齿轮传动的强度设计计算_)
齿轮传动的设计参数、许用应力与精度选择

齿轮传动的设计参数、许用应力与精度选择(一)齿轮传动设计参数的选择压力角α的选择由机械原理可知,增大压力角α,轮齿的齿厚及节点处的齿廓曲率半径亦皆随之增加,有利于提高齿轮传动的弯曲强度及接触强度。
我国对一般用途的齿轮传动规定的标准压力角为α=20°。
为增强航空用齿轮传动的弯曲强度及接触强度,我国航空齿轮传动标准还规定了α=25°的标准压力角。
但增大压力角并不一定都对传动有利。
对重合度接近2的高速齿轮传动,推荐采用齿顶高系数为1~1.2 ,压力角为16°~18°的齿轮,这样做可增加轮齿的柔性,降低噪声和动载荷。
小齿轮齿数 z1 的选择若保持齿轮传动的中心距 a 不变,增加齿数,除能增大重合度、改善传动的平稳性外,还可减小模数,降低齿高,因而减少金属切削量,节省制造费用。
另外,降低齿高还能减小滑动速度,减少磨损及减小胶合的可能性。
但模数小了,齿厚随之减薄,则要降低轮齿的弯曲强度。
不过在一定的齿数范围内,尤其是当承载能力主要取决于齿面接触强度时,以齿数多一些为好。
闭式齿轮传动一般转速较高,为了提高传动的平稳性,减小冲击振动,以齿数多一些为好。
小齿轮的齿数可取为 z1=20~40。
开式(半开式)齿轮传动,由于轮齿主要为磨损失效,为使轮齿不至过小,故小齿轮不宜选用过多的齿数,一般可取z1=17~20。
为使轮齿免于根切,对于α=20°的标准直齿圆柱齿轮,应取z1≥17。
齿宽系数φd的选择由齿轮的强度计算公式可知,轮齿愈宽,承载能力愈高;但增大齿宽又会使齿面上的载荷分布趋不均匀,故齿宽系数应取得适当。
圆柱齿轮齿宽系数的荐用值见下表。
对于标准圆柱齿轮减速器,齿宽系数取为,所以对于外啮合齿轮传动:。
φa的值规定为0.2,0.25,0.30,0.40,0.50,0.60,0.80,1.0,1.2。
运用设计计算公式时,对于标准减速器,可先选定φa后再用上式计算出相应的φd值。
圆柱斜齿轮传动的设计计算

1.1.1 圆柱斜齿轮传动的设计计算已知输入功率1 1.5kWP =(略大于小齿轮的实际功率),小齿轮的转速为:12800rpm n =,大齿轮的转速为2560rpm n =,传动比5i =。
1.选定齿轮类型、精度等级、材料及齿数(1)由于第二级为圆锥齿轮传递,为了平衡锥齿轮传动对第二轴产生的轴向力,第一级传动设计为斜齿轮传动。
(2)叉车车速不高,为一般机械,故选用8级精度。
(3)材料选择,小齿轮材料为40Cr (正火),硬度为280HBW ,大齿轮材料为45钢(调质),硬度为240HBW ,二者材料硬度相差40HBW ,在30~50HBW 范围内。
(4)选小齿轮齿数12117,51785z z u z ==⋅=⨯=则,为了延长齿轮工作寿命,1z 和2z 尽量互质,所以校正2z 值,取284z =, 4.94u =。
2.按齿面接触疲劳强度设计因为是软齿面传动,故按齿面接触疲劳强度进行设计。
公式如下:1d ≥(5-1) 式中各参数为: (1)小齿轮传递的转矩 ()66111 1.5/N mm 9.55109.55105116.12800P T n ⋅=⨯=⨯⋅= (5-2) (2)设计时,因为v 值未知,v K 不能确定,故可初选载荷系数 1.1~1.8t K =,本设计中初选 1.4t K =。
(3)选取齿宽系数 1d φ=。
(4)查得材料弹性影响系数E Z =(5)初选螺旋角12β=︒,由机械手册查得节点区域系数 2.46H Z =。
(6)由选定齿数及齿数比,得端面重合度:121111=1.88 3.2cos 1.88 3.2cos12 1.631784z z αεβ⎡⎤⎛⎫⎡⎤⎛⎫-+=-+︒=⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭⎣⎦ (5-3) 得轴面重合度:10.318tan 0.318117tan12 1.53d z βεφβ==⨯⨯⨯︒= (5-4)由机械手册查得重合度系数0.768Z ε=。
齿轮传动课件

15:08:44
22
齿轮材料及热处理:锻钢
由于啮合过程中,小齿轮的啮合次数比大齿轮 多,齿根应力较大齿轮大,为了使大、小齿轮 的寿命接近相等,推荐小齿轮的齿面硬度比大 齿轮高30~50HBS。软齿面齿轮常用于对齿轮 尺寸和精度要求不高的传动中。
15:08:44
23
齿轮材料及热处理:锻钢
(2) 表面硬化钢和氮化钢。齿轮一般为用锻钢切 齿后经表面硬化处理(表面淬火、渗碳淬火、氮 化等),淬火后(特别是渗碳淬火),因热处理变 形大,一般都要经过磨齿等精加工,以保证齿 轮所需的精度。氮化齿轮变形小,在精度低于7 级时,一般不需磨齿。氮化齿轮,因硬化层深 度很小(0.1~0.6mm),不宜用于有冲击或有磨 料磨损的场合。
17
失效形式:齿面胶合
在重载低速齿轮传动中,由于局部齿面啮 合处压力很高,且速度低,不易形成油膜 ,使接触表面膜被刺破而粘着,这种胶合 称为冷胶合。
15:08:44
18
失效形式:齿面胶合
减小模数、降低齿高、采用角度变位齿轮 以减小滑动系数,提高齿面硬度,采用抗 胶合能力强的润滑油(极压油)等,均可减缓 或防止齿面胶合。
15:08:44
42
直齿圆锥齿轮传动
直齿圆锥齿轮的标准模数为大端模数m,其 几何尺寸按大端计算。 背锥 当量齿轮 正确啮合条件
15:08:44
43
15:08:44
44
15:08:44
45
受力分析
由于直齿圆锥齿轮的轮齿从大端到小端逐 渐收缩,轮齿沿齿宽方向的截面大小不等 ,受力后不同截面的弹性变形各异,引起 载荷分布不均,其受力和强度计算都相当 复杂,一般以齿宽中点的当量直齿圆柱齿 轮作为计算基础
15:08:44
机械设计期末考试 思考题

机械设计思考题第一章绪论1、一个机械系统一般包含机械结构系统、驱动动力系统、检测与控制系统。
2、一台机器的机械结构总是由一些机构组成的,每个机构又是由若干零件组成的。
有些零件是在各种机器中常用的,称之为通用零件。
有些零件只有在特定的机器中才用到,称之为专用零件。
3、机械设计课程中“设计”的含义是指机械装置的实体设计,涉及零件的应力,强度的分析计算,材料的选择、结构设计,考虑加工工艺性、标准化以及经济性、环境保护等。
第二章机械设计总论1、一部机器的质量基本上决定于设计质量,机器的设计阶段是决定机器好坏的关键。
12、设计机器的一般程序:计划阶段、方案设计阶段、技术设计阶段、技术文件编制阶段。
3、对机器都要提出的基本要求:使用功能要求、经济性要求、劳动保护要求、可靠性要求、其它专用要求。
4、机械零件常见的失效形式有:整体断裂、过大的残余变形、零件的表面破坏以及破坏正常工作条件引起的失效等。
5、机器的零件满足以下要求:(1)避免在预定寿命期内失效的要求,应保证零件有足够的强度、刚度、寿命。
(2)结构工艺性要求,设计的结构应便于加工和装配。
(3)经济性要求,零件应有合理的生产加工和使用维护的成本。
(4)质量小的要求,质量小则可节约材料,质量小则灵活、轻便。
(5)可靠性要求,应降低零件发生故障的可能性(概率)。
6、机械零件的设计准则(1)强度准则,确保零件不发生断裂破坏或过大的塑性变形,是最基本的设计准则。
(2)刚度准则,确保零件不发生过大的弹性变形。
(3)寿命准则,通常与零件的疲劳、磨损、腐蚀相关。
(4)振动稳定性准则,高速运转机械的设计应注重此项准则。
(5)可靠性准则,当计及随机因素影响时,仍应确保上述各项准则。
7、于机械设计有关的标准主要有:国际标准、国家标准、行业标准、企业标准等。
8、机械零件的设计准则主要有强度准则、刚度准则、寿命准则、振动稳定性准则和可靠性准则。
9、零件的表面经淬火,渗氮,喷丸,滚子碾压等处理后,其疲劳强度_______。
机械设计基础(零件)填空题(附答案)

《机械设计基础》填空部分复习题第九章1、机械零件由于某种原因,不能时,称为失效。
机械零件在的条件下,零件能安全工作的限度,称为工作能力。
2、若两个零件在受载前是接触或接触,受载后接触变形处为一小面积,在这小面积上产生的局部应力称为应力,如等零件工作时就有这种应力作用。
对高副接触的零件,在外载荷作用下,接触处将产生应力,从而将引起零件的破坏。
两零件高副接触时,其最大接触应力取决于,及度上的载荷。
两零件高副接触时,其接触应力随接触点,线处的曲率半径增大而;随材料的弹性模量减小而;随单位接触宽度载荷的增大而。
零件的表面硬度,接触表面的综合曲率半径,可以提高零件的接触疲劳强度。
2、材料发生疲劳破坏时的应力循环次数N必于该材料的循环基数N0;由于,和等因素的影响,零件的疲劳极限必小于其材料的疲劳极限。
3、随时间变化的应力称为变应力,具有周期性变化的变应力称为循环变应力。
按照随时间变化的情况,应力可分为和。
变应力可归纳为变应力、变应力和变应力三种基本类型。
变应力的五个基本参数是σmax、σmin、σm、σa、r。
应力循环中的与之比,可用来表示变应力中应力变化的情况,通常称为变应力的循环特性r。
当r=+1表示为应力,r=0表示为应力,它的σmin=,σm=σa=;当r=-1表示为应力,它的σmax=σa;σm=;非对称循环变应力的r变化范围为和之间。
4、在变应力中,表示与力循环次数之间的关系曲线称为材料的疲劳曲线。
在变应力作用下,零件的主要失效形式是。
在静应力下,塑性材料的零件按不发生条件进行强度计算,故应取材料的作为极限应力;而脆性材料的零件按不发生的条件进行计算,故应取材料的作为极限应力。
变应力下,零件的许用极限应力与零件材料的疲劳极限有关,同时还应考虑系数、__系数和系数。
6、一非对称循环变应力,其σmax=100N/mm2,σmin=-50N/mm2,计算其应力幅σa= N/mm2,平均应力σm=___N/mm2,循环特性r= 。
第10章_齿轮传动

2KT YFaYsa 1 m≥ 3 ⋅ 设计公式: 设计公式: 2 φdz1 [σF ]
三、齿面接触疲劳强度计算 基本公式──赫兹应力计算公式, 基本公式 赫兹应力计算公式,即: 赫兹应力计算公式
F ×( ± ) ca 小齿轮单对齿啮合的 ρ1 ρ2 σH = 最低点综合曲率最大。 最低点综合曲率最大。 2 1− µ2 1− µ1 2 π( + )L E E 1 1 为方便计算, 为方便计算, 1 1 1 以节点为接触应力计算点。 以节点为接触应力计算点。 为综合曲率 令 = ± 1 1
二、齿轮的设计准则 轮齿折断 齿面点蚀 齿面磨损 齿面胶合 塑性变形 设计准则: 设计准则: 保证足够的齿根弯曲疲劳强度,以免发生齿根折断。 保证足够的齿根弯曲疲劳强度,以免发生齿根折断。 保证足够的齿面接触疲劳强度,以免发生齿面点蚀。 保证足够的齿面接触疲劳强度,以免发生齿面点蚀。 闭式软齿面齿轮传动, 闭式软齿面齿轮传动,以保证齿面接触疲劳强度为主 闭式硬齿面或开式传动,以保证齿根弯曲疲劳强度为主。 闭式硬齿面或开式传动,以保证齿根弯曲疲劳强度为主。
再去查图( 再去查图(KFN, KHN )
—— σlim为齿轮的疲劳极限
弯曲强度计算时: 弯曲强度计算时: σlim=σFE 接触强度计算时: 接触强度计算时: σlim=σHlim
—— S为安全系数 为安全系数
弯曲强度计算时: 弯曲强度计算时: S= S F=1.25~1.50 接触强度计算时: 接触强度计算时: S= S H=1.0
三、齿轮材料选用的基本原则 齿轮材料必须满足工作条件的要求,如强度、 齿轮材料必须满足工作条件的要求,如强度、 寿命、可靠性、经济性等; 寿命、可靠性、经济性等; 应考虑齿轮尺寸大小,毛坯成型方法及热处理 应考虑齿轮尺寸大小, 和制造工艺; 和制造工艺; 钢制软齿面齿轮, 钢制软齿面齿轮,其配对两轮齿面的硬度差应 保持在30~50HBS或更多。 或更多。 保持在 或更多
齿轮传动的计算载荷
齿轮传动的计算载荷songli2010-01-21 14:06齿轮传动的计算载荷为了便于分析计算,通常取沿齿面接触线单位长度上所受的载荷进行计算。
沿齿面接触线单位长度上的平均载荷p(单位为N/mm)为 p=Fn/L式中:Fn——作用于齿面接触线上的法向载荷,N;L——沿齿面的接触线长,mm。
法向载荷Fn为公称载荷,在实际传动中,由于原动机及工作机性能的影响,以及齿轮的制造误差,特别是基节误差和齿形误差的影响,会使法向载荷增大。
此外,在同时啮合的齿对间,载荷的分配并不是均匀的,即使在一对齿上,载荷也不可能沿接触线均匀分布。
因此在计算齿轮传动的强度时,应按接触线单位长度上的最大载荷,即计算载荷pca(单位为N/mm)进行计算。
即Pca=Kp=KFn/L式中,K为载荷系数;Fn、L的意义和单位同前。
计算齿轮强度用的载荷系数K,包括使用系数KA、动载系数Kv、齿间载荷分配系数Kα及齿向载荷分布系数Kβ,即K= KAKvKαKβ(一)使用系数KA使用系数KA是考虑齿轮啮合时外部因素引起的附加载荷影响的系数。
这种附加载荷取决于原动机和从动机械的特性、质量比、联轴器类型以及运行状态等。
KA的实用值应针对设计对象,通过实践确定。
表10-2所列的KA值可供参考。
(二)动载系数鬈,齿轮传动不可避免地会有制造及装配的误差,轮齿受载后还要产生弹性变形。
这些误差及变形实际上将使啮合轮齿的法节pb1与ph2不相等(参看图10-6和10-7),因而轮齿就不能正确地啮合传动,瞬时传动比就不是定值,从动齿轮在运转中就会产生角加速度,于是引起了动载荷或冲击。
对于直齿轮传动,轮齿在啮合过程中,不论是由双对齿啮合过渡到单对齿啮合,或是由单对齿啮合过渡到双对齿啮合的期间,由于啮合齿对的刚度变化,也要引起动载荷。
为了计及动载荷的影响,引入了动载系数KA。
齿轮的制造精度及圆周速度对轮齿啮合过程中产生动载荷的大小影响很大。
提高制造精度,减小齿轮直径以降低圆周速度,均可减小动载荷。
齿轮齿面接触强度及齿根弯曲强度核算
齿面接触强度及齿根弯曲强度核算在设计产品过程中,经常会选用齿轮作为传动力及扭矩的原件。
在大部分成型产品改造或调整过程中,关于齿轮的强度校核这一步骤就可以用类比法代替,从而节省设计人员的精力,缩短了设计周期。
但得出的结果没有书面依据以及理论方面的支持。
所以当进行多次类比之后,所设计出来的齿轮与理论计算得出的齿轮偏差会较大。
其原理类似于累计偏差。
所以应该进行强度校核方面的计算。
齿轮强度校核计算,在实际应用中,主要是两方面的核算:1、齿面接触强度的核算。
2、齿根弯曲强度的核算。
1.齿面接触强度核算-分度圆直径计算参考文献:在初步设计齿轮时,根据齿面接触强度,可按照下列公式估算齿轮传动的尺寸。
(机械设计手册P14-133)a≥A a(μ±1)·√KT1ψaσHP23①d1≥A d·√KT1ψdσHP2·μ±1μ3②公式①为两齿轮中心距的计算;公式②为齿轮分度圆直径的计算。
由于本次计算的是齿轮齿条传动。
所以,中心距a= d1/2其中:d1为齿轮分度圆直径,只需要核算齿轮分度圆直径d1首先,要确定公式②中各个符号代表的含义及数值选取。
d1—齿轮分度圆直径;A d—常系数;K—载荷系数;μ—齿数比;σHP—许用接触应力;ψd—齿宽系数;T1—电机减速机输出扭矩;d1:齿轮分度圆直径,待求;A d:常系数值;A d值在表14-1-65中,通过螺旋角角度β的数值求得。
齿轮的螺旋角β=11.655°,则A d = 756。
载荷系数K,常用值K=1.2~2(机械设计手册P14-133),当载荷平稳,齿宽系数较小,轴承对称布置,轴的刚性较大,齿轮精度较高(6级以上),以及齿轮的螺旋角较大时取较小值;反之取较大值。
根据对比后的结果在K的常用范围内选取。
此次选择K=1.8(载荷平稳,齿宽系数较小,轴为非对称分布,轴的刚性不大,齿轮精度不高)u:传动比。
当齿轮之间为外啮合的时候,选取“+”;当齿轮之间为内啮合的时候,选取“-”,本次计算为齿轮齿条,不影响计算结果。
电动助力转向系统中齿轮齿条传动设计与计算_刘庚寅
收稿日期:2012-09-14作者简介:刘庚寅(1970—),男,汉,湖南邵东人,硕士研究生,研究方向:汽车电动助力转向系统。
E-mail :lgy960@ 。
电动助力转向系统中齿轮齿条传动设计与计算刘庚寅,刘晟昱,彭微君,葛阳清,康永升(株洲易力达机电有限公司,湖南株洲412002)摘要:介绍了P-EPS 电动助力转向系统的传动原理及其主要零部件。
特别是就某一车型的P-EPS 齿轮齿条的设计计算进行了详细的分析。
对不同载荷车型的齿轮齿条模数和齿数的匹配分别进行了计算,为新产品的开发提供了参考和指导。
关键词:电动助力转向系统;P-EPS ;齿轮轴;齿条轴Design and Calculation on Transmission between Pinion andRack in Electric Power Steering SystemLIU Gengyin ,LIU Shengyu ,PENG Weijun ,GE Yangqing ,KANG Yongsheng (Zhuzhou Elite Electro Mechanical Co.,Ltd.,Zhuzhu Hunan 412002,China )Abstract :The theory and main components of P-EPS electric power steering system were introduced here.Especially ,the design and calculation for rack and pinion of P-EPS about one car were analyzed in detail.Also ,matching relation between modulus and teeth number of rack and pinion were separately calculated for different car types with different weight ,so the reference and guides were provided for the devel-opment of new products.Keywords :Electric power steering system ;P-EPS ;Pinion ;Rack0前言国产电动助力转向系统(EPS )经过十几年的探索与研究,技术日趋成熟,并以其相对传统液压转向系统的突出优点而得到众多汽车厂家的认可,并在中小排量汽车上得到了广泛应用。
机械传动件的设计计算
机械传动件的设计计算一、传动功率的计算传动件的设计计算首先要确定传动所需的功率。
传动功率通常由以下几个方面决定:1.输出功率:根据机械系统的工作特点和设定的工作效率,确定所需的输出功率。
2.传动效率:根据传动件的类型和工作条件,确定传动效率。
通常情况下,齿轮传动的效率可以达到90%以上,皮带传动的效率一般为95%左右。
3.安全系数:根据实际工作条件和设备的可靠性要求,确定安全系数。
一般来说,传动设备的安全系数在1.2-1.5之间。
根据以上几个因素,可以计算出传动所需的功率。
传动功率的计算公式如下:P = P_out / η / S其中,P为传动所需的功率,P_out为输出功率,η为传动效率,S为安全系数。
二、传动比的选择传动比的选择是根据输入轴和输出轴的转速和转矩要求,以及传动件的类型和工作条件来确定的。
根据传动比的选择,可以计算出齿轮的模数和齿轮的齿数。
三、轴的直径计算根据传动所需的转矩和转速,可以计算出轴的直径。
轴的直径计算公式如下:d=(16*T)/(π*σ*n)其中,d为轴的直径,T为所需传动转矩,σ为许用剪应力,n为转速。
齿轮传动的设计计算是机械传动件设计中最常见的计算。
主要包括齿轮的模数、齿数、齿宽、啮合角等参数的计算。
1.模数的选择:根据传动比和输入轴的转速和扭矩要求,可以选择合适的模数。
一般来说,模数越大,齿轮强度越高,但齿轮的体积和重量也会增加。
2.齿数的设计:通过传动比和齿轮的参数计算,可以确定输入轮和输出轮的齿数。
一般来说,输入轮的齿数应比输出轮的齿数多,以提高传动的稳定性和平稳性。
3.齿宽的设计:根据传动扭矩和齿轮的参数,可以计算出齿宽。
齿宽的设计要满足齿轮强度和齿面接触强度的要求。
4.啮合角的设计:通过传动比和齿轮的参数计算,可以确定齿轮的啮合角。
啮合角的设计要尽量选择合理的范围,以保证齿轮的工作稳定性和平滑性。
总结:机械传动件的设计计算主要涉及传动功率的计算、传动比的选择、轴的直径计算和齿轮传动的设计计算等几个方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 齿面接触疲劳强度的计算 齿面接触疲劳强度的计算中,由于赫兹应力是齿面间应力的主要指标,故把赫兹应力作为齿面接触应力的计算基础,并用来评价接触强度。齿面接触疲劳强度核算时,根据设计要求可以选择不同的计算公式。用于总体设计和非重要齿轮计算时,可采用简化计算方法;重要齿轮校核时可采用精确计算方法。
分析计算表明,大、小齿轮的接触应力总是相等的。齿面最大接触应力一般出现在小轮单对齿啮合区内界点、节点和大轮单对齿啮合区内界点三个特征点之一。实际使用和实验也证明了这一规律的正确。因此,在齿面接触疲劳强度的计算中,常采用节点的接触应力分析齿轮的接触强
度。强度条件为:大、小齿轮在节点处的计算接触应力均不大于其相应的许用接触应力,即: ⑴ 圆柱齿轮的接触疲劳强度计算 1)两圆柱体接触时的接触应力 在载荷作用下,两曲面零件表面理论上为线接触或点接触,考虑到弹性变形,实际为很小的面接触。两圆柱体接触时的接触面尺寸和接触应力可按赫兹公式计算。
两圆柱体接触,接触面为矩形(2axb),最大接触应力σHmax位于接触面宽中线处。计算公式为: 接触面半宽:
最大接触应力:
F——接触面所受到的载荷
ρ——综合曲率半径,(正号用于外接触,负号用于内接触)
E1、E2——两接触体材料的弹性模量
μ1、μ2——两接触体材料的泊松比 2)齿轮啮合时的接触应力 两渐开线圆柱齿轮在任意一处啮合点时接触应力状况,都可以转化为以啮合点处的曲率半径ρ1、ρ2为半径的两圆柱体的接触应力。在整个啮合过程中的最大接触应力即为各啮合点接触应力的最大值。节点附近处的ρ虽然不是最小值,但节点处一般只有一对轮齿啮合,点蚀也往往先在节点附近的齿根表面出现,因此,接触疲劳强度计算通常以节点为最大接触应力计算点。
参数 直齿圆柱齿轮 斜齿圆柱齿轮
节点处的载荷为
综合曲率半径为 接触线的长度为 ,
3)圆柱齿轮的接触疲劳强度 将节点处的上述参数带入两圆柱体接触应力公式,并考虑各载荷系数的影响,得到: 接触疲劳强度的校核公式为: 接触疲劳强度的设计公式为:
KA——使用系数
KV——动载荷系数
KHβ——接触强度计算的齿向载荷分布系数
KHα——接触强度计算的齿间载荷分配系数
Ft——端面内分度圆上的名义切向力,N;
T1——端面内分度圆上的名义转矩,N.mm;
d1——小齿轮分度圆直径,mm;
b ——工作齿宽,mm,指一对齿轮中的较小齿宽;
u ——齿数比;
ψd——齿宽系数,指齿宽b和小齿轮分度圆直径的比值(ψd=b/d1)。在一定载荷作用下,齿宽增加可以减小齿轮传动的结构
尺寸,降低圆周速度,但齿宽过大,载荷分布不均匀程度增加,因此必须合理选择齿宽系数。 ZH——节点区域系数,用于考虑节点处齿廓曲率对接触应力的影响。 ZE——弹性系数,用于修正材料的弹性模量和泊松比对接触应力的影响。
Zε——重合度系数,用于考虑重合度对单位齿宽载荷的影响,重合度越大,承载的接触线总长度越大,单位接触载荷越小。Zε
可按下式计算:
直齿轮: 斜齿轮:当时当时 式中:——端面重合度;——纵向重合度 Zβ——螺旋角系数,用于考虑螺旋角造成的接触线倾斜对接触应力的影响,其数值可以由计算。
σHp——许用接触应力,N/mm2,取相互啮合两齿轮中的较小值。
(2) 直齿锥齿轮的接触疲劳强度计算公式 将相互啮合的一对直齿锥齿轮转化为相应的当量圆柱直齿轮,对圆柱齿轮进行设计,再将圆柱齿轮的设计参数转化为锥齿轮的大端参数。 对于轴交角为90°的直齿锥齿轮传动,将齿宽中点处的当量圆柱齿轮的参数带入圆柱齿轮接触强度公式有:
Zk——接触强度计算的锥齿轮系数,一般情况取1,当齿顶和齿根修形适当时可取0.85;
Fmt——齿宽中点分度圆上的名义圆周力,N;
dm1——小轮齿宽中点分度圆直径,mm;
beH——接触强度计算的有效齿宽mm,一般取为0.85b;
将当量直齿轮的参数转化为锥齿轮的大端参数,再进行整理 直齿锥齿轮接触强度校核公式:
Mpa 设计公式:
mm d1——小齿轮大端分度圆直径,mm;
KHβ——接触强度计算的齿向载荷分布系数
2. 齿根弯曲疲劳强度的计算 齿根弯曲疲劳强度的计算中,作为判据的齿根应力,原则上可用任何适宜的方法(如有限元法、积分法等)或实际测量(如光弹测量、应变测量)来确定。国家标准中以载荷作用侧的齿廓根部的最大拉应力作为名义弯曲应力,经相应的系数修正后作为计算齿根应力,把此应力作为齿根弯曲应力的计算基础,并用来评价接触强度。齿根弯曲疲劳强度核算时,根据设计要求可以选择不同的计算公式。用于总体设计和非重要齿轮计算时,可采用简化计算方法;重要齿轮校核时可采用精确计算方法。齿根弯曲疲劳强度条件为:大、小齿轮在齿根处的计算弯曲应力均不
大于其相应的许用弯曲应力,即:。 (1) 圆柱齿轮的齿根弯曲疲劳强度计算公式 采用国标(GB/T3480-1997)中载荷作用于齿顶为基础的计算方法,适用于εa≤2的齿轮传动。对于斜齿圆柱齿轮,由于轮齿折断时多为局部折断,齿根应力较复杂,通常按斜齿轮的法面当量直齿轮进行计算和分析。
1)名义齿根应力计算 载荷作用在齿顶时,轮齿可看作宽度为b的悬臂梁,齿根处的危险截面可由30°截面法确定:作与轮齿对称中线成30°角并与齿根过渡曲线相切的切线,通过两切点且平行于齿轮轴线的截面,即齿根危险截面。
沿啮合线方向作用于齿顶的法向力Fn分解后使齿根危险剖面产生弯曲应力σF、、剪应力τ和压缩应力σb。剪应力和压缩应力较小,可通过应力修正系数Ysa转换为弯曲应力来考虑。理论上载荷由同时啮合的多对轮齿分担,为简化计算,通常按全部载荷作用于一对轮齿啮合时的齿顶进行分析,再用重合度系数Yz对齿根弯曲应力进行修正。受拉侧齿根的最大弯曲应力为:
2)圆柱齿轮的弯曲疲劳强度公式 考虑应力修正系数、重合度系数、螺旋角系数和各载荷系数的影响,可以得到: 弯曲疲劳强度的校核公式为: 弯曲疲劳强度的设计公式为:
KFβ——弯曲强度计算的齿向载荷分布系数; KFα——弯曲强度计算的齿间载荷分配系数;
Z1——小齿轮齿数;
mn——法向模数,mm;
YFa——载荷作用于齿顶时的齿形系数,考虑载荷作用于齿顶时齿形对弯曲应力的影响,它只与齿形有关(随齿数和变位系数而
异),与模数无关。外齿轮齿形系数可按照国标(GB/T3480-1997)计算公式确定。 Ysa——应力修正系数,用于综合考虑齿根过渡曲线处的应力集中效应和弯曲应力以外的其它应力对齿根应力的影响。
Yz——重合度系数,可由计算确定:,其中——当量齿轮的端面重合度
Yβ——螺旋角系数,考虑螺旋角造成的接触线倾斜对齿根应力产生的影响。
σPF——许用齿根应力,N/mm2。
大、小齿轮齿根弯曲应力和许用弯曲应力不同,进行齿轮弯曲强度计算时,应分别对大、小齿轮进行校核。斜齿圆柱齿轮计算中,凡与齿数有关的参数均按当量齿数来确定。
(2) 直齿锥齿轮的齿根弯曲疲劳强度计算公式 直齿锥齿轮的齿根弯曲疲劳强度按其当量圆柱齿轮计算,其弯曲强度公式为:
beF——锥齿轮弯曲强度计算的有效齿宽,一般取0.85b;
mmn——锥齿轮齿宽中点法向模数
YK——弯曲强度计算的锥齿轮系数,正常齿形时取1;
将当量齿轮参数转化为大端参数,整理。 锥齿轮弯曲强度校核公式:
Mpa 弯曲强度设计公式:
mm 一般计算时参数的确定参考圆柱齿轮,精确校核时按国标(GB10062-88)确定。 直齿锥齿轮参数确定中,凡是与齿数有关的参数,均按照当量齿数来查找。
3. 许用应力 ⑴ 许用接触应力计算 大、小齿轮的许用接触应力分别计算,取其中的小值进行强度计算。
o σHmin——实验齿轮的接触疲劳极限,N/mm2。指某种材料的齿轮经长期持续的重复载荷作用后齿面不出现扩展性点蚀时的
极限应力。其主要影响因素有:材料成分,力学性能,热处理及硬化层深度,毛坯结构,残余应力,材料纯度和缺陷等。 o SHmin——接触强度的最小安全系数。
o ZNT——接触强度计算的寿命系数。考虑寿命小于或大于持久寿命条件循环次数NC时,其可承受的接触应力值与其相应的条
件循环次数NC时疲劳极限应力的比例的系数。 o ZL、ZV、ZR——润滑油膜影响系数,考虑润滑油膜对齿面承载能力的影响,主要因素有:润滑区的油粘度——用润滑剂系数
来考虑;相啮合间齿面的相对速度——用速度系数来考虑;齿面粗糙度——用粗糙度系数来考虑。 o ZW——齿面工作硬化系数,用于考虑经光整加工的硬齿面小齿轮在运转过程中对调质钢大齿轮齿面产生冷作硬化,从而使大
齿轮的许用接触应力得以提高的系数。
o 大齿轮齿面硬度为130~470HB时,;当HB<130时,取ZW=1.2;当HB>470时,取ZW=1。
o ZX——接触强度尺寸系数,考虑因尺寸增大使材料强度降低的尺寸效应因素的影响。
(2) 许用齿根应力计算 大、小齿轮许用齿根应力分别确定,分别进行各自的强度计算。
σFlim——实验齿轮的齿根弯曲疲劳极限,N/mm2。指某种材料的齿轮经长期持续的重复载荷作用后齿根保持不破坏时的极限应
力。其主要影响因素同接触疲劳极限应力。 SFmin——弯曲强度最小安全系数
YNT——弯曲强度计算的寿命系数
YST——实验齿轮的应力修正系数
YVrelT——相对齿根圆角敏感系数,用于考虑所计算齿轮的材料、几何尺寸等对齿根应力的敏感度与实验齿轮不同而引进的系
数。 YRrelT——相对齿根表面状况系数,主要考虑齿根圆角处的粗糙度对齿根弯曲应力的影响。
YX——弯曲强度尺寸系数,考虑因尺寸增大使材料强度降低的尺寸效应因素的影响。