生物化学88240 PPT课件
合集下载
生物化学绪论 ppt课件

生物化学绪论
生物化学
一、生物化学的定义 生物化学(biochemistry) 是研究生物体内的化 学分子和化学反应的基础生命科学,从分子水平探讨 生命现象的本质,即生命的化学。 二、生物化学与分子生物学发展简史
二、生物化学与分子生物学发展简史
叙述生物化学阶段:18世纪中叶—19世纪末
动态生物化学阶段:20世纪初开始
1994年 生理学或医学奖 lfred G.Gilman(美国)Martin ROdbell(美国),发现 G蛋白及其在细 胞内信号转导中的作用 1993年 生理学或医学奖 Richard J.ROberts(美国)PhilliP A.SharP(美国),发现断裂基因化 学奖 Kary n.Mullis(美国),发明 PCR方法 Michael Smith(加拿大),建立 DNA合成用于定点诱变研究 1992年 生理学或医学奖 Edmond H.Fischer(美国)Edwin G.Krebs(美国),发现可逆蛋白质 磷酸化是一种生物调节机制 1989年 生理学或医学奖 Harold E.Varmus(美国)J.Michael Bishop(美国),发现反转录病毒 癌基因的细胞起源 化学奖 Sidney Altman(美国)Thorn R.Cech(美国),发现 RNA的催化性质 1988年 生理学或医学奖 James W.Black(英国)ertrude B.Elion(美国)Gong H.Hitchings( 美国),发现“代谢”有关药物处理的重要原则
1964年 生理学或医学奖 Konard Bloch(美国)Feoder Lgnen(德国),发现胆固醇和脂肪酸代 谢的机制和调节 化学奖 Derothy Crowfoot Hodgkin(英国),用 X射线技术测定重要生化物质 的结构 1962年 生理学或医学奖 Francis H.C. Crick(英国)James D.Watson(美国)Maurice H. F. Wilkins(英国),发现核酸的分子结构(DNA双螺旋)及其对于活 性物质中信息转移的重要性 化学奖 Max F.Perutz(英国)JOhn C.Kendrew(英国),关于球状蛋白质 (血红蛋白、肌红蛋白)结构的研究 1959年 生理学或医学奖 Severo Ochoa(美国)Arthur KOrnbefg(美国),发现 RNA和 DNA生 物合成机制
生物化学
一、生物化学的定义 生物化学(biochemistry) 是研究生物体内的化 学分子和化学反应的基础生命科学,从分子水平探讨 生命现象的本质,即生命的化学。 二、生物化学与分子生物学发展简史
二、生物化学与分子生物学发展简史
叙述生物化学阶段:18世纪中叶—19世纪末
动态生物化学阶段:20世纪初开始
1994年 生理学或医学奖 lfred G.Gilman(美国)Martin ROdbell(美国),发现 G蛋白及其在细 胞内信号转导中的作用 1993年 生理学或医学奖 Richard J.ROberts(美国)PhilliP A.SharP(美国),发现断裂基因化 学奖 Kary n.Mullis(美国),发明 PCR方法 Michael Smith(加拿大),建立 DNA合成用于定点诱变研究 1992年 生理学或医学奖 Edmond H.Fischer(美国)Edwin G.Krebs(美国),发现可逆蛋白质 磷酸化是一种生物调节机制 1989年 生理学或医学奖 Harold E.Varmus(美国)J.Michael Bishop(美国),发现反转录病毒 癌基因的细胞起源 化学奖 Sidney Altman(美国)Thorn R.Cech(美国),发现 RNA的催化性质 1988年 生理学或医学奖 James W.Black(英国)ertrude B.Elion(美国)Gong H.Hitchings( 美国),发现“代谢”有关药物处理的重要原则
1964年 生理学或医学奖 Konard Bloch(美国)Feoder Lgnen(德国),发现胆固醇和脂肪酸代 谢的机制和调节 化学奖 Derothy Crowfoot Hodgkin(英国),用 X射线技术测定重要生化物质 的结构 1962年 生理学或医学奖 Francis H.C. Crick(英国)James D.Watson(美国)Maurice H. F. Wilkins(英国),发现核酸的分子结构(DNA双螺旋)及其对于活 性物质中信息转移的重要性 化学奖 Max F.Perutz(英国)JOhn C.Kendrew(英国),关于球状蛋白质 (血红蛋白、肌红蛋白)结构的研究 1959年 生理学或医学奖 Severo Ochoa(美国)Arthur KOrnbefg(美国),发现 RNA和 DNA生 物合成机制
生物化学ppt课件

二酰甘油和己糖结合; 半乳糖脑苷脂广泛存在于 硫酸脑苷脂广泛存在于动
糖基含唾液酸的糖脂; 在神经系统尤其是神经末
神经组织中;
梢中含量最为丰富,可能与 其在神经冲动传递中起递质 作用有关。
33
物的各器官中,脑组织中最
为丰富。
5.4.2 脑苷脂类
脑苷脂:神经酰胺的1-位羟基与单糖分子以糖苷键结合而 成,不含唾液酸成分。是脑细胞膜的重要组分。
纯的甘油磷脂是白色蜡状固体,大多溶于含少量水的非极性 溶剂中,用氯仿-甲醇混合溶剂很容易将其从组织中提取出来。
25
组成生物膜的主体结构
26
机 体 内 几 类 重 要 的 甘 油 磷 脂
胆碱具有重要的生物学功能,是代谢中的甲基供体。 乙酰化的胆碱(乙酰胆碱),是一种神经递质,与神经冲动 的传导相关。 27
41
蜡
蜡是长链脂肪酸和长链一元醇或固醇形成的酯,天然蜡 是多种蜡酯的混合物。 蜡分子含一个很弱的极性头和一个非极性尾,因此完全 不溶于水,蜡的硬度由烃链的长度和饱和度决定。蜡分布 于生物体表面起保护作用。 蜂蜡存在于蜂巢;白蜡是白蜡虫的分泌物,可用作涂料、 润滑剂和其他化工原料;洗涤羊毛得到的羊毛蜡可用作药 品和化妆品的底料;来源于棕榈树叶片的巴西棕榈蜡可用 作高级抛光剂。
5
5.1 三酰甘油
5.1.1 三酰甘油的结构
动植物油脂的化学本质是脂酰甘油,其中主要是 三酰甘油,或称甘油三酯,它是三分子脂肪酸与 一分子甘油的醇羟基脱水形成的化合物。
结构通式
6
三酰甘油的R1,R2,R3相同时,为简单甘油三酯(如油 酸甘油三酯,硬脂酸酸甘油三酯); 若R1,R2,R3不同
(1)水解与皂化
在酸、碱或脂肪酶作用下,三酰甘油能逐步水解成二酰甘 油、单酰甘油,最后彻底水解成脂肪酸和甘油。
生物化学与分子生物学 ppt课件

学科
杂志总数 >10
平均引用指数
>30杂志数
总论 化学 物理 数学 生物
3 2 5 1 38
17.8 11.8 22.0 18.2 19.1
0 0 2 0 7
• 下面让我们来看一看从1910年到现在分子生物学史上的一 些情况。
1910年,德国科学家Kossel获得了诺贝尔生理医学奖, 他首先分离出腺嘌呤、 胸腺嘧啶、和组氨酸。 1959年,Uchoa发现了细菌的多核苷酸磷酸化酶,成 功地合成了核糖核酸,研究并重建了将基因内的遗传信息 通过RNA中间体翻译成蛋白质的过程。而Kornberg则实现 了DNA分子在细菌细胞和试管内的复制。他们共同分享了 当年的诺贝尔生理医 学奖。 1962年,Watson和Crick因为在1953年提出了DNA 的反向平行双螺旋模型而与Wilkins共享诺贝尔生理医学奖, 后者通过对DNA分子的X射线衍射研究证实了Watson和 Crick 的DNA模型。
PCR、转基因(transgene)、基
因剔除(gene knock out)等
核酶(ribozyme)的发现 人类基因组计划(human genome project) 后基因组研究(蛋白质组学proteomics)
• 1985年5月,加州大学校长Robert提出测定人
类基因组全序列 • 1986年3月,诺贝尔奖获得者Dulbecco首次提 出人类基因组计划的概念 • 1990年10月,正式启动人类基因组计划 • 1999年7月,中国科学院遗传研究所承担了1%
1993年,Roberts和Sharp由于在断裂基因方面的工 作而荣获诺贝尔生理医学奖。 Mullis由于发明PCR仪而与 第一个设计基因定点突变的Smith共享诺贝尔化学奖。
生物化学与分子生物学人卫版教材全集ppt课件

生物氧化是指生物体内有机物氧化分解的过程,释放出能量供生命活动需要。能量转换是指生物体内能量的形式 转换,包括光合作用、呼吸作用等过程。
03
分子生物学基础
DNA、RNA和蛋白质的结构与功能
01
DNA双螺旋结构
DNA是由两条反向平行的多核苷酸链围绕同一中心轴盘绕而成的双螺
旋结构,碱基位于内侧,通过氢键相互配对,磷酸和脱氧糖在外侧构成
基本骨架。
02
RNA种类与结构
RNA是单链结构,根据功能不同分为mRNA、tRNA和rRNA。mRNA
是蛋白质合成的直接模板;tRNA具有携带氨基酸进入核糖体的功能;
rRNA是核糖体的主要成分,参与蛋白质合成。
03
蛋白质结构与功能
蛋白质是由氨基酸通过肽键连接而成的生物大分子,具有复杂的空间构
象和多样的生物学功能。
生物催化剂与代谢途径
总结词
介绍生物催化剂和代谢途径的基本概 念和作用。
详细描述
生物催化剂是指酶,具有高效性和专 一性,能够加速生物体内的代谢反应 。代谢途径是指一系列相互关联的生 化反应序列,是生物体内物质转化和 能量转化的基础。
生物氧化与能量转换
总结词
介绍生物氧化和能量转换的过程和作用。
详细描述
对人类社会的影响与意义
医领域
生物化学与分子生物学的发展将有助于疾病的早期诊断、 预防和治疗,提高人类的健康水平和生活质量。
工业领域
利用生物化学与分子生物学的原理和技术,开发新的工业 生产技术和工艺,降低能耗和环境污染,促进可持续发展 。
农业领域
通过分子生物学和基因工程技术的应用,培育出抗逆、抗 病、优质、高产的农作物新品种,提高农业生产效率和粮 食安全水平。
03
分子生物学基础
DNA、RNA和蛋白质的结构与功能
01
DNA双螺旋结构
DNA是由两条反向平行的多核苷酸链围绕同一中心轴盘绕而成的双螺
旋结构,碱基位于内侧,通过氢键相互配对,磷酸和脱氧糖在外侧构成
基本骨架。
02
RNA种类与结构
RNA是单链结构,根据功能不同分为mRNA、tRNA和rRNA。mRNA
是蛋白质合成的直接模板;tRNA具有携带氨基酸进入核糖体的功能;
rRNA是核糖体的主要成分,参与蛋白质合成。
03
蛋白质结构与功能
蛋白质是由氨基酸通过肽键连接而成的生物大分子,具有复杂的空间构
象和多样的生物学功能。
生物催化剂与代谢途径
总结词
介绍生物催化剂和代谢途径的基本概 念和作用。
详细描述
生物催化剂是指酶,具有高效性和专 一性,能够加速生物体内的代谢反应 。代谢途径是指一系列相互关联的生 化反应序列,是生物体内物质转化和 能量转化的基础。
生物氧化与能量转换
总结词
介绍生物氧化和能量转换的过程和作用。
详细描述
对人类社会的影响与意义
医领域
生物化学与分子生物学的发展将有助于疾病的早期诊断、 预防和治疗,提高人类的健康水平和生活质量。
工业领域
利用生物化学与分子生物学的原理和技术,开发新的工业 生产技术和工艺,降低能耗和环境污染,促进可持续发展 。
农业领域
通过分子生物学和基因工程技术的应用,培育出抗逆、抗 病、优质、高产的农作物新品种,提高农业生产效率和粮 食安全水平。
生物化学知识点总结ppt课件

超二级结构:
在球状蛋白质中,若干相邻的二级结构单 元如α-螺旋,β-折叠,β-转角组合在一 起,彼此相互作用,形成有规则的在空间 上能辨认的二级结构组合体,并充当三级 结构的构件,基本组合有:αα,βαβ, βββ。
结构域:
结构域是多肽链在二级结构或超二级结构的 基础上形成三级结构的局部折叠区,它是 一个相对独立的紧密球状实体
为
。
2、当溶液中的pH值大于某一可解离 的pKa值时,该基团有一半以上被解离。
3、氨基酸的等电点(pI):使氨基酸处于净 电荷为零时的pH。
对于R基不解离和酸性氨基酸: pI=1/2(pKα1+pKα2)
对于碱性氨基酸:
pI=1/2(pKα2+pKα3)
以谷氨酸为中心的联合脱氨基作用 测定纯度:通过测定A260/A280的比值鉴定纯度,纯DNA比值大于1.
二级(20)结构(secondary structure)
酸的结构式,环腺苷酸的结构式。 与羧基的反应:成盐和成酯反应(保护羧基);
反应过程:脱氢,水化,脱氢,硫解 2)模板:DNA双链中的一条链 与核苷酸结合,起始和催化部位。 2)肽酰转移酶在P位点切断肽链和tRNA之间的键。 从头合成途径的产所:细胞质 9、酶的专一性分为结构专一性和立体异构专一性。 这种抑制作用不能用增加底物的方式解除。 ,与苯异硫氰酸(酯)的反应
氨基酸与 5一二甲氨基萘-1-磺酰氯(dansyl chloride,DNS)的反应
在外周组织,5-羟色胺有收缩血管的作用
二级(2 )结构(secondary structure) 0 无义突变:氨基酸转变为终止密码子→蛋白质合成停止
2)以DNA为模板,并且需要一段引物,引物是一段与模板互补的核酸(DNA或RNA)片断,有3’-OH。 1、脂肪酸的氧化分解——β-氧化
《生物化学绪论》ppt课件

3、动态的或生理生物化学发展时期(1903~1950,动态生物化学阶段)大约从二十世纪初到二十世纪五十年代。此阶段对各种化学物质的代谢途径有了一定的了解。物质代谢途径及动态平衡、能量转化,光合作用、生物氧化、糖的分解和合成代谢、蛋白质合成、核酸的遗传功能、酶、维生素、激素、抗生素等的代谢。 1905年 哈登和杨发现酶和辅酶; 1926年美国Sumner从刀豆中得到脲酶的结晶,证明酶的化学本质是蛋白质,1946年获诺贝尔奖。 1955年 Sanger完成牛胰岛素氨基酸组成分析; 1932年,英国科学家Krebs 发现尿素合成的鸟氨酸循环; 1937年,Krebs提出三羧酸循环的基本代谢途径,1953年获诺贝尔生理学奖; 1940年,德国科学家Embden和Meyerhof提出了糖酵解代谢途径等。
1990. 10. 1 人类基因组计划 Human Genomic Project 2000完成
Dulbecco
作物基因组计划 家畜基因组计划 微生物基因组计划
1985年, “人类基因组测序和作图”计划(简称HGP)提出。
20世纪末和21世纪初:后基因组时代,产生了功能基因组学、蛋白质组学、结构基因组学等。 1997年2月23日克隆羊诞生 目前已能用基因工程的方法生产许多产品如乙型肝炎疫苗、酶制剂、人生长激素、各种干扰素、各种白细胞介素等等。
生 物 化 学
单击添加副标题
Biochemistry
绪论 Introduction
饲养主人5月7日给兽医打电话说:“一头牛前左腿不能着地,没有外伤,有点儿奇怪。” 牛海绵状脑病
01
几百万种生物的共同的语言
03
遗传密码相同、酶一样
02
构成生物体的氨基酸相同:20种
04
生成乳酸的过程一样
生物化学第二章 脂类化学(共77张PPT)
在临床上使用SOD外用脂质体霜 剂治疗色斑,取得很大的成功。采 用卵磷脂、胆固醇制备脂质作为 SOD的载体,研究表明SOD活性在 霜剂中可保存6个月以上
2.3 脂肪酸的结构和性质
c,t表构型顺反
e.g. 油酸:顺-十八碳-9-稀酸,18:1△9c,
e.g. 亚油酸(ω-6):顺,顺-十八碳-9,12-二稀酸,18: 2△9c,12c
动物中的酶只能向羧基端继续去饱和, 所以能合成24烯酸,而不能合成亚油酸 和亚麻酸,植物则向脂肪酸的甲基端继 续去饱和
脂肪酰CoA去饱和酶
电子分别来源于NADPH 和饱和脂肪酸
动物油、椰子油和棕榈油的主要成分是饱和脂肪酸(提供热量),而 多元不饱和脂肪酸的含量很低。心脏病人舍弃动物性饱和油后,可从 植物油中摄取植物性饱和油。(猪油蒙心?)
油:室温下液态 ;脂:室温下固态
甘油三酯的命名
如果所有的 双键都被氢化、饱和了,顺式脂肪酸就变成了饱和脂肪酸。
其中的过氧化物, 继续分解产生低级醛、酮,羧酸和醛或酮的衍生物,这些物质使油脂产生臭味。
3 脂肪酸的结构和性质
皂化值 =
油:室温下液态 ;
十八酸*(硬脂酸) sicaric acid C17H35COOH 70
但是通常只有部分双键被饱和,由于工艺的原因,在氢化 的过程中剩下的双键两头的碳原子的结构发生了 变化,它 们的氢原子由顺式变成了反式。这样,氢化油就含有大量 的反式脂肪酸。
禁用反式脂肪 麦当劳被迫使用健康油
从上个世纪80年代末开始,人们逐渐 认识到氢化植物油对健康的危害实际 上比动物脂肪还要大。这主要是由于 其中的反式脂肪酸引起的,它增加的 心血管疾病的风险。
第二章 脂类的化学
➢脂的分类及生物学功能
2.3 脂肪酸的结构和性质
c,t表构型顺反
e.g. 油酸:顺-十八碳-9-稀酸,18:1△9c,
e.g. 亚油酸(ω-6):顺,顺-十八碳-9,12-二稀酸,18: 2△9c,12c
动物中的酶只能向羧基端继续去饱和, 所以能合成24烯酸,而不能合成亚油酸 和亚麻酸,植物则向脂肪酸的甲基端继 续去饱和
脂肪酰CoA去饱和酶
电子分别来源于NADPH 和饱和脂肪酸
动物油、椰子油和棕榈油的主要成分是饱和脂肪酸(提供热量),而 多元不饱和脂肪酸的含量很低。心脏病人舍弃动物性饱和油后,可从 植物油中摄取植物性饱和油。(猪油蒙心?)
油:室温下液态 ;脂:室温下固态
甘油三酯的命名
如果所有的 双键都被氢化、饱和了,顺式脂肪酸就变成了饱和脂肪酸。
其中的过氧化物, 继续分解产生低级醛、酮,羧酸和醛或酮的衍生物,这些物质使油脂产生臭味。
3 脂肪酸的结构和性质
皂化值 =
油:室温下液态 ;
十八酸*(硬脂酸) sicaric acid C17H35COOH 70
但是通常只有部分双键被饱和,由于工艺的原因,在氢化 的过程中剩下的双键两头的碳原子的结构发生了 变化,它 们的氢原子由顺式变成了反式。这样,氢化油就含有大量 的反式脂肪酸。
禁用反式脂肪 麦当劳被迫使用健康油
从上个世纪80年代末开始,人们逐渐 认识到氢化植物油对健康的危害实际 上比动物脂肪还要大。这主要是由于 其中的反式脂肪酸引起的,它增加的 心血管疾病的风险。
第二章 脂类的化学
➢脂的分类及生物学功能