Bibliography [1] Partial Differential Equation Toolbox for use with MATLAB R ○ COMSOL AB U

合集下载

Matlab曲线拟合工具箱cftool功能

Matlab曲线拟合工具箱cftool功能

Matlab的曲线拟合工具箱CFtool功能一、单一变量的曲线逼近Matlab有一个功能强大的曲线拟合工具箱cftool ,使用方便,能实现多种类型的线性、非线性曲线拟合。

下面结合我使用的Matlab R2007b 来简单介绍如何使用这个工具箱。

假设我们要拟合的函数形式是y=A*x*x + B*x, 且A>0,B>0 。

1、在命令行输入数据:》x=[110.3323 148.7328 178.064 202.8258033 224.7105 244.5711 262.908 280.0447 296.204 311.5475]》y=[5 10 15 20 25 30 35 40 45 50]2、启动曲线拟合工具箱》cftool3、进入曲线拟合工具箱界面“Curve Fitting tool”(1)点击“Data”按钮,弹出“Data”窗口;(2)利用X data和Y data的下拉菜单读入数据x,y,可修改数据集名“Data set name”,然后点击“Create data set”按钮,退出“Data”窗口,返回工具箱界面,这时会自动画出数据集的曲线图;(3)点击“Fitting”按钮,弹出“Fitting”窗口;(4)点击“New fit”按钮,可修改拟合项目名称“Fit name”,通过“Data set”下拉菜单选择数据集,然后通过下拉菜单“Type of fit”选择拟合曲线的类型,工具箱提供的拟合类型有:Custom Equations:用户自定义的函数类型Exponential:指数逼近,有2种类型,a*exp(b*x) 、a*exp(b*x) + c*exp(d*x) Fourier:傅立叶逼近,有7种类型,基础型是a0 + a1*cos(x*w) + b1*sin(x*w) Gaussian:高斯逼近,有8种类型,基础型是a1*exp(-((x-b1)/c1)^2)Interpolant:插值逼近,有4种类型,linear、nearest neighbor、cubic spline、shape- preservingPolynomial:多形式逼近,有9种类型,linear ~、quadratic ~、cubic ~、4-9th degree ~ Power:幂逼近,有2种类型,a*x^b 、a*x^b + cRational:有理数逼近,分子、分母共有的类型是linear ~、quadratic ~、cubic ~、4-5th degree ~;此外,分子还包括constant型Smoothing Spline:平滑逼近(翻译的不大恰当,不好意思)Sum of Sin Functions:正弦曲线逼近,有8种类型,基础型是a1*sin(b1*x + c1)Weibull:只有一种,a*b*x^(b-1)*exp(-a*x^b)选择好所需的拟合曲线类型及其子类型,并进行相关设置:——如果是非自定义的类型,根据实际需要点击“Fit options”按钮,设置拟合算法、修改待估计参数的上下限等参数;——如果选Custom Equations,点击“New”按钮,弹出自定义函数等式窗口,有“Linear Equations线性等式”和“General Equations构造等式”两种标签。

matlab有限元常用函数

matlab有限元常用函数

matlab有限元常用函数Matlab是一种功能强大的数值计算软件,广泛应用于工程、科学和数学领域。

它提供了丰富的数学函数和工具箱,使得有限元分析成为可能。

在本文中,我们将介绍一些常用于有限元分析的Matlab函数,并逐步解释它们的用法和作用。

有限元分析(Finite Element Analysis,简称FEA)是一种工程设计和分析方法,通过对实际结构的离散化,将其划分为许多小的单元,然后利用数值方法求解它们的行为。

下面是一些常用的有限元分析函数和工具箱。

1. finemesh函数finemesh函数是Matlab的一个内置函数,用于生成网格。

它可以根据给定的节点坐标和连接关系生成一个三角或四边形网格。

finemesh函数的语法如下:mesh = finemesh(node, elem);其中,node是一个N×2的矩阵,表示节点的坐标;elem是一个M×3或M×4的矩阵,表示节点之间的连接关系。

2. assempde函数assempde函数是Matlab Partial Differential Equation Toolbox的一部分,用于组装有限元方程。

它将已知的系数和边界条件应用于有限元方程,并返回一个描述矩阵和向量的数据结构。

assempde函数的语法如下:[stiff,force] = assempde(pde,geometry,temperature,flux);其中,pde是一个描述方程系数的结构体;geometry是一个描述几何形状的结构体;temperature和flux是分别描述温度和通量边界条件的结构体。

3. assemble函数assemble函数是一个用于组装有限元方程的通用函数。

它可以使用用户提供的形状函数和积分点来计算单元刚度矩阵和力矢量。

assemble函数的语法如下:[K,F] = assemble(p,t,c,b,v);其中,p是一个N×2的矩阵,表示节点坐标;t是一个M×3的矩阵,表示节点之间的连接关系;c是一个描述系数的函数句柄;b是描述边界条件的函数句柄;v是描述体积力的函数句柄。

(整理)matlab部分工具箱.

(整理)matlab部分工具箱.

(整理)matlab部分工具箱.1)通讯工具箱(Communication Toolbox)。

令提供100多个函数和150多个SIMULINK模块用于通讯系统的仿真和分析——信号编码——调制解调——滤波器和均衡器设计——通道模型——同步可由结构图直接生成可应用的C语言源代码。

2)控制系统工具箱(Control System Toolbox)。

鲁连续系统设计和离散系统设计* 状态空间和传递函数* 模型转换* 频域响应:Bode图、Nyquist图、Nichols图* 时域响应:冲击响应、阶跃响应、斜波响应等* 根轨迹、极点配置、LQG3)财政金融工具箱(FinancialTooLbox)。

* 成本、利润分析,市场灵敏度分析* 业务量分析及优化* 偏差分析* 资金流量估算* 财务报表4)频率域系统辨识工具箱(Frequency Domain System ldentification Toolbox* 辨识具有未知延迟的连续和离散系统* 计算幅值/相位、零点/极点的置信区间* 设计周期激励信号、最小峰值、最优能量诺等5)模糊逻辑工具箱(Fuzzy Logic Toolbox)。

* 友好的交互设计界面* 自适应神经—模糊学习、聚类以及Sugeno推理* 支持SIMULINK动态仿真* 可生成C语言源代码用于实时应用(6)高阶谱分析工具箱(Higher—Order SpectralAnalysis Toolbox * 高阶谱估计* 信号中非线性特征的检测和刻画* 延时估计* 幅值和相位重构* 阵列信号处理* 谐波重构(7)图像处理工具箱(Image Processing T oolbox)。

* 二维滤波器设计和滤波* 图像恢复增强* 色彩、集合及形态操作* 二维变换* 图像分析和统计(8)线性矩阵不等式控制工具箱(LMI Control Toolbox)。

* LMI的基本用途* 基于GUI的LMI编辑器* LMI问题的有效解法* LMI问题解决方案(9)模型预测控制工具箱(ModelPredictive Control Toolbox* 建模、辨识及验证* 支持MISO模型和MIMO模型* 阶跃响应和状态空间模型(10)u分析与综合工具箱(u-Analysis and Synthesis Toolbox)* u分析与综合* H2和H无穷大最优综合* 模型降阶* 连续和离散系统* u分析与综合理论(11)神经网络工具箱(Neursl Network T oolbox)。

(完整版)偏微分方程的MATLAB解法

(完整版)偏微分方程的MATLAB解法

引言偏微分方程定解问题有着广泛的应用背景。

人们用偏微分方程来描述、解释或者预见各种自然现象,并用于科学和工程技术的各个领域fll。

然而,对于广大应用工作者来说,从偏微分方程模型出发,使用有限元法或有限差分法求解都要耗费很大的工作量,才能得到数值解。

现在,MATLAB PDEToolbox已实现对于空间二维问题高速、准确的求解过程。

偏微分方程如果一个微分方程中出现的未知函数只含一个自变量,这个方程叫做常微分方程,也简称微分方程;如果一个微分方程中出现多元函数的偏导数,或者说如果未知函数和几个变量有关,而且方程中出现未知函数对几个变量的导数,那么这种微分方程就是偏微分方程。

常用的方法有变分法和有限差分法。

变分法是把定解问题转化成变分问题,再求变分问题的近似解;有限差分法是把定解问题转化成代数方程,然后用计算机进行计算;还有一种更有意义的模拟法,它用另一个物理的问题实验研究来代替所研究某个物理问题的定解。

虽然物理现象本质不同,但是抽象地表示在数学上是同一个定解问题,如研究某个不规则形状的物体里的稳定温度分布问题,由于求解比较困难,可作相应的静电场或稳恒电流场实验研究,测定场中各处的电势,从而也解决了所研究的稳定温度场中的温度分布问题。

随着物理科学所研究的现象在广度和深度两方面的扩展,偏微分方程的应用范围更广泛。

从数学自身的角度看,偏微分方程的求解促使数学在函数论、变分法、级数展开、常微分方程、代数、微分几何等各方面进行发展。

从这个角度说,偏微分方程变成了数学的中心。

一、MATLAB方法简介及应用1.1 MATLAB简介MATLAB是美国MathWorks公司出品的商业数学软件,用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境,主要包括MATLAB和Simulink两大部分。

1.2 Matlab主要功能数值分析数值和符号计算工程与科学绘图控制系统的设计与仿真数字图像处理数字信号处理通讯系统设计与仿真财务与金融工程1.3 优势特点1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。

matlab解二阶偏微分方程

matlab解二阶偏微分方程

<div align="center">一、Matlab求解二阶偏微分方程(ODE)的基本步骤</div>1. 数学模型:首先要确定求解的方程是哪一类的偏微分方程(ODE),然后建立其对应的数学模型,使其符合这类微分方程的形式;2. 确定边界条件:确定迭代范围$[a,b]$,边界条件函数 $y(a)=\alpha$ 、$y(b)=\beta$;3. 写出Matlab程序:在该类ODE中,通常会有某一种常用的数值求解方法,一般使用微分方程求解器(ODE),如ode45等;4. 获得实际结果:开始编写Matlab程序,完成参差和参数的输入以后,可以运行Matlab程序,然后求得结果,再用图像表示出来。

<div align="center">二、具体求解</div>$$\frac{d^2y}{dx^2}+y=6sin(2x)$$微分方程为二阶常微分方程,求解条件如下:$[a,b]=[0,\pi], y(0)=1,y(\pi)=3.$(1)Matlab函数表达式首先建立与二阶非齐次线性常微分方程相符合的数学模型,其Matlab函数表达式为$$ f(x,y,y')=\frac{dy}{dx}-y'-6sin2x $$其中,$y=y(x)$;(2)函数程序在Matlab中,定义函数程序 $myode.m$ ,此程序返回右端函数 $f(x,y,y')$ 的值表达式,程序内容如下。

```MATLAB% 右端函数程序function dy=myode(x,y)dy=[y(2);-y(2)-6*sin(2*x)];end```(3)调用Matlab函数olvede45调用Matlab函数 solvede45 求解二阶ODN,程序内容如下:```MATLAB% 主程序求解% maxstep表示分裂的步长大小% Tolerence表示误差,控制求解精度Maxstep=0.25;Tolerence=1e-4;a=0;b=pi;y0=[1;0];[x,y] = ode45('myode',[a,b],y0,options);```(4)结果展示输入参数之后,运行Matlab程序,得到如下图:![](../images/matlab_2_diff.png)此图为$y(x)$随$x$变化的曲线,可以看出,二阶偏微分的求解结果满足了边界条件,即$y(0)=1,y(\pi)=3$ ,如图中红色圆点所示。

利用pdepe函数和pdetool工具箱求解热传导问题

利用pdepe函数和pdetool工具箱求解热传导问题

利用pdepe函数和pdetool工具箱求解热传导问题作者:楚智媛来源:《中国新技术新产品》2020年第15期摘; 要:热传导问题是数学物理方向非常常见的问题。

实际生活中的热传导问题通过数学建模都可以转化为偏微分方程(组)问题。

由于偏微分方程中含有多元函数的偏导数以及复杂的边界条件,所以求解起来非常困难。

该文将详细介绍MATLAB中pdepe函数的用法以及pdetool工具箱的GUI操作界面的使用,并用其求解一维和二维热传导问题。

关键词:热传导;MATLAB;pdepe函数;pdetool工具箱中图分类号:TK124; ; ; ; ; ; 文献标志码:A1 热传导问题热传导问题简单来说就是物体之间或者是系统内存在着温度差,这其中存在着热量的传递。

我们在建立热传导方程时,一般使用傅里叶定律和能量守恒定律这2个定律。

通过这2个定律我们可以推导出热传导方程(Heat Equation)。

我们可以推导出3种维数中的热传导方程(u表示所求函数,t表示时间)。

一维热传导模型公式为:二维热传导模型公式为:三维热传导模型公式为:式中:x,y,z 表示空间直角坐标系下3个方向上的坐标。

偏微分方程学科和广义函数论发展至今,仍有很多偏微分方程(组)无法求解,虽然有些偏微分方程求解起来比较困难,但是该文提到的热传导问题,我们可以使用MATLAB中的内部函数和现成的工具箱来求解。

2 MATLAB中的pdepe函数MATLAB是由美国MathWorks提出的一种高性能的数学软件,MATLAB中有很多内部函数,都是已经编辑好的程序,我们可以直接拿来使用,而且我们还可以根据自己的需要编写一些我们自己的函数,以便化简编程。

pdepe函数就是其中一个非常好用的内部函数,使用它我们可以求解一维偏微分方程(组)问题[1]。

MATLAB中的pdepe函数很好理解,使用起来也很方便,但是在使用它的时候要注意要把微分方程(组)、初始条件、边界条件转化为pdepe函数所规定的一般格式。

Matlab求解微分方程(组)及偏微分方程(组)

Matlab求解微分方程(组)及偏微分方程(组)

第四道 Matlab供解微分圆程(组)之阳早格格创做表里介绍:Matlab供解微分圆程(组)下令供解真例:Matlab供解微分圆程(组)真例本质应用问题通过数教修模所归纳得到的圆程,绝大普遍皆是微分圆程,真真能得到代数圆程的机会很少.另一圆里,不妨供解的微分圆程也是格中有限的,特地是下阶圆程战偏偏微分圆程(组).那便央供咱们必须钻研微分圆程(组)的解法:剖析解法战数值解法.一.相关函数、下令及简介1.正在Matlab中,用大写字母D表示导数,Dy表示y关于自变量的一阶导数,D2y表示y关于自变量的二阶导数,依此类推.函数dsolve用去办理常微分圆程(组)的供解问题,调用要领为:X=dsolve(‘eqn1’,’eqn2’,…)函数dsolve用去解标记常微分圆程、圆程组,如果不初初条件,则供出通解,如果有初初条件,则供出特解.注意,系统缺省的自变量为t2.函数dsolve供解的是常微分圆程的透彻解法,也称为常微分圆程的标记解.然而是,有洪量的常微分圆程虽然从表里上道,其解是存留的,然而咱们却无法供出其剖析解,此时,咱们需要觅供圆程的数值解,正在供常微分圆程数值解圆里,MATLAB 具备歉富的函数,咱们将其统称为solver ,其普遍要领为:[T,Y]=solver(odefun,tspan,y0)证明:(1)solver 为下令ode45、ode23、ode113、ode15s 、ode23s 、ode23t 、ode23tb 、ode15i 之一.(2)odefun 是隐现微分圆程'(,)y f t y =正在积分区间tspan 0[,]f t t =上从0t 到f t 用初初条件0y 供解.(3)如果要赢得微分圆程问题正在其余指定时间面012,,,,f t t t t 上的解,则令tspan 012[,,,]f t t t t =(央供是单调的).(4)果为不一种算法不妨灵验的办理所有的ODE 问题,为此,Matlab 提供了多种供解器solver ,对付于分歧的ODE 问题,采与分歧的solver.表1 Matlab 华文本文献读写函数证明:ode23、ode45是极其时常使用的用去供解非刚刚性的尺度形式的一阶微分圆程(组)的初值问题的解的Matlab时常使用步调,其中:ode23采与龙格-库塔2阶算法,用3阶公式做缺面预计去安排步少,具备矮等的粗度.ode45则采与龙格-库塔4阶算法,用5阶公式做缺面预计去安排步少,具备中等的粗度.3.正在matlab下令窗心、步调或者函数中创修局部函数时,可用内联函数inline,inline函数形式相称于编写M 函数文献,然而不需编写M-文献便不妨形貌出某种数教关系.调用inline函数,只可由一个matlab表白式组成,而且只可返回一个变量,不允许[u,v]那种背量形式.果而,所有央供逻辑运算或者乘法运算以供得最后截止的场合,皆不克不迭应用inline函数,inline函数的普遍形式为:FunctionName=inline(‘函数真质’, ‘所有自变量列表’)比圆:(供解F(x)=x^2*cos(a*x)-b ,a,b是标量;x是背量)正在下令窗心输进:Fofx=inline(‘x .^2*cos(a*x)-b’ , ‘x’,’a’,’b’);g= Fofx([pi/3 pi/3.5],4,1)注意:由于使用内联对付象函数inline 不需要其余修坐m 文献,所有使用比较便当,其余正在使用ode45函数的时间,定义函数往往需要编写一个m 文献去单独定义,那样便当于管造文献,那里不妨使用inline 去定义函数.二.真例介绍例1 供解微分圆程2'2x y xy xe -+= 步调:syms x y; y=dsolve(‘Dy+2*x*y=x*exp(-x^2)’,’x ’) 例2 供微分圆程'0x xy y e +-=正在初初条件(1)2y e =下的特解并画出解函数的图形.步调:syms x y; y=dsolve(‘x*Dy+y-exp(1)=0’,’y(1)=2*exp(1)’,’x ’);ezplot(y)例 3 供解微分圆程组530t dx x y e dt dy x y dt ⎧++=⎪⎪⎨⎪--=⎪⎩正在初初条件00|1,|0t t x y ====下的特解并画出解函数的图形.步调:syms x y t[x,y]=dsolve('Dx+5*x+y=exp(t)','Dy-x-3*y=0','x(0)=1','y(0)=0','t')simple(x);simple(y)ezplot(x,y,[0,1.3]);axis auto2.用ode23、ode45等供解非刚刚性尺度形式的一阶微分圆程(组)的初值问题的数值解(近似解)例4 供解微分圆程初值问题2222(0)1dy y x x dx y ⎧=-++⎪⎨⎪=⎩的数值解,供解范畴为区间[0,0.5].步调:fun=inline('-2*y+2*x^2+2*x','x','y');[x,y]=ode23(fun,[0,0.5],1);plot(x,y,'o-')例5 供解微分圆程22'2(1)0,(0)1,(0)0d y dy y y y y dt dt μ--+===的解,并画出解的图形.12,,7dy x y x dt μ===,则编写M-文献function fy=vdp(t,x)fy=[x(2);7*(1-x(1)^2)*x(2)-x(1)];end正在Matlab 下令窗心编写步调y0=[1;0][t,x]=ode45(@vdp,[0,40],y0);或者[t,x]=ode45('vdp',[0,40],y0);y=x(:,1);dy=x(:,2);plot(t,y,t,dy)训练与思索:M-文献vdp.m 改写成inline 函数步调?Euler 合线法供解的基础思维是将微分圆程初值问题 化成一个代数(好分)圆程,主要步调是用好商()()y x h y x h +-代替微商dydx ,于是 记1,(),k k k k x x h y y x +=+=进而1(),k k y y x h +=+于是例6用Euler 合线法供解微分圆程初值问题的数值解(步少h 与),供解范畴为区间[0,2].分解:本问题的好分圆程为步调:>> clear>> f=sym('y+2*x/y^2');>> a=0;>> b=2;>> h=0.4;>> n=(b-a)/h+1;>> x=0;>> y=1;>> szj=[x,y];%数值解>> for i=1:n-1y=y+h*subs(f,{'x','y'},{x,y});%subs ,替换函数x=x+h;szj=[szj;x,y];end>>szj>> plot(szj(:,1),szj(:,2))证明:替换函数subs比圆:输进subs(a+b,a,4) 意义便是把a用4替换掉,返回4+b,也不妨替换多个变量,比圆:subs(cos(a)+sin(b),{a,b},[sym('alpha'),2])分别用字符alpha替换a战2替换b,返回 cos(alpha)+sin(2)特地证明:本问题可进一步利用四阶Runge-Kutta法供解,Euler合线法本质上便是一阶Runge-Kutta法,Runge-Kutta法的迭代公式为相映的Matlab步调为:>> clear>> f=sym('y+2*x/y^2');>> a=0;>> b=2;>> h=0.4;>> n=(b-a)/h+1;>> x=0;>> y=1;>> szj=[x,y];%数值解>> for i=1:n-1l1=subs(f,{'x','y'},{x,y});替换函数l2=subs(f,{'x','y'},{x+h/2,y+l1*h/2});l3=subs(f,{'x','y'},{x+h/2,y+l2*h/2});l4=subs(f,{'x','y'},{x+h,y+l3*h});y=y+h*(l1+2*l2+2*l3+l4)/6;x=x+h;szj=[szj;x,y];end>>szj>> plot(szj(:,1),szj(:,2))训练与思索:(1)ode45供解问题并比较好别.(2)利用Matlab 供微分圆程(4)(3)''20y y y -+=的解. (3)供解微分圆程''2',2(1)0,030,(0)1,(0)0y y y y x y y --+=≤≤==的特解.(4)利用Matlab 供微分圆程初值问题2''''00(1)2,|1,|3x x x y xy y y ==+===的解.指示:尽大概多的思量解法三.微分圆程变更为一阶隐式微分圆程组Matlab 微分圆程解算器只可供解尺度形式的一阶隐式微分圆程(组)问题,果此正在使用ODE 解算器之前,咱们需要干的第一步,也是最要害的一步便是借帮状态变量将微分圆程(组)化成Matlab 可交受的尺度形式.天然,如果ODEs 由一个或者多个下阶微分圆程给出,则咱们应先将它变更成一阶隐式常微分圆程组.底下咱们以二个下阶微分圆程组形成的ODEs 为例介绍怎么样将它变更成一个一阶隐式微分圆程组.Step 1 将微分圆程的最下阶变量移到等式左边,其余移到左边,并按阶次从矮到下排列.形式为:Step 2 为每一阶微分式采用状态变量,最下阶除中注意:ODEs 中所有是果变量的最下阶次之战便是需要的状态变量的个数,最下阶的微分式不需要给它状态变量.Step 3 根据采用的状态变量,写出所有状态变量的一阶微分表白式训练与思索:(1)供解微分圆程组 其中2r =1r =*1,μμ=-1/82.45,μ=(0) 1.2,x =(2)供解隐式微分圆程组提示:使用标记预计函数solve供'''',x y ,而后利用供解微分圆程的要领四.偏偏微分圆程解法Matlab 提供了二种要领办理PDE 问题,一是使用pdepe 函数,它不妨供解普遍的PDEs,具备较大的通用性,然而只收援下令形式调用;二是使用PDE 工具箱,不妨供解特殊PDE 问题,PDEtoll 有较大的限造性,比圆只可供解二阶PDE 问题,而且不克不迭办理片微分圆程组,然而是它提供了GUI 界里,从搀纯的编程中解脱出去,共时还不妨通过File —>Save As 直交死成M 代码.1.普遍偏偏微分圆程(组)的供解(1)Matlab 提供的pdepe 函数,不妨直交供解普遍偏偏微分圆程(组),它的调用要领为:sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t)@pdefun 是PDE 的问题形貌函数,它必须换成尺度形式:那样,PDE 便不妨编写出心函数:[c,f,s]=pdefun(x,t,u,du),m,x,t 对付应于式中相关参数,du 是u 的一阶导数,由给定的输进变量可表示出c,f,s 那三个函数.@pdebc 是PDE 的鸿沟条件形貌函数,它必须化为形式:于是边值条件不妨编写函数形貌为:[pa,qa,pb,qb]=pdebc(x,t,u,du),其中a 表示下鸿沟,b 表示上鸿沟.@pdeic 是PDE 的初值条件,必须化为形式:00(,)u x t u =,故不妨使用函数形貌为:u0=pdeic(x)sol 是一个三维数组,sol(:,:,i)表示i u 的解,换句话道,k u 对付应x(i)战t(j)时的解为sol(i,j,k),通过sol ,咱们不妨使用pdeval 函数直交预计某个面的函数值.(2)真例证明供解偏偏微分其中, 5.7311.46()x x F x e e -=-且谦脚初初条件12(,0)1,(,0)0u x u x ==及鸿沟条件1(0,)0,u t x ∂=∂221(0,)0,(1,)1,(1,)0u u t u t t x ∂===∂解:(1)对付照给出的偏偏微分圆程战pdepe 函数供解的尺度形式,本圆程改写为 可睹1121220.024()10,,,()10.17u F u u x m c f s F u u u x ∂⎡⎤⎢⎥--⎡⎤⎡⎤∂====⎢⎥⎢⎥⎢⎥-∂⎣⎦⎣⎦⎢⎥⎢⎥∂⎣⎦%目标PDE 函数function [c,f,s]=pdefun(x,t,u,du)c=[1;1];f=[0.024*du(1);0.17*du(2)];temp=u(1)-u(2);s=[-1;1].*(exp(5.73*temp)-exp(-11.46*temp))end(2)鸿沟条件改写为:下鸿沟2010.*00f u ⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦上鸿沟1110.*000u f -⎡⎤⎡⎤⎡⎤+=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ %鸿沟条件函数function [pa,qa,pb,qb]=pdebc(xa,ua,xb,ub,t)pa=[0;ua(2)];qa=[1;0];pb=[ub(1)-1;0];qb=[0;1];end(3)初值条件改写为:1210u u ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦%初值条件函数function u0=pdeic(x)u0=[1;0];end(4)编写主调函数clcx=0:0.05:1;t=0:0.05:2;m=0;sol=pdepe(m,@pdefun,@pdeic,@pdebc,x,t);subplot(2,1,1)surf(x,t,sol(:,:,1))subplot(2,1,2)surf(x,t,sol(:,:,2))训练与思索: This example illustrates the straightforward formulation, computation, and plotting of the solution of a single PDE.This equation holds on an interval 01x ≤≤ for times 0t ≥. The PDE satisfies the initial condition (,0)sin u x x π= and boundary conditions(1)PDEtool (GUI )供解偏偏微分圆程的普遍步调正在Matlab 下令窗心输进pdetool ,回车,PDE 工具箱的图形用户界里(GUI)系统便开用了.从定义一个偏偏微分圆程问题到完毕解偏偏微分圆程的定解,所有历程大概不妨分为六个阶段Step 1 “Draw模式”画造仄里有界地区Ω,通过公式把Matlab系统提供的真体模型:矩形、圆、椭圆战多边形,拉拢起去,死成需要的仄里地区.Step 2 “Boundary模式”定义鸿沟,声明分歧鸿沟段的鸿沟条件.Step 3 “PDE模式”定义偏偏微分圆程,决定圆程典型战圆程系数c,a,f,d,根据简直情况,还不妨正在分歧子地区声明分歧系数.Step 4 “Mesh模式”网格化地区Ω,不妨统造自动死成网格的参数,对付死成的网格举止多次细化,使网格分隔更细更合理.Step 5 “Solve模式”解偏偏微分圆程,对付于椭圆型圆程不妨激活并统造非线性自符合解题器去处理非线性圆程;对付于扔物线型圆程战单直型圆程,树坐初初鸿沟条件后不妨供出给定时刻t的解;对付于特性值问题,不妨供出给定区间上的特性值.供解完毕后,不妨返回到Step 4,对付网格进一步细化,举止再次供解.Step 6 “View模式”预计截止的可视化,不妨通过树坐系统提供的对付话框,隐现所供的解的表面图、网格图、等下线图战箭头梯形图.对付于扔物线型战单直线型问题的解还不妨举止径画演示.(2)真例证明用法供解一个正圆形地区上的特性值问题:正圆形地区为:11,1 1.-≤≤-≤≤x x(1)使用PDE工具箱挨开GUI供解圆程(2)加进Draw模式,画造一个矩形,而后单打矩形,正在弹出的对付话框中树坐Left=-1,Bottom=-1,Width=2,Height=2,确认并关关对付话框(3)加进Boundary模式,鸿沟条件采与Dirichlet条件的默认值(4)加进PDE模式,单打工具栏PDE按钮,正在弹出的对付话框中圆程典型采用Eigenmodes,参数树坐c=1,a=-1/2,d=1,确认后关关对付话框(5)单打工具栏的∆按钮,对付正圆形地区举止初初网格剖分,而后再对付网格进一步细化剖分一次(6)面开solve菜单,单打Parameters选项,正在弹出的对付话框中树坐特性值地区为[-20,20](7)单打Plot菜单的Parameters项,正在弹出的对付话框中选中Color、Height(3-D plot)战show mesh项,而后单打Done确认(8)单打工具栏的“=”按钮,开初供解。

实验项目1 MATLAB熟悉使用及编程基础2

实验项目1  MATLAB熟悉使用及编程基础2

实验项目1 MATLAB熟悉使用及编程基础MATLAB是美国Mathworks公司推出的一套高件能的数值分析和计算软件,它将矩阵运算、数值分析、图形处理、编程处术结合在一起,为用户提供了一个强有力的科学及工程问题分析计算和程序设计的工具。

MATLAB本身也在不断改进和创新,特别是2000年以出的版本6,无论在界面设计、计算方法、编程阶段和工具等方面都有了巨大的突破,全面引入了面向对象编程的概念和方法,使MATLAB真正成为了具有全部高级语言功能和特征的新一代软件开发平台。

MATLAB开发环境是一组工具和组件的集成,这些工具是图形化的用户接口,它们包括 MATLAB桌面、命令窗口、命令历史窗口、编辑调试窗口以及帮助信信息、工作空间、文件和搜索路径等浏览器。

MATLAB集成了丰富的数学函数库,其强大的计算能力覆盖了从基本函数(如求和、正弦、余弦和复数运算等)到特殊函数(如矩阵求逆、矩阵特征值、贝塞尔函数和快速傅里叶变换等)的范围。

MATLAB语言是一种高级编程语言,包括控制流的描述、函数、数据结构、输入输出及面对对象编程,既可以编制适用于快速使用的小程序,也可以编制大型复杂的应用程序。

MATLAB提供了功能强大的图形系统,既可以完成二维和三维数据的可视化、图像处理、动画和图形表达等功能,也可以定制图形的外观,如建立一个完整的图形用户界由的应用程序。

1.实验目的:掌握MA TLAB编程语言和偏微分方程PDE工具箱对电磁场的基本问题进行仿真;2 实验内容:1、MATLAB启动MA TLAB安装到硬盘后,启动方法有:(1)点击Windows桌面上自动生成的快捷方式图标;(2)点击matlab 6\文件夹下快捷方式图标令MATLAB(3)点击matlab/bin/win32文件夹中的Matlab.exe2、m文件编写熟悉基本指令、基本数学运算,借助help、lookfor等命令实现在线帮助。

建立M文件的一般步骤如下:(1)打开文件编辑器:指的是MA TLAB内部编辑/调试器,可以有几种不同的方法打开文件编辑器,最简单的方法是在操作桌面助工具栏上选择蹦(建立新文件)或选择瞪(打开已有的文件),也可以在命令窗口输入命令edit建立新文件或输入命令edit filename,打开名为fi1ename的M文件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ReducedBasisApproximationandAPosterioriErrorEstimationforParametrizedPartialDifferentialEquations

AnthonyT.PateraGianluigiRozzaMassachusettsInstituteofTechnologyDepartmentofMechanicalEngineering

toappearin(tentativerubric)MITPappalardoGraduateMonographsinMechanicalEngineering

CopyrightM.I.T.2006–2007CurrentEdition:V1.0January2007Bibliography[1]PartialDifferentialEquationToolboxforusewithMATLABR󰀄COMSOLAB:User’sGuide,Version1.TheMathWorks,Inc,NatickMA,2006.

[2]R.A.Adams.SobolevSpaces.AcademicPress,1975.[3]R.A.Adams.Calculus:ACompleteCourse.AddisonWesley,2002.[4]M.AinsworthandJ.T.Oden.Aposteriorierrorestimationinfiniteelementanalysis.Comp.Meth.Appl.Mech.Engrg.,142:1–88,1997.

[5]M.AinsworthandJ.T.Oden.APosterioriErrorEstimationinFiniteElementAnalysis.Wiley-Interscience,2000.

[6]B.O.Almroth,P.Stern,andF.A.Brogan.Automaticchoiceofglobalshapefunctionsinstructuralanalysis.AIAAJournal,16:525–528,1978.

[7]T.L.Anderson.FractureMechanics:FundamentalsandApplication.CRC,thirdedition,2005.

[8]J.A.AtwellandB.B.King.Properorthogonaldecompositionforreducedbasisfeedbackcontrollersforparabolicequations.MathematicalandComputerModelling,33(1-3):1–19,2001.

[9]I.Babuˇska.Error-boundsforfiniteelementmethod.NumerischeMathematik,16:322–333,1971.187[10]I.BabuˇskaandJ.Osborn.Eigenvalueproblems.InHandbookofNumericalAnalysis,volumeII,pages641–787.Elsevier,1991.

[11]I.BabuˇskaandW.Rheinboldt.Aposteriorierrorestimatesforthefiniteelementmethod.Int.J.Numer.Meth.Eng.,12:1597–1615,1978.

[12]I.BabuˇskaandW.Rheinboldt.Errorestimatesforadaptivefiniteelementcomputations.SIAMJ.Numer.Anal.,15:736–754,1978.

[13]I.BabuˇskaandT.Strouboulis.TheFiniteElementMethodanditsReliability.NumericalMathematicsandScientificComputation.ClarendonPress,Oxford,UK,2001.

[14]Z.J.Bai.Krylovsubspacetechniquesforreduced-ordermodelingoflarge-scaledynamicalsystems.AppliedNumericalMathematics,43(1-2):9–44,2002.

[15]E.Balmes.Parametricfamiliesofreducedfiniteelementmodels:Theoryandapplica-tions.MechanicalSystemsandSignalProcessing,10(4):381–394,1996.

[16]E.Balsa-Canto,A.A.Alonso,andJ.R.Banga.Reduced-ordermodelsfornonlineardistributedprocesssystemsandtheirapplicationindynamicoptimization.Industrial&EngineeringChemistryResearch,43(13):3353–3363,2004.

[17]H.T.BanksandK.Kunisch.EstimationTechniquesforDistributedParameterSystems.Systems&Control:Foundations&Applications.Birkh¨auser,1989.

[18]M.Barrault,N.C.Nguyen,Y.Maday,andA.T.Patera.An“empiricalinterpola-tion”method:Applicationtoefficientreduced-basisdiscretizationofpartialdifferentialequations.C.R.Acad.Sci.Paris,S´erieI.,339:667–672,2004.

[19]A.BarrettandG.Reddien.Onthereducedbasismethod.Z.Angew.Math.Mech.,75(7):543–549,1995.188March1,2007[20]O.Bashir,K.Willcox,andO.Ghattas.Hessian-basedmodelreductionforlarge-scalesystemswithinitialconditioninputs.Int.J.forNum.Meth.inEngineering,2007.Submitted.

[21]K.-J.Bathe.FiniteElementProcedures.PrenticeHall,1996.[22]R.BeckerandR.Rannacher.Afeedbackapproachtoerrorcontrolinfiniteelementmethod:Basicanalysisandexamples.East-WestJ.Numer.Math.,4:237–264,1996.

[23]P.Benner,V.Mehrmann,andD.C.Sorensen(Eds.).DimensionReductionofLarge-ScaleSystems.LectureNotesinComputationalScienceandEngineering.Springer,Heildeberg,2003.

[24]A.Bensoussan,J.L.Lions,andG.Papanicolaou.AsymptoticAnalysisofPeriodicStructures.North-Holland,Amsterdam,1978.

[25]S.Boyaval.Applicationofreducedbasisapproximationandaposteriorierrorestimationtohomogenizationtheory.2007.Inprogress.

[26]F.Brezzi.Ontheexistence,uniqueness,andapproximationofsaddlepointproblemsarisingfromLagrangianmultipliers.R.A.I.R.O.,Anal.Num´er.,2:129–151,1974.

[27]F.BrezziandM.Fortin.MixedandHybridFiniteElementMethods,volume15ofSpringerSeriesinComputationalMathematics.SpringerVerlag,1991.

[28]F.Brezzi,J.Rappaz,andP.A.Raviart.Finitedimensionalapproximationofnonlinearproblems.PartI:Branchesofnonsingularsolutions.NumerischeMathematik,36:1–25,1980.

[29]C.LeBris.PrivateCommunication.MIT,2006.[30]A.Buffa,Y.Maday,A.T.Patera,C.Prud’homme,andG.Turinici.APrioriconvergenceofmulti-dimensionalparametrizedreduced–basisapproximations.2007.Inprogress.189March1,2007

相关文档
最新文档