0,b>0.此题属于根底题,难度不大,解决该题型题目时,熟记各函数图象的性质是解题的关键.3.〔2016•〕当k>0时,反比例函数y=和一次函数y=k*+2的图象大致是〔〕A.B.C.D.【分析】根据k>0,判断出反比例函数y=经过一三象限,一次函数y=k*+2经过一二三象限,结合选项所给图象判断即可.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=k*+2经过一二三象限.应选C.【点评】此题考察了反比例函数与一次函数图象的知识,解答此题的关键在于通过k>0判断出函数所经过的象限.4.〔2017•南岗区一模〕假设点A〔*1,1〕、B〔*2,2〕、C〔*3,﹣3〕在双曲线y=﹣上,则〔〕A.*1>*2>*3B.*1>*3>*2C.*3>*2>*1D.*3>*1>*2【分析】把点的坐标分别代入函数解析式,可求得*1、*2、*3的值,可求得答案.【解答】解:∵点A〔*1,1〕、B〔*2,2〕、C〔*3,﹣3〕在双曲线y=﹣上,∴1=﹣,2=﹣,﹣3=﹣,解得点*1=﹣1,*2=﹣,*3=,∴*3>*2>*1,应选C.【点评】此题主要考察函数图象上的点与函数的关系,掌握函数图象上的点的坐标满足函数解析式是解题的关键.5.〔2017•市校级模拟〕如下图,两个反比例函数y=和y=在第一象限的图象依次是C1和C2,设点P在C1上,PC⊥*轴于点C,交C2于点A,PD ⊥y轴于点D,交C2于点B,则四边形PAOB的面积为〔〕A.k1+k2B.k1﹣k2C.k1•k2D.k1•k2﹣k2【分析】根据反比例函数系数k的几何意义得到S矩形PCOD=k1,S△AOC=S△=k2,然后利用四边形PAOB的面积=S矩形PCOD﹣S△AOC﹣S△BOD进展计算.BOD【解答】解:∵PC⊥*轴,PD⊥y轴,∴S矩形PCOD=k1,S△AOC=S△BOD=×k2,∴四边形PAOB的面积=S矩形PCOD﹣S△AOC﹣S△BOD=k1﹣k2﹣k2=k1﹣k2.应选B.【点评】此题考察了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向*轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.6.〔2017•肥城市三模〕如图,点A是反比例函数y=〔>0〕的图象上任意一点,AB∥*轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C,D在*轴上,则平行四边形ABCD的面积为〔〕A.2 B.3 C.4 D.5【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得A、B的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解.【解答】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则*=,即A的横坐标是,同理可得:B的横坐标是:﹣.则AB=﹣〔﹣〕=.则S□ABCD=×b=5.应选D.【点评】此题考察了是反比例函数与平行四边形的综合题,理解A、B的纵坐标是同一个值,表示出AB的长度是关键.7.〔2017•模拟〕如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于*轴,直线AC交*轴于点E,BC⊥AC,连接BE,反比例函数〔*>0〕的图象经过点D.S△BCE=2,则k的值是〔〕A.2 B.﹣2 C.3 D.4【分析】连接ED、OD,由平行四边形的性质可得出BC=AD、AD⊥AC,根据同底等高的三角形面积相等即可得出S△BCE=S△DCE,同理可得出S△OCD=S△DCE,再利用反比例函数系数k的几何意义即可求出结论.【解答】解:连接ED、OD,如下图.∵四边形ABCD为平行四边形,∴BC=AD,BC∥AD.∵BC⊥AC,∴AD⊥AC.∵△BCE和△DCE有一样的底CE,相等的高BC=AD,∴S△BCE=S△DCE.∵CD平行于*轴,∴△OCD与△ECD有相等的高,∴S△OCD=S△DCE=S△BCE=2=|k|,∴k=±4.∵反比例函数在第一象限有图象,∴k=4.应选D.【点评】此题考察了反比例函数系数k的几何意义、平行四边形的性质以及平行线的性质,利用同底等高的三角形面积相等找出S△OCD=S△DCE=S△BCE是解题的关键.8.〔2017•兴化市校级一模〕如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,假设四边形EMON的面积为2,则经过点B的双曲线的解析式为〔〕A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】过M作MG∥ON,交AN于G,过E作EF⊥AB于F,由题意可知:AM=OM=a,ON=NC=2a,AB=OC=4a,BC=AO=2a,再根据三角形相似以及三角形面积之间的关系求出B点坐标,即双曲线解析式求出.【解答】解:过M作MG∥ON,交AN于G,过E作EF⊥AB于F,设EF=h,OM=a,由题意可知:AM=OM=a,ON=NC=2a,AB=OC=4a,BC=AO=2a△AON中,MG∥ON,AM=OM,∴MG=ON=a,∵MG∥AB∴==,∴BE=4EM,∵EF⊥AB,∴EF∥AM,∴==.∴FE=AM,即h=a,∵S△ABM=4a×a÷2=2a2,S△AON=2a×2a÷2=2a2,∴S△ABM=S△AON,∴S△AEB=S四边形EMON=2,S△AEB=AB×EF÷2=4a×h÷2=2,ah=1,又有h=a,a=〔长度为正数〕∴OA=,OC=2,因此B的坐标为〔﹣2,〕,经过B的双曲线的解析式就是y=﹣.【点评】此题主要考察反比例函数的综合题的知识,解答此题的关键是辅助线的作法和相似三角形的性质的应用,此题难度中等.9.〔2017•微山县模拟〕点A〔﹣2,1〕,B〔1,4〕,假设反比例函数y=与线段AB有公共点时,k的取值围是〔〕A.﹣2≤k≤4 B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4 D.﹣2≤k<0或0<k≤4【分析】当k>0时,将*=1代入反比例函数的解析式的y=k,当k≤4时,反比例函数y=与线段AB有公共点;当k<0时,将*=﹣2代入反比例函数的解析式得:y=,当时,反比例函数图象与线段AB有公共点.【解答】解:①当k>0时,如以下图:将*=1代入反比例函数的解析式得y=k,∵y随*的增大而减小,∴当k≤4时,反比例函数y=与线段AB有公共点.∴当0<k≤4时,反比例函数y=与线段AB有公共点.②当k<0时,如以下图所示:将*=﹣2代入反比例函数得解析式得:y=﹣,∵反比例函数得图象随着*得增大而增大,∴当﹣≤1时,反比例函数y=与线段AB有公共点.解得:k≥﹣2,∴﹣2≤k<0.综上所述,当﹣2≤k<0或0<k≤4时,反比例函数y=与线段AB有公共点.应选;D.【点评】此题主要考察的是反比例函数的图象的性质,利用数形结合是解答此题的关键.10.〔2017春•萧山区校级月考〕如图,平面直角坐标系中,点A是*轴负半轴上一个定点,点P是函数y=〔*<0〕上一个动点,PB⊥y轴于点B,当点P 的横坐标逐渐增大时,四边形OAPB的面积将会〔〕A.先增后减B.先减后增C.逐渐减小D.逐渐增大【分析】过点P作PC⊥*轴于点C,根据k的几何意义可知矩形PBOC的面积为6,然后只需要讨论△APC的面积大小即可.【解答】解:过点P作PC⊥*轴于点C,∵点P在y=﹣〔*<0〕∴矩形PBOC的面积为6设A的坐标为〔a,0〕,P坐标〔*,〕〔*<0〕,△APC的面积为S,当a<*<0时,∴AC=*﹣a,∴PC=﹣∴△APC的面积为S=〔*﹣a〕•=﹣3〔1﹣〕∵a<0,∴﹣a>0,∴﹣在a<*<0上随着*的增大而减小,∴1﹣在a<*<0上随着*的增大而减小,∴﹣3〔1﹣〕在a<*<0上随着*的增大而增大,∴S=S△APC+6∴S在a<*<0上随着*的增大而增大,当*≤a时,∴AC=a﹣*,∴PC=﹣∴△APC的面积为S=〔a﹣*〕•=﹣3〔﹣1〕∵a<0,∴在*<a随着*的增大而增大,∴﹣1在*<a上随着*的增大而增大,∴﹣3〔﹣1〕在*<a上随着*的增大而减小,∴S=6﹣S△APC∴S在*<a上随着*的增大而增大,∴当P的横坐标增大时,S的值是逐渐增大,应选〔D〕【点评】此题考察反比例函数的图象性质,解题的关键是将点P的位置分为两种情况进展讨论,然后根据反比例函数的变化趋势求出△APC的面积变化趋势.此题综合程度较高.11.〔2016•龙东地区〕反比例函数y=,当1<*<3时,y的最小整数值是〔〕A.3 B.4 C.5 D.6【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在*>0中单调递减,再结合*的取值围,可得出y的取值围,取其的最小整数,此题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在*>0,y随*的增大而减小,当*=3时,y==2;当*=1时,y==6.∴当1<*<3时,2<y<6.∴y的最小整数值是3.应选A.【点评】此题考察了反比例函数的性质,解题的关键是找出反比例函数y=在1<*<3中y的取值围.此题属于根底题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.12.〔2016•〕以下函数中,满足y的值随*的值增大而增大的是〔〕A.y=﹣2* B.y=3*﹣1 C.y=D.y=*2【分析】根据一次函数、反比例函数、二次函数的性质考虑4个选项的单调性,由此即可得出结论.【解答】解:A、在y=﹣2*中,k=﹣2<0,∴y的值随*的值增大而减小;B、在y=3*﹣1中,k=3>0,∴y的值随*的值增大而增大;C、在y=中,k=1>0,∴y的值随*的值增大而减小;D、二次函数y=*2,当*<0时,y的值随*的值增大而减小;当*>0时,y的值随*的值增大而增大.应选B.【点评】此题考察了一次函数的性质、反比例函数的性质以及二次函数的性质,解题的关键是根据函数的性质考虑其单调性.此题属于根底题,难度不大,解决该题型题目时,熟悉各类函数的性质及其图象是解题的关键.13.〔2016•〕如图,在反比例函数y=﹣的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动.假设tan∠CAB=2,则k的值为〔〕A.2 B.4 C.6 D.8【分析】连接OC,过点A作AE⊥y轴于点E,过点B作BF⊥*轴于点F,通过角的计算找出∠AOE=∠COF,结合"∠AEO=90°,∠CFO=90°〞可得出△AOE∽△COF,根据相似三角形的性质得出,再由tan∠CAB==2,可得出CF•OF=8,由此即可得出结论.【解答】解:连接OC,过点A作AE⊥y轴于点E,过点C作CF⊥*轴于点F,如下图.由直线AB与反比例函数y=的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠EOC=90°,∠EOC+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴.∵tan∠CAB==2,∴CF=2AE,OF=2OE.又∵AE•OE=|﹣2|=2,CF•OF=|k|,∴k=±8.∵点C在第一象限,∴k=8.应选D.【点评】此题考察了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解题的关键是求出CF•OF=8.此题属于根底题,难度不大,解决该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.14.〔2016•〕如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD 的面积之差S△OAC﹣S△BAD为〔〕A.36 B.12 C.6 D.3【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为〔a+b,a﹣b〕.∵点B在反比例函数y=的第一象限图象上,∴〔a+b〕×〔a﹣b〕=a2﹣b2=6.∴S△OAC﹣S△BAD=a2﹣b2=〔a2﹣b2〕=×6=3.应选D.【点评】此题考察了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.此题属于根底题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.二.填空题〔共11小题〕15.〔2017•微山县模拟〕如图,等腰直角三角形OAB的一条直角边在y轴上,点P是边AB上的一个动点,过点P的反比例函数y=的图象交斜边OB于点Q,〔1〕当Q为OB中点时,AP:PB=〔2〕假设P为AB的三等分点,当△AOQ的面积为时,k的值为2或2.【分析】〔1〕设Q〔m,〕,根据线段中点的性质找出点B、A的坐标,再结合反比例函数图象上点的坐标特征可找出点P的坐标,由此即可得出结论;〔2〕设P〔n,〕〔n>0〕,根据三等分点的定义找出点B的坐标〔两种情况〕,由此即可得出直线OB的解析式,联立直线OB和反比例函数解析式得出点Q 的坐标,再根据三角形的面积公式找出关于k的一元一次方程,解方程即可得出结论.【解答】解:〔1〕设Q〔m,〕,∵Q为OB中点,∴B〔2m,〕,A〔0,〕,∴P〔,〕,∴AP:PB=:〔2m﹣〕=.故答案为:.〔2〕设P〔n,〕〔n>0〕.P为AB的三等分点分两种情况:①AP:PB=,∴B〔3n,〕,A〔0,〕,∴直线OB的解析式为y=*=*,联立直线OB与反比例函数解析式,得:,解得:,或〔舍去〕.∵S△AOQ=AO•*Q=××n=,解得:k=2;②AP:PB=2,∴B〔n,〕,A〔0,〕,∴直线OB的解析式为y=*=*,联立直线OB与反比例函数解析式,得:,解得:,或〔舍去〕.∵S△AOQ=AO•*Q=××n=,解得:k=2.综上可知:k的值为2或2.故答案为:2或2.【点评】此题考察了等腰直角三角形的性质、反比例函数图象上点的坐标特征以及三角形的面积公式,解题的关键是:〔1〕求出点P的坐标;〔2〕分两种情况考虑.此题属于中档题,难度不小,在解决第二问时,需要联立直线与反比例函数的解析式找出交点坐标,再结合三角形的面积公式找出关于k的一元一次方程,解方程即可得出结论.16.〔2017•茂县一模〕在函数〔k>0的常数〕的图象上有三个点〔﹣2,y1〕,〔﹣1,y2〕,〔,y3〕,函数值y1,y2,y3的大小为y3>y1>y2.【分析】先根据函数y=〔k>0的常数〕判断出函数图象所在的象限,再根据三点坐标判断出各点所在的象限,根据函数图象的特点进展解答即可.【解答】解:∵函数y=〔k>0的常数〕,∴此函数的图象在一、三象限,在每一象限y随*的增大而减小,∵﹣2<0,﹣1<0,>0,∴〔﹣2,y1〕,〔﹣1,y2〕在第三象限,〔,y3〕在第一象限,∵﹣2<﹣1,∴0>y1>y2,y3>0,故答案为:y3>y1>y2.【点评】此题考察的是反比例函数的图象上点的坐标特点,熟知反比例函数图象在每一象限的增减性是解答此题的关键.17.〔2017•微山县模拟〕如图,四边形ABCD与EFGH均为正方形,点B、F在函数y=〔*>0〕的图象上,点G、C在函数y=﹣〔*<0〕的图象上,点A、D在*轴上,点H、E在线段BC上,则点G的纵坐标+1 .【分析】设线段AB的长度为a,线段EF的长度为b〔a>0,b>0〕,利用反比例函数图象上点的坐标特征找出点B、C、F、G的坐标,再根据正方形的性质找出线段相等,从而分别找出关于a和关于b的一元二次方程,解方程即可得出a、b的值,从而得出结论.【解答】解:设线段AB的长度为a,线段EF的长度为b〔a>0,b>0〕,令y=〔*>0〕中y=a,则*=,即点B的坐标为〔,a〕;令y=﹣〔*<0〕中y=a,则*=﹣,即点C的坐标为〔﹣,a〕.∵四边形ABCD为正方形,∴﹣〔﹣〕=a,解得:a=2,或a=﹣2〔舍去〕.令y=〔*>0〕中y=2+b,则*=,即点F的坐标为〔,2+b〕;令y=﹣〔*<0〕中y=2+b,则*=﹣,即点G的坐标为〔﹣,2+b〕.∵四边形EFGH为正方形,∴+〔﹣〕=b,即b2+2b﹣4=0,解得:b=﹣1,或b=﹣﹣1〔舍去〕.∴a+b=2+﹣1=+1.故答案为:+1.【点评】此题考察了反比例函数图象上点的坐标特征以及正方形的性质,解题的关键是求出a、b值.此题属于根底题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征找出点的坐标,再结合正方形的性质分别找出关于正方形边长的一元二次方程是关键.18.〔2017•一模〕P1〔*1,y1〕,P2〔*2,y2〕两点都在反比例函数的图象上,且*1<*2<0,则y l<y2〔填">〞或"<〞〕.【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得比例函数的图象上,且*1<*2<0,则y l<y2,故答案为:<.【点评】此题考察了反比例函数图象上点的坐标特征,利用方比例函数的性质是解题关键.19.〔2017•新城区校级模拟〕如图,△AOB与反比例函数交于C、D,△AOB的面积为6,假设AC:CB=1:3,则反比例函数的表达式为y=.【分析】根据题意S△AOC=,进而根据反比例函数系数k的几何意义可得k的值,可得反比例函数的关系式.【解答】解:连接OC,∵△AOB的面积为6,假设AC:CB=1:3,∴△AOC的面积=6×=,∵S△AOC=AC•OA=*y=,即|k|=,∴k=±3,又∵反比例函数的图象在第一象限,∴y=,故答案为y=.【点评】此题考察了待定系数法求反比例函数的解析式,反比例函数系数k的几何意义,根据题意求得△AOC的面积是解题的关键.20.〔2017秋•市校级月考〕函数y=中,假设*>1,则y的取值围为0<y <6 ,假设*<3,则y的取值围为y<0或y>2 .【分析】根据反比例函数的增减性确定y的取值围即可.【解答】解:∵y=中k=6>0,∴在每一象限y随着*的增大而减小,当*=1时y=6,当*=3时y=2,∴当*>1,则y的取值围为0<y<6,当*<3时y的取值围为y<0或y>2 故答案为:0<y<6;y<0或y>2.【点评】此题考察了反比例函数的性质,解题的关键是弄清反比例函数的增减性,难度不大.21.〔2017春•启东市月考〕如图,点A为反比例函数y=﹣图象上一点,过A作AB⊥*轴于点B,连接OA,则△ABO的面积为 2 .【分析】根据过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.即可求解.【解答】解:△ABO的面积是:×|﹣4|=2.故答案是:2.【点评】此题主要考察了反比例函数y=中k的几何意义,即过双曲线上任意一点引*轴、y轴垂线,所得三角形面积为|k|,是经常考察的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.22.〔2016•〕如图,点A为函数y=〔*>0〕图象上一点,连结OA,交函数y=〔*>0〕的图象于点B,点C是*轴上一点,且AO=AC,则△ABC的面积为 6 .【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A 的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为〔a,〕,点B的坐标为〔b,〕,∵点C是*轴上一点,且AO=AC,∴点C的坐标是〔2a,0〕,设过点O〔0,0〕,A〔a,〕的直线的解析式为:y=k*,∴,解得,k=,又∵点B〔b,〕在y=上,∴,解得,或〔舍去〕,∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】此题考察反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.23.〔2016•潍坊〕反比例函数y=〔k≠0〕的图象经过〔3,﹣1〕,则当1<y<3时,自变量*的取值围是﹣3<*<﹣1 .【分析】根据反比例函数过点〔3,﹣1〕结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限的函数图象都单增,分别代入y=1、y=3求出*值,即可得出结论.【解答】解:∵反比例函数y=〔k≠0〕的图象经过〔3,﹣1〕,∴k=3×〔﹣1〕=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限均单增.当y=1时,*==﹣3;当y=3时,*==﹣1.∴1<y<3时,自变量*的取值围是﹣3<*<﹣1.故答案为:﹣3<*<﹣1.【点评】此题考察了反比例函数的性质以及反比例函数图象上点的坐标特征,解题的关键是求出k值.此题属于根底题,难度不大,解决该题型题目时,由点的坐标结合反比例函数图象上点的坐标特征求出k值,再根据反比例函数的性质找出去增减性是关键.24.〔2016•〕双曲线y=在每个象限,函数值y随*的增大而增大,则m的取值围是m<1 .【分析】根据反比例函数的单调性结合反比例函数的性质,可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:∵双曲线y=在每个象限,函数值y随*的增大而增大,∴m﹣1<0,解得:m<1.故答案为:m<1.【点评】此题考察了反比例函数的性质以及解一元一次不等式,解题的关键是找出关于m的一元一次不等式.此题属于根底题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质找出反比例系数k的取值围是关键.25.〔2016•滨州〕如图,点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥*轴,AB,CD在*轴的两侧,AB=,CD=,AB与CD间的距离为6,则a﹣b的值是 3 .【分析】设点A、B的纵坐标为y1,点C、D的纵坐标为y2,分别表示出来A、B、C、D四点的坐标,根据线段AB、CD的长度结合AB与CD间的距离,即可得出y1、y2的值,再由点A、B的横坐标结合AB=即可求出a﹣b的值.【解答】解:设点A、B的纵坐标为y1,点C、D的纵坐标为y2,则点A〔,y1〕,点B〔,y1〕,点C〔,y2〕,点D〔,y2〕.∵AB=,CD=,。
初三反比例函数ppt课件ppt
根据反比例函数的定义和性质,利用已知条件建立方程式,通过解方程式得到函数解析式。
最大值和最小值的求解
总结词
求解反比例函数的最大值和最小 值
详细描述
根据反比例函数的性质,通过求 导或单调性等方法,求出函数的 最大值和最小值。
04 练习题
基础题
总结词
反比例函数的概念理解
详细描述
提供一些与反比例函数定义相关的简单题目, 例如求反比例函数的表达式等。
总结词
反比例函数的综合题
详细描述
提供一些涉及多个知识点,如 一次函数和反比例函数的综合
题目。
拓展题
总结词
反比例函数与其他知识的结合
详细描述
提供一些涉及其他知识点,如 一次函数、二次函数等与反比 例函数结合的题目。
总结词
实际生活中的反比例函数应用
详细描述
提供一些与实际生活相关的题 目,如电力消耗与时间的反比
感谢您的观看
$y = \frac{k}{x}$(k为常数,k≠0)
确定x的取值范围
x可以为任意实数,但为了方便作图,通常取x的取值范围为x≠0
绘制图像
通过描点法,在坐标系上绘制出反比例函数的图像
图像的平移和伸缩变换
平移
反比例函数的图像在坐标系上可以进行平移,当自变量x的值增加或减少时, 函数值y也会相应地增加或减少,因此可以将反比例函数的图像沿x轴或y轴平 移,使图像更加直观和易于理解
单调递减区间
当k<0时,函数在区间$(-\infty,0)$和 $(0,+\infty)$上单调递增
03 反比例函数的应用
实际问题的转化
总结词
将实际问题转化为数学模型
详细描述
反比例函数应用综合习题
智信教育·反比例函数综合
1下列关系中。
是反比例函数关系的是:( )
A 多边形的内角和与边数的关系
B 正三角形的面积与边长之间的关系
C 直角三角形中两个锐角的关系
D 三角形面积S 一定时,它的底边长为a 与这个底边长上的高h 的关系
2若13+-=a x y 是反比例函数,则a=_。
3若122)2(-++=a a
x a y 为反比例函数关系式,则a=_。
4函数x
y 6= 的图象位于第 象限,在每一象限内,y 的值随x 的增大而 ,当x >0时,y 0,这部分图象位于第 象限 5已知反比例函数x
k y = (k ≠0),当x <0时,y 随x 的增大而减小,则一次函数y=kx-k 的图象不经过第 ____象限. 6如果反比例函数x m y 31-=
的图象位于第二、四象限,那么m 的范围为
7已知y=y 1+y 2,y 1与x-1成正比例,y 2与x 成反比例,且当x=2时y=4; x=3时,y=6. 求x=4时,y 的值.
8如图,已知反比例函数 x
y 12= 的图象与一次函数y= kx+4的图象相交于P 、Q 两点,且P 点的纵坐标是6.
(1)求这个一次函数的解析式
(2)求△POQ 的面积
9已知反比例函数y =k/x 和一次函数 y=x+b 的图象都经过点(2,1)
(1)分别求出这个函数的解析式
(2)试判断是A (-2, -1)在哪个函数的图象上
(3)求这两个函数的交点坐标
10已知如图,反比例函数x
y 8-
=与一次函数2+-=x y 的图像交于A,B 两点。
求 (1)A,B 两点的坐标
(2)△AOB 的面积。
9.3反比例函数的应用(1)
(1) 写出从药物释放开始,y 与t之间的两个函数关系式及相应 的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到毫克 以下时,学生方可进入教室,那么从药物释放开始,至 少需要经过多少小时后,学生才能进入教室?
例2:制作一种产品,需先将材料加热达到60℃后, 再进行操作.设该材料温度为y(℃),从加热开 始计算的时间为x(分钟).据了解,设该材料加 热时,温度y与时间x成一次函数关系;停止加热进 行操作时,温度y与时间x成反比例关系(如 图).已知该材料在操作加工前的温度为15℃,加 热5分钟后温度达到60℃.
50 B C D 20 A
O
10 30 第21题图
x(分)
本节课有何收获?
例1:(2008年巴中市)为预防“手足口病”, 某校对教室进行“药熏消毒”.已知药 物燃烧阶段,室内每立方米空气中的 含药量y(mg)与燃烧时间x(分钟) 成正比例;燃烧后,y与x成反比例 (如图所示).现测得药物10分钟 燃完,此时教室内每立方米空气含 药量为8mg.据以上信息.解答下列问题:
(1)求药物燃烧时y与x的函数关系式. (2)求药物燃烧后y与x的函数关系式. (3)当每立方米空气中含药量低于1.6mg时, 对人体方能无毒害作用,那么从消毒开始, 经多长时间学生才可以回教室?
练习:
为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放 过程中,室内每立方米空气中的含药量 y (毫克)与时间 t (小时)成正比; 药物释放完毕后, y 与 t 的函数关系式为 y a ( a 为常数) ,如图所示.据图中 t 提供的信息,解答下列问题:
2
100 80 60 40 20
I(m)
P(4,32)
1
2021秋九上第1章反比例函数1、3反比例函数的应用2建立反比例函数模型解跨学科中的问题授课湘教版
,
l 当l
>
200
0时,l
l
越大,F 越小.因此,若想用力不超过 400 N 的一半,则 动
力臂至少要加长 1. 5 m.
感悟新知
归纳
知1-讲
用反比例函数解决实际问题的一般步骤: (1) 审:审清题意,找出题目中的常量、变量; (2) 设:根据常量、变量间的关系,设出函数表达式, 待定的系数用字母表示; (3) 列:由题目中的已知条件列出方程,求出待定系数; (4) 写:写出函数表达式,并注意表达式中自变量的取 值范围; (5) 解:用函数的图象和性质去解决实际问题.
所以F 关于 当 l = l. 5 m
l 的函数解析式为 F 时,F 600 =400 (N
600 l
).
.
对于函数 F
600 ,
1.5
当 l = 1.5m时,F = 400 N,
l
此时杠杆平衡. 因此撬动石头至少需要400 N 的力.
感悟新知
知1-导
(2) 若想使动力 F 不超过题 (1) 中所用力的一半,则动 力臂l 至少要加长多少 ?
电流 I 增大.
感悟新知
归纳
知2-讲
在电学中, 当电压 U 一定时,闭合电路的电流 I
与电阻 R 之间是反比例函数关系, 即:
电流( I
)
=
电压(U ) 电阻( R)
.
感悟新知
知2-练
1.验光师测得一组关于近视眼镜的度数y(度)与镜片焦
距x(米)的对应数据如下表,根据表中数据,可得y
关于x的函数表达式为( A )
课堂小结
反比例函数在 跨学科中的应
用
反比例函数
“杠杆原理”: 动力×动力臂=阻力×阻力臂
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
1.3 反比例函数的应用 同步练习
(一) 、填空题
1.长方形的面积为60cm2,如果它的长是ycm,宽是xcm,那么y是x的 函数关系,
y写成x的关系式是 。
2.A、B两地之间的高速公路长为300km,一辆小汽车从A地去B地,假设在途中是匀速直
线运动,速度为vkm/h,到达时所用的时间是th,那么t是v的 函数,t可以写成
v的函数关系式是 。
3.如图,根据图中提供的信息,可以写出正比例函数的关系式是 ;反比例函数关
系式是 。
(二)、选择题
1.三角形的面积为8cm2,这时底边上的高y(cm)与底边x(cm)
之间的函数关系用图像来表示是 。
2.下列各问题中,两个变量之间的关系不是反比例函数的是
A:小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的关系。
B:菱形的面积为48cm2,它的两条对角线的长为y(cm)与x(cm)的关系。
C:一个玻璃容器的体积为30L时,所盛液体的质量m
与所盛液体的体积V之间的关系。
D:压力为600N时,压强p与受力面积S之间的关系。
3.如图,A、B、C为反比例函数图像上的三个点,分别
从A、B、C向xy轴作垂线,构成三个矩形,它们的面积
分别是S1、S2、S3,则S1、S2、S3的大小关系是
A:S1=S2>S3 B:S1<S2<S3
C:S1>S2>S3 D:S1=S2=S3
(三)解答题
x
y
-1
O
2
x
y
B
A
O
C
2
1.如图所示是某一蓄水池每小时的排水量V(m3/h)与排完水池中的水所用的时间t(h)之
间的函数关系图像。
①请你根据图像提供的信息求出此蓄水池的蓄水量。
②写出此函数的解析式
③若要6h排完水池中的水,那么每小时的排水量应该是多少?
④如果每小时排水量是5m3,那么水池中的水将要多少小时排完?
2.如图正比例函数y=k1x与反比例函数xky2交于点A,从A向x轴、y轴分别作垂线,
所构成的正方形的面积为4。
①分别求出正比例函数与反比例函数的解析式。
②求出正、反比例函数图像的另外一个交点坐标。
③求△ODC的面积。
D
xyBAOC