Linux驱动试题

Linux驱动试题
Linux驱动试题

笔试题:

1、Linux设备中字符设备与块设备有什么主要的区别?请分别列举一些实际的设备说出它们是属于哪一类设备。

答:字符设备:字符设备是个能够像字节流(类似文件)一样被访问的设备,由字符设备驱动程序来实现这种特性。字符设备驱动程序通常至少实现open,close,read和write系统调用。字符终端、串口、鼠标、键盘、摄像头、声卡和显卡等就是典型的字符设备。

块设备:和字符设备类似,块设备也是通过/dev目录下的文件系统节点来访问。块设备上能够容纳文件系统,如:u盘,SD卡,磁盘等。

字符设备和块设备的区别仅仅在于内核内部管理数据的方式,也就是内核及驱动程序之间的软件接口,而这些不同对用户来讲是透明的。在内核中,和字符驱动程序相比,块驱动程序具有完全不同的接口

2、查看驱动模块中打印信息应该使用什么命令?如何查看内核中已有的字符设备的信息?如何查看正在使用的有哪些中断号?

答:1) 查看驱动模块中打印信息的命令:dmesg

2) 查看字符设备信息可以用lsmod 和modprobe,lsmod可以查看模块的依赖关系,modprobe在加载模块时会加载其他依赖的模块。

3)显示当前使用的中断号cat /proc/interrupt

3、Linux中引入模块机制有什么好处?

答:首先,模块是预先注册自己以便服务于将来的某个请求,然后他的初始化函数就立即结束。换句话说,模块初始化函数的任务就是为以后调用函数预先作准备。

好处:

1) 应用程序在退出时,可以不管资源的释放或者其他的清除工作,但是模块的退出函数却必须仔细此撤销初始化函数所作的一切。

2) 该机制有助于缩短模块的开发周期。即:注册和卸载都很灵活方便。

4、copy_to_user()和copy_from_user()主要用于实现什么功能?一般用于file_operations结构的哪些函数里面?

答:由于内核空间和用户空间是不能互相访问的,如果需要访问就必须借助内核函数进行数据读写。copy_to_user():完成内核空间到用户空间的复制,copy_from_user():是完成用户空间到内核空间的复制。一般用于file_operations结构里的read,write,ioctl等内存数据交换作用的函数。当然,如果ioctl没有用到内存数据复制,那么就不会用到这两个函数。

5、请简述主设备号和次设备号的用途。如果执行mknod chartest c 4 64,创建chartest

设备。请分析chartest使用的是那一类设备驱动程序。

答:

1)主设备号:主设备号标识设备对应的驱动程序。虽然现代的linux内核允许多个驱动程序共享主设备号,但我们看待的大多数设备仍然按照“一个主设备对应一个驱动程序”的原则组织。

次设备号:次设备号由内核使用,用于正确确定设备文件所指的设备。依赖于驱动程序的编写方式,我们可以通过次设备号获得一个指向内核设备的直接指针,也可将此设备号当作设备本地数组的索引。

2)chartest 由驱动程序4管理,该文件所指的设备是64号设备。(感觉类似于串口终端或者字符设备终端)。

6、设备驱动程序中如何注册一个字符设备?分别解释一下它的几个参数的含义。

答:注册一个字符设备驱动有两种方法:

1)void cdev_init(struct cdev *cdev, struct file_operations *fops)

该注册函数可以将cdev结构嵌入到自己的设备特定的结构中。cdev是一个指向结构体cdev的指针,而fops是指向一个类似于file_operations结构(可以是file_operations结构,但不限于该结构)的指针.

2)int register_chrdev(unsigned int major, const char *namem , struct file)operations *fopen);

该注册函数是早期的注册函数,major是设备的主设备号,name是驱动程序的名称,而fops是默认的file_operations结构(这是只限于file_operations结构)。对于register_chrdev的调用将为给定的主设备号注册0-255作为次设备号,并为每个设备建立一个对应的默认cdev结构。

7、请简述中断于DMA的区别。Linux设备驱动程序中,使用哪个函数注册和注销中断处理程序?

答:1)DMA:是一种无须CPU的参与就可以让外设与系统内存之间进行双向数据传输的硬件机制,使用DMA可以使系统CPU从实际的I/O数据传输过程中摆脱出来,从而大大提高系统的吞吐率。

中断:是指CPU在执行程序的过程中,出现了某些突发事件时CPU必须暂停执行当前的程序,转去处理突发事件,处理完毕后CPU又返回源程序被中断的位置并继续执行。

所以中断和MDA的区别就是MDA不需CPU参与而中断是需要CPU参与的。

2)中断注册函数和中断注销函数

注册中断:

int request_irq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *), unsigned long flags, const char *dev_name, void *dev_id);

参数意义依次是:中断号,中断处理函数,中断管理有关的掩码,中断请求设备名,中断信号线。

过程是:dev_name设备请求中断->cpu分配中断号->设置中断管理的掩码->分配中断信号线->处理中断函数->完成之后再根据设置情况返回原处理程序处继续处理程序。

注销中断;

Void free_irq(unsigned int irq, void *dev_id);

释放中断和中断信号线

8、中断和轮询哪个效率高?怎样决定是采用中断方式还是采用轮询方式去实现驱动?

答:中断是CPU处于被动状态下来接受设备的信号,而轮询是CPU主动去查询该设备是否有请求。凡事都是两面性,所以,看效率不能简单的说那个效率高。如果是请求设备是一个频繁请求cpu的设备,或者有大量数据请求的网络设备,那么轮询的效率是比中断高。如果是一般设备,并且该设备请求cpu的频率比较底,则用中断效率要高一些。

9、下图是CS8900的内部芯片结构:

简单描述在这个图中802.3 MAC Engine, Encoder/Decoder, 10Base-T RX/RX filter & Receiver/ Transmitter 这三个部件的主要功能。

答:802.3 MAC Engine:以太网广播地址控制器,他控制所有以太网发送和接受的数据,其中包括,冲突检测、线路监听、报头,和冗余校验等

Encoder/Decoder:译码解码器。封装/拆卸报头或者协议头。

10Base-T RX/RX filter & Receiver/ Transmitter:数据发送/接收缓冲池。当数据写入发送缓冲池时,在线路畅通的情况下会发送出去。

10、简单描述在cs8900的驱动设计中, 发送数据frame和接收数据frame的过程。

答:1)发送流程如下:

(1)网络设备驱动程序从上层协议传递过来的sk_buff参数获得数据包的有效数据和长度,将有效数据放入临时缓冲区。

(2)对于以太网,如果有效数据的长度小于以太网冲突检测所要求的数据桢的最小长度,则给临时缓冲区的末尾填充0

(3)设置硬件寄存器,驱使网络设备进行数据发送操作。

2)接收流程

网络设备接收数据主要是由中断引发设备的中断处理函数,中断处理函数判断中断类型,如果为接收中断,则读取接受到的数据,分配sk_buff数据结构和数据缓冲区,将接收到的数据复制到数据缓冲区,并调用netif_rx()函数将sk_buff传递给上层协议。

11、Cs8900.c的驱动中,发送数据frame的过程为什么需要关中断?接收数据frame的过程为什么不需要关中断?

答:在发送过程中是不能被打断的,在发送的过程中,不关中断,这时候如果有一个中断到来,那么cpu有可能会去相应该中断,如果该中断需要改写的数据是发送数据的缓冲区,那么缓冲区将被改写,这样即使cpu相应完毕该中断,再发送数据,接收方也不认识该数据不能接收。

在接收数据的时候,需要打开中断,是因为要及时的相应接收到的数据。如果关闭该中断,那么接收方有可能因为相应优先级高的中断而接收不到该数据。

12、简单描述skbuff这个数据结构在网络结构中所起到的作用,为什么需要一个skbuff,它的分配和释放主要都在什么部位

答:sk_buff结构非常重要,它的含义为“套接字缓冲区”,用于在linux网络子系统中的盖层之间传递数据。

当发送数据包时,linux内核的网络处理模块必须建立一个包含要传输的数据包的sk_buff,然后将sk_buff递交给下层,各层在sk_buff中添加不同的协议头直至交给网络设备发送。同样的,当网络设备从网络媒介上接受到数据包后,它必须将接受到的数据转换为sk_buff数据结构并传递给上层,盖层不抛去相应的协议头直至交给用户。

分配sk_buff在接受一开始就应该分配,在发送完毕数据之后可以释放sk_buff

上机题:

1、用中断方式实现一个串口的字符设备驱动程序。

嵌入式Linux内核与驱动面试要点:

1. 实际经验:所开发驱动程序或内核模块的来龙去脉(需求、设计思想、实现方法、要点难点,特别是硬件调试过程中所遇到的特殊情况),所修复BUG的现象、调试手段、原因分析和解决方案。

2. 驱动调试:内核的调试手段、应用程序的调试手段(内核Panic所dump的信息以及Panic 的分析、应用程序core dump的分析)。

3. 驱动基础:mknod与udev,module相关API,内核Makefile的编写,设备编号的申请,设备的注册,简单驱动的fops(open/read/write/ioctl/release),用户空间和内核空间的数据交换,阻塞操作的实现、select/poll的支持,mmap的实现,DMA机制及其注意事项。

4. 中断机制:Linux中断机制的内在逻辑,中断处理程序的实现要点,中断共享机制,中断上下文与进程上下文的区别(为什么在中断上下文中不能执行导致进程调度的函数),中断与异常的区别,中断的管理(开中断与关中断)。

5. 下半部:Linux下半部机制的必要性,三种类型下半部(softirq/tasklet/work

queue)的区别与应用场景,三种下半部机制的API,中断处理程序、下半部以及进程上下文之间的同步问题。

6. 内核同步:内核中竞争与同步机制的内在逻辑,内核同步方法(原子操作/spin lock/信号量/读写锁/完成变量completion

variable/Seq_lock/Read-copy-update/Per-CPU变量/禁止内核抢占、中断和下半部/内存屏障)的内在逻辑、区别与应用场景。

7. 内存分配:Linux内存管理及分配机制(buddy system和slab等),

kmalloc的原理、应用场景及参数,alloc_pages物理页面分配,高端内存映射,Per-CPU数据,alloc_bootmem启动时的内存分配。

8. 定时延时:内核定时、延时及等待机制(忙等待,内核定时器,schedule_timeout,等待队列、进程的阻塞与唤醒)

9. 电源管理:Linux内核的电源管理机制,驱动程序中电源管理的实现。

10. 驱动子系统:嵌入式系统中常用简单总线接口(I2C/SPI/UART/SDIO)驱动子系统,重点外设模块(MTD及其文件系统/MicroSD/LCD/Camera/Audio/网卡/WIFI/BT/USB/键盘与触屏)驱动子系统。

11. 硬件基础:ARM体系结构的基础知识(寄存器、运行模式、MMU、Cache、常用汇编指令),中断控制器,DMA控制器等,重点外设的硬件逻辑。

12. 进程管理:O(1)调度算法和CFS调度算法的思想与实现方法,优先级反转及其解决方法,内核抢占(禁止抢占、抢占时机),进程的管理(阻塞与唤醒、等待队列、调度、放弃CPU

等),进程与线程的区别、内核线程与普通进程的区别。

13. 系统启动:内核启动详细顺序(上电-> Bootloader -> start_kernel() -> 各内核子系统的启动->

启动新线程Init用于启动系统[...] -> 启动新线程用于创建各内核线程->

IDLE),模块INIT的实现机制(各种INIT宏所标识的函数的调用时机)。

14. 文件系统:Linux虚拟文件系统VFS的架构,文件open的过程(普通文件、字符设备、块设备)、系统调用open和字符设备驱动open函数的参数差异。

15. 其他知识:Makefile的编写/Shell编程/Busybox/GCC编译过程及其优化/GDB命令/动态链接库的链接方式/NPTL之线程管理接口/ELF/Linux的Log机制/变量在内存中的存储/Daemon进程/孤儿进程...

linux经典面试题(常用命令总结)

关于面试总结7-linux经典面试题 现在做测试的出去面试,都会被问到linux,不会几个linux指令都不好意思说自己是做测试的了,本篇收集了几个被问的频率较高的linux面试题 1.说出10个linux常用的指令 ?ls 查看目录中的文件 ?cd /home 进入‘/ home’目录;cd .. 返回上一级目录;cd ../.. 返回上两级目录 ?mkdir dir1 创建一个叫做‘dir1’的目录 ?rmdir dir1 删除一个叫做‘dir1’的目录(只能删除空目录) ?rm -f file1 删除一个叫做‘file1’的文件’,-f 参数,忽略不存在的文件,从不给出提示。?rm -rf /mulu 目录下面文件以及子目录下文件 ?cp /test1/file1 /test3/file2 如将/test1目录下的file1复制到/test3目录,并将文件名改为file2 ?mv /test1/file1 /test3/file2 如将/test1目录下的file1移动到/test3 目录,并将文件名改为file2 ?mv * ../ Linux当前目录所有文件移动到上一级目录 ?ps -ef|grep xxx 显示进程pid ?kill 使用kill命令来终结进程。先使用ps命令找到进程id,使用kill -9命令,终止进程。 ?tar –xvf file.tar 解压 tar包 ?unzip file.zip 解压zip ?unrar e file.rar 解压rar ?free -m 查看服务器内存使用情况 2.如何查看所有java进程 ?grep是搜索关键字 ps -ef | grep java ?-aux 显示所有状态 ps -aux | grep java

Linux设备驱动程序学习(5)-高级字符驱动程序操作[(2)阻塞型IO和休眠]

Linux设备驱动程序学习(5)-高级字符驱动程序操作[(2)阻 塞型I/O和休眠] Linux设备驱动程序学习(5) -高级字符驱动程序操作[(2)阻塞型I/O和休眠]这一部分主要讨论:如果驱动程序无法立即满足请求,该如何响应?(65865346) 一、休眠 进程被置为休眠,意味着它被标识为处于一个特殊的状态并且从调度器的运行队列中移走。这个进程将不被在任何CPU 上调度,即将不会运行。直到发生某 些事情改变了那个状态。安全地进入休眠的两条规则: (1)永远不要在原子上下文中进入休眠,即当驱动在持有一个自旋锁、seqlock或者RCU 锁时不能睡眠;关闭中断也不能睡眠。持有一个信号量时休眠是 合法的,但你应当仔细查看代码:如果代码在持有一个信号量时睡眠,任何其他的等待这个信号量的线程也会休眠。因此发生在持有信号量时的休眠必须短暂, 而且决不能阻塞那个将最终唤醒你的进程。 (2)当进程被唤醒,它并不知道休眠了多长时间以及休眠时发生什么;也不知道是否另有进程也在休眠等待同一事件,且那个进程可能在它之前醒来并获取了 所等待的资源。所以不能对唤醒后的系统状态做任何的假设,并必须重新检查等待条件来确保正确的响应。 除非确信其他进程会在其他地方唤醒休眠的进程,否则也不能睡眠。使进程可被找到意味着:需要维护一个称为等待队列的数据结构。它是一个进程链表,其中饱含了等待某个特定事件的所有进程。在Linux 中,一个等待队列由一个wait_queue_head_t 结构体来管理,其定义在中。 wait_queue_head_t 类型的数据结构非常简单: 它包含一个自旋锁和一个链表。这个链表是一个等待队列入口,它被声明做wait_queue_t。wait_queue_head_t包含关于睡眠进程的信息和它想怎样被唤

Linux设备驱动程序举例

Linux设备驱动程序设计实例2007-03-03 23:09 Linux系统中,设备驱动程序是操作系统内核的重要组成部分,在与硬件设备之间 建立了标准的抽象接口。通过这个接口,用户可以像处理普通文件一样,对硬件设 备进行打开(open)、关闭(close)、读写(read/write)等操作。通过分析和设计设 备驱动程序,可以深入理解Linux系统和进行系统开发。本文通过一个简单的例子 来说明设备驱动程序的设计。 1、程序清单 //MyDev.c 2000年2月7日编写 #ifndef __KERNEL__ #define __KERNEL__//按内核模块编译 #endif #ifndef MODULE #define MODULE//设备驱动程序模块编译 #endif #define DEVICE_NAME "MyDev" #define OPENSPK 1 #define CLOSESPK 2 //必要的头文件 #include //同kernel.h,最基本的内核模块头文件 #include //同module.h,最基本的内核模块头文件 #include //这里包含了进行正确性检查的宏 #include //文件系统所必需的头文件 #include //这里包含了内核空间与用户空间进行数据交换时的函数宏 #include //I/O访问 int my_major=0; //主设备号 static int Device_Open=0; static char Message[]="This is from device driver"; char *Message_Ptr; int my_open(struct inode *inode, struct file *file) {//每当应用程序用open打开设备时,此函数被调用 printk ("\ndevice_open(%p,%p)\n", inode, file); if (Device_Open) return -EBUSY;//同时只能由一个应用程序打开 Device_Open++; MOD_INC_USE_COUNT;//设备打开期间禁止卸载 return 0; } static void my_release(struct inode *inode, struct file *file)

linux认证-笔试-基础——简答题、编程和多选题.doc

limix笔试题一一简答题、编程题和多选题 %1.简答题: 1.简述Linux文件系统通过i节点把文件的逻辑结构和物理结构转换的工作过 程。 参考答案: Linux通过i节点表将文件的逻辑结构和物理结构进行转换。 i节点是一个64字节长的表,表中包含了文件的相关信息,其中有文件的大小、文件所有者、文件的存取许可方式以及文件的类型等重要信息。在i节点表中最重要的内容是磁盘地址表。在磁盘地址表中有13个块号,文件将以块号在磁盘地址表中出现的顺序依次读取相应的块。Linux文件系统通过把i节点和文件名进行连接,当需要读取该文件时,文件系统在当前目录表中查找该文件名对应的项,由此得到该文件相对应的i节点号,通过该i节点的磁盘地址表把分散存放的文件物理块连接成文件的逻辑结构。 2.简述进程的启动、终止的方式以及如何进行进程的查看。 参考答案: 在Linux中启动一个进程有手工启动和调度启动两种方式: (1)手工启动 用户在输入端发出命令,直接启动一个进程的启动方式。可以分为: %1前台启动:直接在SHELL中输入命令进行启动。 %1后台启动:启动一个目前并不紧急的进程,如打印进程。 (2)调度启动 系统管理员根据系统资源和进程占用资源的情况,事先进行调度安排,指定任务运行的时间和场合,到时候系统会自动完成该任务。 经常使用的进程调度命令为:at、batch> crontab o 3.简述DNS进行域名解析的过程。 参考答案: 首先,客户端发出DNS请求翻译IP地址或主机名。DNS服务器在收到客户机的请求后: (1)检查DNS服务器的缓存,若查到请求的地址或名字,即向客户机发出应答信息; (2)若没有查到,则在数据库中查找,若查到请求的地址或名字,即向客户机发出应答信息; (3)若没有查到,则将请求发给根域DNS服务器,并依序从根域查找顶级域,由顶级查找二级域,二级域查找三级,直至找到要解析的地址或名字,即向客户机所在网络的DNS服务器发出应答信息,DNS服务器收到应答后现在缓存中存储,然后,将解析结果发给客户机。 (4)若没有找到,则返回错误信息。 4.系统管理员的职责包括那些?管理的对象是什么? 参考答案:

Linux驱动程序工作原理简介

Linux驱动程序工作原理简介 一、linux驱动程序的数据结构 (1) 二、设备节点如何产生? (2) 三、应用程序是如何访问设备驱动程序的? (2) 四、为什么要有设备文件系统? (3) 五、设备文件系统如何实现? (4) 六、如何使用设备文件系统? (4) 七、具体设备驱动程序分析 (5) 1、驱动程序初始化时,要注册设备节点,创建子设备文件 (5) 2、驱动程序卸载时要注销设备节点,删除设备文件 (7) 参考书目 (8) 一、linux驱动程序的数据结构 设备驱动程序实质上是提供一组供应用程序操作设备的接口函数。 各种设备由于功能不同,驱动程序提供的函数接口也不相同,但linux为了能够统一管理,规定了linux下设备驱动程序必须使用统一的接口函数file_operations 。 所以,一种设备的驱动程序主要内容就是提供这样的一组file_operations 接口函数。 那么,linux是如何管理种类繁多的设备驱动程序呢? linux下设备大体分为块设备和字符设备两类。 内核中用2个全局数组存放这2类驱动程序。 #define MAX_CHRDEV 255 #define MAX_BLKDEV 255 struct device_struct { const char * name; struct file_operations * fops; }; static struct device_struct chrdevs[MAX_CHRDEV]; static struct { const char *name; struct block_device_operations *bdops; } blkdevs[MAX_BLKDEV]; //此处说明一下,struct block_device_operations是块设备驱动程序内部的接口函数,上层文件系统还是通过struct file_operations访问的。

一个简单的演示用的Linux字符设备驱动程序.

实现如下的功能: --字符设备驱动程序的结构及驱动程序需要实现的系统调用 --可以使用cat命令或者自编的readtest命令读出"设备"里的内容 --以8139网卡为例,演示了I/O端口和I/O内存的使用 本文中的大部分内容在Linux Device Driver这本书中都可以找到, 这本书是Linux驱动开发者的唯一圣经。 ================================================== ===== 先来看看整个驱动程序的入口,是char8139_init(这个函数 如果不指定MODULE_LICENSE("GPL", 在模块插入内核的 时候会出错,因为将非"GPL"的模块插入内核就沾污了内核的 "GPL"属性。 module_init(char8139_init; module_exit(char8139_exit; MODULE_LICENSE("GPL"; MODULE_AUTHOR("ypixunil"; MODULE_DESCRIPTION("Wierd char device driver for Realtek 8139 NIC"; 接着往下看char8139_init( static int __init char8139_init(void {

int result; PDBG("hello. init.\n"; /* register our char device */ result=register_chrdev(char8139_major, "char8139", &char8139_fops; if(result<0 { PDBG("Cannot allocate major device number!\n"; return result; } /* register_chrdev( will assign a major device number and return if it called * with "major" parameter set to 0 */ if(char8139_major == 0 char8139_major=result; /* allocate some kernel memory we need */ buffer=(unsigned char*(kmalloc(CHAR8139_BUFFER_SIZE, GFP_KERNEL; if(!buffer { PDBG("Cannot allocate memory!\n"; result= -ENOMEM;

Linux运维面试题

北京华宇信息技术有限公司 BEIJING THUNISOFT INFORMATION TECHNOLOGY CORPORATION LIMITE 北京华宇信息技术有限公司 应聘人员笔试题目 (对应聘系统服务工程师人员适用) 姓名: 性别: 年龄: E-Mail: 考试日期: 考试开始时间: 考试结束时间: 须知及要求: 1.本套试题对应聘运维服务部系统服务工程师适用; 2.笔试时间不得超过90分钟; 3.笔试开始前应聘者须如实填写本页中有关应聘者信息; 4.答题请注意字迹清晰,叙述简练明了,绘图力求准确; 5.笔试题共150分,84道题,分为六部分,包括: 1)系统服务工程师调查 2)理论知识部分 3)实践知识基础部分 4)实践知识扩展部分 5)运维管理和信息服务部分 6)综合素质和沟通管理部分 6.应届毕业生以1、2、3、5、6部分为主,其他部分为辅;非应届毕业生以2、3、 4、5、6部分为主,其他部分为辅; 7.请笔试者本着“知之为知之,不知为不知”的态度; 笔试者承诺: 我已经阅读并同意笔试要求,同意如实答题,并同意不将题目内容告知他人。 签名:

CORPORATION LIMITE 应聘登记表 填表要求:应聘登记表是公司了解应聘人员情况的重要途径之一,所以请应聘人员根据自己的实际情况尽可能的填写详细,填写结束后,请务必阅读声明并签字确认。谢谢您的合作! 填写说明:家庭背景情况请至少填写2位直系亲属的基本情况 填写说明:教育经历请按照时间顺序由近至远填写(最低学历填写到高中即可)

CORPORATION LIMITE 填写说明:工作经历请按照时间顺序由近至远来填写 请您在以下招聘途径中勾“√”:我是通过以下招聘途径了解此次招聘信息的:□公司主页招聘信息□现场招聘会□熟人介绍 □网上招聘(请具体描述网站名称,例如:前程无忧等__________________)声明: 本人保证以上表内所填内容的真实性,自愿承担因隐瞒事实而造成的一切后果。 签名:日期:

am335x_linux-3.14.43内核移植笔记

本文主要描述在EVB335X-II以Device Tree的方式移植新TI官网AM335X系列最新的linux-3.14.43版本内核以及移植Debian文件系统的过程及遇到的一些问题。整个Device Tree牵涉面比较广,即增加了新的用于描述设备硬件信息的文本格式(即.dts文件),又增加 了编译这一文本的工具,同时Bootloader也需要支持将编译后的Device Tree传递给Linux 内核。以下是修改步骤: 一、修改uboot,支持Device Tree EVB335X-II在linux-3.2版本内核移植的时候已经有uboot,因此只需在该uboot上增加Device Tree支持即可,以下是修改步骤: 1、修改include/configs/com335x.h文件,增加支持DT的宏定义: /* Flattened Device Tree */ #define CONFIG_OF_LIBFDT 2、修改uboot启动参数,增加dtb文件的加载和启动(由于目前只是移植EMMC版本的EVB335X-II,因此只需修改EMMC的启动参数即可,大概在405行),修改如下: #elif defined(CONFIG_EMMC_BOOT) #define CONFIG_BOOTCOMMAND \ "run mmcboot;" #define CONFIG_EXTRA_ENV_SETTINGS \ "lcdtype=AUO_AT070TN94\0" \ "console=ttyO0,115200n8\0" \ "mmcroot=/dev/mmcblk0p2 rw\0" \ "mmcrootfstype=ext4 rootwait\0" \ "mmcargs=setenv bootargs console=${console} noinitrd root=${mmcroot} rootfstype=${mmcrootfstype} lcdtype=${lcdtype} consoleblank=0\0" \ "mmcdev=" MMCDEV "\0" \ "loadaddr=0x81000000\0" \ "dtbfile=evb335x-ii-emmc.dtb\0" \ "bootenv=uEnv.txt\0" \ "bootpart=" BOOTPART "\0" \ "loadbootenv=load mmc ${mmcdev} ${loadaddr} ${bootenv}\0" \ "importbootenv=echo Importing environment from mmc ...; " \ "env import -t $loadaddr ${filesize}\0" \ "loadaddr-dtb=0x82000000\0" \ "loadimage=load mmc ${bootpart} ${loadaddr} uImage\0" \ "loaddtb=load mmc ${bootpart} ${loadaddr-dtb} ${dtbfile}\0" \ "mmcboot=mmc dev ${mmcdev}; " \ "if mmc rescan; then " \ "echo SD/MMC found on device ${mmcdev};" \ "if run loadbootenv; then " \ "echo Loaded environment from ${bootenv};" \ "run importbootenv;" \ "fi;" \ "run mmcargs;" \

linux常见技术面试题目

一.填空题: 1. 在Linux系统中,以文件方式访问设备。 2. Linux内核引导时,从文件/etc/fstab 中读取要加载的文件系统。 3. Linux文件系统中每个文件用i节点来标识。 4. 全部磁盘块由四个部分组成,分别为引导块、专用块、i节点表块和数据存储块。 5. 链接分为:硬链接和符号链接。 6. 超级块包含了i节点表和空闲块表等重要的文件系统信息。 7. 某文件的权限为:drw-r--r--,用数值形式表示该权限,则该八进制数为:644 ,该文件属性是目录。 8. 前台起动的进程使用Ctrl+c 终止。 9. 静态路由设定后,若网络拓扑结构发生变化,需由系统管理员修改路由的设置。 10. 网络管理的重要任务是:控制和监控。 11. 安装Linux系统对硬盘分区时,必须有两种分区类型:文件系统分区和交换分区。 13. 编写的Shell程序运行前必须赋予该脚本文件执行权限。 14. 系统管理的任务之一是能够在分布式环境中实现对程序和数据的安全保护、备份、恢复和更新。 15. 系统交换分区是作为系统虚拟存储器的一块区域。 16. 内核分为进程管理系统、内存管理系统、I/O管理系统和文件管理系统等四个子系统。 17. 内核配置是系统管理员在改变系统配置硬件时要进行的重要操作。 18. 在安装Linux系统中,使用netconfig程序对网络进行配置,该安装程序会一步步提示用户输入主机名、域名、域名服务器、IP地址、网关地址和子网掩码等必要信息。 19. 唯一标识每一个用户的是用户ID 和用户名。 20 . RIP 协议是最为普遍的一种内部协议,一般称为动态路由选择协议。 21. 在Linux系统中所有内容都被表示为文件,组织文件的各种方法称为文件系统。 22. DHCP可以实现动态IP 地址分配。 23. 系统网络管理员的管理对象是服务器、用户和服务器的进程以及系统的各种资源。 24. 网络管理通常由监测、传输和管理三部分组成,其中管理部分是整个网络管理的中心。 25. 当想删除本系统用不上的设备驱动程序时必须编译内核,当内核不支持系统上的设备驱动程序时,必须对内核升级。 26 Ping命令可以测试网络中本机系统是否能到达一台远程主机,所以常常用于测试网络的连通性。 27. vi编辑器具有两种工作模式:命令模式和输入模式。 28. 可以用ls –al命令来观察文件的权限,每个文件的权限都用10位表示,并分为四段,其中第一段占1 位,表示文件类型,第二段占3位,表示文件所有者对该文件的权限。 29. 进程与程序的区别在于其动态性,动态的产生和终止,从产生到终止进程可以具有的基本状态为:运行态、就绪态和等待态(阻塞态)。 30. DNS实际上是分布在internet上的主机信息的数据库,其作用是实现IP地址和主机名之间的转换。 31. Apache是实现WWW服务器功能的应用程序,即通常所说的“浏览web服务器”,在服务器端为用户提供浏览web服务的就是apache应用程序。 32. 在Linux系统上做备份可以有两种类型:系统备份和用户备份。其中前者是指对操

linux笔记

20150526 echo adfkjeroiu > /var/www/html/index.html service httpd restart ifconfig XXX.XXX.XXX.XXX elinks XXX.XXX.XXX.XXX web地址栏:XXX.XXX.XXX.XXX 20150527 方法一:Setup 设置IP 方法二:vim /etc/sysconfig/network-XXX/ifcfg-eth0 onboot=no改onboot=yes service network restart 虚拟机中安装2个linux,有时2个linux无法连接网络,即使是DHCP自动获取,也不可以;解决办法:打开其中一个linux虚拟机,单机“右下角-小电脑图标” —“设置”—“桥接模式(B);直接连接屋里网络” ,确定即可; 20150528 more /etc/issue 查看当前linux是centos还是redhat; man 命令查看当前命令的使用方法及参数 table 当一个命令不记得全部字母,可以双击table补齐; ctrl +c 终止当前程序 ctrl +l 清屏 20150529 ls -l查看命令;(-l显示更多属性) ls –a 查看隐藏文件; cp -r /etc/aaa /home/bbb复制/etc下的aaa 到/home下,并且改名bbb; (-r是整个文件夹的意思,如果,没有-r是复制单个文件) mv /etc/aaa /home/bbb 移动/etc下的aaa 到/home下,并且改名bbb;

rm –r 删除一个文件;(如果要是一个文件夹,就有询问yes或no) rm –rf 删除一个文件夹;(如果要是一个文件夹,就无询问) touch 创建文件; pwd 查看当前路径; cd.. 返回相对路径; cd / 返回绝对路径; cd- 返回刚才的路径; su – root或其它用户切换用户; mkdir 创建新目录; cat 查看文件内容; more或less 逐屏查看文件内容; useradd 新添加的用户,在没有更改密码前,无法登陆; passwd 更改密码;但是,密码必须符合复杂性; groupadd 添加一个组; 20150602 w 查看谁登陆过本计算机以及对方的IP; last 查看用户的登录日志; lastlog 查看每个用户最后登录的情况;(一般用于电脑被黑了之后); more /var/log/secure who /var/log/wtmp 干了些什么? root账户下输入su - username 切换到username下输入 history 能看到这个用户历史命令,默认最近的1000条 Linux查看History记录加时间戳小技巧 1.[root@servyou_web ~]# export HISTTIMEFORMAT="%F %T `whoami` " 2.[root@servyou_web ~]# history | tail 3. 1014 2011-06-22 19:17:29 root 15 2011-06-22 19:13:02 root ./test.sh 4. 1015 2011-06-22 19:17:29 root 16 2011-06-22 19:13:02 root vim test.sh 5. 1016 2011-06-22 19:17:29 root 17 2011-06-22 19:13:02 root ./test.sh 6. 1017 2011-06-22 19:17:29 root 18 2011-06-22 19:13:02 root vim test.sh 7. 1018 2011-06-22 19:17:29 root 19 2011-06-22 19:13:02 root ./test.sh 8. 1019 2011-06-22 19:17:29 root 20 2011-06-22 19:13:02 root vim test.sh 9. 1020 2011-06-22 19:17:29 root 21 2011-06-22 19:13:02 root ./test.sh

linux读书笔记

12.29 Linux系统 Linux是真正的多用户、多任务操作系统。它继承了UNIX系统的主要特征,具有强大的信息处理功能,特别在Internet和Intranet的应用中占有明显优势。是一个完整的UNIX类操作系统。它允许多个用户同时在一个系统上运行多道程序。真正的32位操作系统。 用户接口 用户接口定义了用户和计算机交互作用的方式。Linux操作系统提供4种不同的用户接口。命令行接口 命令行是为具有操作系统使用经验,熟悉所用命令和系统结构的人员设计的。功能强大,使用方便的命令行是UNIX/Linux系统的一个显著特征。支持命令行的系统程序是命令解释程序。它的主要功能是接收用户输入的命令,然后予以解释并执行。 “$ ”是系统提示符。 在UNIX/Linux系统中,通常将命令解释程序称为shell。各种Linux环境下都安装了多种shell。这些shell由不同的人编写并得到一部分用户的青睐,各有其优势,最常用的几种是Bourne shell(sh),C shell(csh),Bourne Again shell(bash)和Korn shell(ksh)。红旗Linux 的默认shell是bash。 Bash 菜单 图形用户接口 程序接口 程序接口也称为系统调用接口。用户在自己的C程序中使用系统调用,从而获得系统提供的更基层的服务。 系统调用是操作系统内核与用户程序,应用程序之间的接口。在UNIX/Linux系统中,系统调用以C函数的形式出现。例如:fd=fopen(“file1.c”,2);其中,open是系统调用。 所有内核之外的程序都必须经由系统调用才能获得操作系统的服务。系统调用只能在C程序中使用,不能作为命令在终端上执行。由于系统调用能直接进入内核执行,所以其执行效率高。 Linux的版本 Linux有两种版本:核心(Kernel)版本和发行(Distribution)版本。 核心版本 核心版本主要是Linux的内核。Linux内核的官方版本由Linus Torvalds本人维护着。核心版本的序号由三部分数字构成,其形式为:major.minor.patchlevel 其中,major是主版本号,minor是次版本号,二者共同构成了当前核心版本好;patchlevel 表示对当前版本的修订次数。例如:2.6.34表示对2.6核心版本的第34次修订。

一个简单字符设备驱动实例

如何编写Linux设备驱动程序 Linux是Unix操作系统的一种变种,在Linux下编写驱动程序的原理和思想完全类似于其他的Unix系统,但它dos或window环境下的驱动程序有很大的区别。在Linux环境下设计驱动程序,思想简洁,操作方便,功能也很强大,但是支持函数少,只能依赖kernel中的函数,有些常用的操作要自己来编写,而且调试也不方便。本文是在编写一块多媒体卡编制的驱动程序后的总结,获得了一些经验,愿与Linux fans共享,有不当之处,请予指正。 以下的一些文字主要来源于khg,johnsonm的Write linux device driver,Brennan's Guide to Inline Assembly,The Linux A-Z,还有清华BBS上的有关device driver的一些资料. 这些资料有的已经过时,有的还有一些错误,我依据自己的试验结果进行了修正. 一、Linux device driver 的概念 系统调用是操作系统内核和应用程序之间的接口,设备驱动程序是操作系统内核和机器硬件之间的接口。设备驱动程序为应用程序屏蔽了硬件的细节,这样在应用程序看来,硬件设备只是一个设备文件,应用程序可以象操作普通文件一样对硬件设备进行操作。设备驱动程序是内核的一部分,它完成以下的功能: 1)对设备初始化和释放; 2)把数据从内核传送到硬件和从硬件读取数据; 3)读取应用程序传送给设备文件的数据和回送应用程序请求的数据; 4)检测和处理设备出现的错误。 在Linux操作系统下有两类主要的设备文件类型,一种是字符设备,另一种是块设备。字符设备和块设备的主要区别是:在对字符设备发出读/写请求时,实际的硬件I/O一般就紧接着发生了,块设备则不然,它利用一块系统内存作缓冲区,当用户进程对设备请求能满足用户的要求,就返回请求的数据,如果不能,就调用请求函数来进行实际的I/O操作。块设备是主要针对磁盘等慢速设备设计的,以免耗费过多的CPU时间来等待. 已经提到,用户进程是通过设备文件来与实际的硬件打交道。每个设备文件都都有其文件属性(c/b),表示是字符设备还是块设备。另外每个文件都有两个设备号,第一个是主设备号,标识驱动程序,第二个是从设备号,标识使用同一个设备驱动程序的不同的硬件设备,比如有两个软盘,就可以用从设备号来区分他们。设备文件的主设备号必须与设备驱动程序在登记时申请的主设备号一致,否则用户进程将无法访问到驱动程序. 最后必须提到的是,在用户进程调用驱动程序时,系统进入核心态,这时不再是抢先式调度。也就是说,系统必须在你的驱动程序的子函数返回后才能进行其他的工作。如果你的驱动程序陷入死循环,不幸的是你只有重新启动机器了,然后就是漫长的fsck。 二、实例剖析 我们来写一个最简单的字符设备驱动程序。虽然它什么也不做,但是通过它可以了解Linux的设备驱动程序的工作原理.把下面的C代码输入机器,你就会获得一个真正的设备

上海Linux运维工程师-面习题-练习-个人总结)

这下面的是一个企业发的面试题 1你常上的相关技术站有哪些? 2简述你所理解运维工程师的主要职责? 3你管理过的服务器数量级? 1台 2台 2-5台 5-10台 10台以上 4描述一次你印象深刻的服务器运维经历。 5有一台服务器出现安全问题,你会采取什么样的方法处理?说出你的诊断处理思路。 6有多台服务器需部署相同应用文件,文件会持续更新,你用什么方式实现不同服务器间的文件同步。 7某一台服务器部署多个Web站点,其中有一个w3wp的CPU占用达到100%,如何找出有问题的Web站点? 8你眼中的沪江是怎样的?谈谈你对沪江的理解。 9是否有以下相关经验?如有请简要说明掌握情况。 a、Squid相关经验 b、Nginx、Lighttpd等 c、Memcached d、负载均衡 e、分布式文件处理 f、Email Server 上午-10点雷傲普文化传播有限公司 1.DNS使用的端口号和协议,简单描述一下DNS正向解析和反向解析的工作原理和作用还 有应用场景? 2.编写IPTABLES使用内网某台机器的80端口可以在公网访问,假设公网IP为10.10.1.1 ,实现192.168.1.0/32段的NAT. 3.举出三个以上的主流WEB服务器,并简述他们的特性和优缺点不限操作系统? Apache 源代码开放可以欲行在unix,windowns,linux平台上,可移植性,而且模块很是丰富缺点:性能,速度上不及其他轻量级的web服务器,但是也是重量级产品,所消耗的内存,cpu也比其他的要高 Nginx 源代码开放发高性能的http和反向代理服务器,在高并发的情况下,nginx 是apache不错的替代品,他能够支持高达50000个并发连接响应,内存,cpu等系统资源消耗也是很低的。缺点,支持模块比较少吧,相对没有apache稳定,支持动态页面

linux驱动学习笔记LED

LED驱动学习: 是一个char字符类型的驱动 //配置模式为输出端口 static unsigned int led_cfg_table [] = { S3C2410_GPB5_OUTP, S3C2410_GPB6_OUTP, S3C2410_GPB7_OUTP, S3C2410_GPB8_OUTP, }; s3c2410_gpio_cfgpin(S3C2410_GPB5, S3C2410_GPB5_OUTP); s3c2410_gpio_cfgpin(37, 0x01 << 10); 这个在\arch\arm\mach-s3c2410\include\mach\regs-gpio.h中定义 #define S3C2410_GPB5 S3C2410_GPIONO(S3C2410_GPIO_BANKB, 5) #define S3C2410_GPB5_INP (0x00 << 10) #define S3C2410_GPB5_OUTP (0x01 << 10) #define S3C2410_GPB5_nXBACK (0x02 << 10) S3C2410_GPIONO(S3C2410_GPIO_BANKB, 5) #define S3C2410_GPIONO(bank,offset) ((bank) + (offset)) #define S3C2410_GPIO_BANKA (32*0) #define S3C2410_GPIO_BANKB(32*1) static int __init dev_init(void) { int ret; int i; for (i = 0; i < 4; i++) { s3c2410_gpio_cfgpin(led_table[i], led_cfg_table[i]); s3c2410_gpio_setpin(led_table[i], 0); } 在驱动的初始化函数中经常看到,__init 前缀,这个在下面文件中定义 file:/include/linux/init.h ? /* These macros are used to mark some functions or ?* initialized data (doesn't apply to uninitialized data) ?* as `initialization' functions. The kernel can take this ?* as hint that the function is used only during the initialization ?* phase and free up used memory resources after ?* ?* Usage: ?* For functions: ?* ?* You should add __init immediately before the function name, like: ?*

linux简单的gpio驱动实例

今天完成了嵌入式linux的第一个驱动的编写和测试,虽然是个简单的程序,但是麻雀虽小,五脏俱全,希望可以给刚开始接触驱动编写的人一些提示,共同进步。 源代码: 分析如下: 下面是我的驱动程序: #include //配置头文件 #include /*内核头文件,作为系统核心的一部分,设备驱动程序在申请和释放内存时,不是调用malloc和free,而是调用kmalloc和 kfree*/ #include //调度,进程睡眠,唤醒,中断申请,中断释放 #include //时钟头文件 #include //用户定义模块初始函数名需引用的头文件 #include //模块加载的头文件 #include #include //这个是2440的寄存器头文件,asm/srch只是个链接 //实际根据自己的情况查找,一般 是../../linux2.*.*/include/asm/arch-s3c2440里编译器 //自己会查询链接,以前不知道,找了半天 // GPIO_LED DEVICE MAJOR #define GPIO_LED_MAJOR 97 //定义主设备号 //define LED STATUS 我的板子 LED在GPB0 与GPB1 处大家根据自己情况改 #define LED_ON 0 //定义LED灯的状态开 #define LED_OFF 1 // // ------------------- READ ------------------------ 这个前面要加static 否则警告 static ssize_t GPIO_LED_read (struct file * file ,char * buf, size_t count, loff_t * f_ops) {

Linux设备驱动程序学习(18)-USB 驱动程序(三)

Linux设备驱动程序学习(18)-USB 驱动程序(三) (2009-07-14 11:45) 分类:Linux设备驱动程序 USB urb (USB request block) 内核使用2.6.29.4 USB 设备驱动代码通过urb和所有的 USB 设备通讯。urb用 struct urb 结构描述(include/linux/usb.h )。 urb以一种异步的方式同一个特定USB设备的特定端点发送或接受数据。一个USB 设备驱动可根据驱动的需要,分配多个 urb 给一个端点或重用单个 urb 给多个不同的端点。设备中的每个端点都处理一个 urb 队列, 所以多个 urb 可在队列清空之前被发送到相同的端点。 一个 urb 的典型生命循环如下: (1)被创建; (2)被分配给一个特定 USB 设备的特定端点; (3)被提交给 USB 核心; (4)被 USB 核心提交给特定设备的特定 USB 主机控制器驱动; (5)被 USB 主机控制器驱动处理, 并传送到设备; (6)以上操作完成后,USB主机控制器驱动通知 USB 设备驱动。 urb 也可被提交它的驱动在任何时间取消;如果设备被移除,urb 可以被USB 核心取消。urb 被动态创建并包含一个内部引用计数,使它们可以在最后一个用户释放它们时被自动释放。 struct urb

struct list_head urb_list;/* list head for use by the urb's * current owner */ struct list_head anchor_list;/* the URB may be anchored */ struct usb_anchor *anchor; struct usb_device *dev;/* 指向这个 urb 要发送的目标 struct usb_device 的指针,这个变量必须在这个 urb 被发送到 USB 核心之前被USB 驱动初始化.*/ struct usb_host_endpoint *ep;/* (internal) pointer to endpoint */ unsigned int pipe;/* 这个 urb 所要发送到的特定struct usb_device 的端点消息,这个变量必须在这个 urb 被发送到 USB 核心之前被 USB 驱动初始化.必须由下面的函数生成*/ int status;/*当 urb开始由 USB 核心处理或处理结束, 这个变量被设置为 urb 的当前状态. USB 驱动可安全访问这个变量的唯一时间是在 urb 结束处理例程函数中. 这个限制是为防止竞态. 对于等时 urb, 在这个变量中成功值(0)只表示这个 urb 是否已被去链. 为获得等时 urb 的详细状态, 应当检查 iso_frame_desc 变量. */ unsigned int transfer_flags;/* 传输设置*/ void*transfer_buffer;/* 指向用于发送数据到设备(OUT urb)或者从设备接收数据(IN urb)的缓冲区指针。为了主机控制器驱动正确访问这个缓冲, 它必须使用 kmalloc 调用来创建, 不是在堆栈或者静态内存中。对控制端点, 这个缓冲区用于数据中转*/ dma_addr_t transfer_dma;/* 用于以 DMA 方式传送数据到 USB 设备的缓冲区*/ int transfer_buffer_length;/* transfer_buffer 或者 transfer_dma 变量指向的缓冲区大小。如果这是 0, 传送缓冲没有被 USB 核心所使用。对于一个 OUT 端点, 如果这个端点大小比这个变量指定的值小, 对这个USB 设备的传输将被分成更小的块,以正确地传送数据。这种大的传送以连续的 USB 帧进行。在一个 urb 中提交一个大块数据, 并且使 USB 主机控制器去划分为更小的块, 比以连续地顺序发送小缓冲的速度快得多*/

linux笔记

1.ls:查看当前路径下的文件以及文件夹的名字 2.ls /bin:查看根目录下的bin文件夹的东西 3.cd Desktop进入到Desktop文件夹 4.cd ..跳转到当前路径的上一层 5.pwd:显示当前操作的路径(绝对路径) 6.clear:清屏 7.绝对路径:/home/python 8.相对路径:cd downloads 9..表示当前路径 10...表示上一层路径 11.c d -:跳转到上一层所在的路径 12.t ab自动补全 13.t ouch 1.txt 创建文件 14.l s * 表示显示所有文件 15.l s *.txt 表示显示以所有.txt结尾的文件 16.l s*.t[xn]t 表示显示以txt或者tnt结尾的所有文件 17.m ore 查看文件的内容 18.l s–alh | more 查看文件的内容并以管道符号进行连接 19.c d ~切换到当前用户的主目录 20.m kdir 创建文件夹 21.m kdira/b/c –p 连续创建文件夹 22.t ree 以目录数的方式显示

23.r mdir 删除文件夹(必须是空目录) 24.实物图操作的文件不会被删除直接进回收站 25.用命令删除的文件是不会进入回收站的 26.r m 删除文件/文件夹 27.r m haha.txt –r 直接删除文件夹(-r表示递归的删除) 28.r m haha.txt –i 给将删除的文件一个删除提示 29.r m haha.txt –f 强制删除 30.l inux建立链接影响(相当于创建windows下的快捷方式) 31.l n 01.txt 创建快捷方式 32.g edit 01.txt 编辑文件的内容 33.c at 01.txt 查看所编辑的内容 34.c at 01.txt > 02.txt 合并文件 35.g rep–n ‘a’grep.txt 搜素文件当中带a的文件 36.g rep–i ‘a’grep.txt搜素文件当中带a的文件(忽略大小写) 37.–-help 查找帮助文档 38.f ind 查找文件 39.c p a b 将a文件下的内容整体复制到b文件夹下(无效的文 件无法复制) 40.c p a/* b 将a文件夹下的所有内容复制到b文件夹下 41.m v a b 将a文件夹整体移动到b文件夹下 42.–v 显示移动进度 43.–I 表示操作的时候显示的提示(y表示确定)

相关文档
最新文档