高考数学填空题常胜技巧

合集下载

高考数学各题型答题技巧

高考数学各题型答题技巧

高考数学各题型答题技巧高考数学各题型答题技巧一、排列组合篇1.掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题。

2.理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题。

3.理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题。

4.掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题。

5.了解随机事件的发生存在着规律性和随机事件概率的意义。

6.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。

7.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。

8.会计算事件在n次独立重复试验中恰好发生k次的概率.二、立体几何篇1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。

2.判定两个平面平行的方法:(1)根据定义--证明两平面没有公共点;(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;(3)证明两平面同垂直于一条直线。

三、数列问题篇1.在掌握等差数列、等比数列的定义、性质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题;2.在解决综合题和探索性问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力,进一步培养学生阅读理解和创新能力,综合运用数学思想方法分析问题与解决问题的能力。

高考数学解题技巧与规范答题

高考数学解题技巧与规范答题

2019高考数学解题技巧与规范答题为了使同学们更好的复习数学,小编整理了2019高考数学解题技巧与规范答题,供同学们参考。

一、调整好状态,控制好自我。

(1)保持清醒。

数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。

(2)提前进入角色,考前做好准备.按清单带齐一切用具,提前半小时到达考区,一方面可以消除紧张、稳定情绪、从容进场,另一方面也留有时间提前进入角色让大脑开始简单的数学活动,进入单一的数学情境。

如:1.清点一下用具是否带齐(笔、橡皮、作图工具、身份证、准考证等)。

2.把一些基本数据、常用公式、重要定理在脑子里过过电影。

3.最后看一眼难记易忘的知识点。

4.互问互答一些不太复杂的问题。

5.注意上厕所。

(3)按时到位。

今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5分钟内。

建议同学们提前15~20分钟到达考场。

二、浏览试卷,确定考试策略一般提前5分钟发卷,涂卡、填密封线内部分和座号后浏览试卷:试卷发下后,先利用23分钟时间迅速把试卷浏览一遍,检查试卷有无遗漏或差错,了解考题的难易程度、分值等概况以及试题的数目、类型、结构、占分比例、哪些是难题,同时根据考试时间分配做题时间,做到心中有数,把握全局,做题时心绪平定,得心应手。

三、巧妙制定答题顺序在浏览完试卷后,对答题顺序基本上做到心中有数,然后尽快做出答题顺序,排序要注意以下几点:1.根据自己对考试内容所掌握的程度和试题分值来确定答题顺序。

2.根据自己认为的难易程度,按先易后难先小后大先熟后生的原则排序。

四、提高解选择题的速度、填空题的准确度。

数学选择题是知识灵活运用,解题要求是只要结果、不要过程。

因此,逆代法、估算法、特例法、排除法、数形结合法尽显威力。

12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。

由于选择题的特殊性,由此提出解选择题要求快、准、巧,忌讳小题大做。

高考数学必考题型及答题技巧

高考数学必考题型及答题技巧

高考数学必考题型及答题技巧
高考数学考试中必考的题型主要有四类:
一、选择题:选择题主要旨在考查学生对概念的理解,对简单的思考能力和算法的应用能力。

考生可以根据对题目的直观判断,先粗略浏览后做出选择,再进行必要的计算核验。

二、填空题:填空题主要考查学生对数学概念的分析,抽象思维能力及抒写能力。

考生在作答过程中,要充分发挥自己的想象、理解力,仔细阅读题目,把握答题全部思路,列出方程组并求解。

三、解答题:解答题是数学考试题型中吃重的部分,考查的是数学的基本解题思路和综合运用概念、定义和公式等进行解题的能力。

只要考生能正确理解题意,把握解题要点,充分利用所学的平行线性和定理,充分发挥思维的能力,就能得出合理的解答。

四、操作题:操作题是高考数学中成绩较好的组成部分,是考查学生解题时手算能力和推理能力的一个重要题型。

考生需要认真细致,结合例题和考题有针对性地分析,把握答题全过程,并有恰当的计算步骤、略去文字介绍及不必要步骤,正确无误地把答案计算出来。

答题技巧:
一、明确求解目标:考生在进入考场之前,应将题目整体对准并把握题意,仔细阅读确定考查的知识点,掌握准确解法,列出详细的步骤或必要的公式,并将解题过程完整地记录下来,按照顺序仔细算出答案。

二、利用图形分析:考生可以利用几何图形的周长、面积、棱形等,联系各个形体的变化,来简便地求解几何形体的相关量的关系及把握方程的概念,从而减少复杂的数学计算,使解题速度更快、工作量更少,得出正确的结果。

三、充分利用现有资料:考生在做高考数学的时候,可以充分发挥自身的思维、分析、绘图、猜测等能力,仔细分析题目,利用资料,找出解题思路,进行有效的数学计算,考试出百分满分的成绩。

2012年高考数学 冲刺60天解题策略 选择填空题解题策略

2012年高考数学 冲刺60天解题策略  选择填空题解题策略

选择填空题解题策略高考数学试题中,选择题注重多个知识点的小型综合,渗透各种思想方法,体现以考查“三基”为重点的导向,题量一般为10到12个,能否在选择题上获取高分,对高考数学成绩影响重大.解答选择题的基本要求是四个字——准确、迅速.选择题主要考查基础知识的理解、接本技能的熟练、基本运算的准确、基本方法的运用、考虑问题的严谨、解题速度的快捷等方面.解答选择题的基本策略是:要充分利用题设和选项两方面提供的信息作出判断.一般说来,能定性判断的,就不再使用复杂的定量计算;能使用特殊值判断的,就不必采用常规解法;对于明显可以否定的选项应及早排除,以缩小选择的范围;对于具有多种解题思路的,宜选最简单解法等.解题时应仔细审题、深入分析、正确推理、谨防疏漏;初选后认真检验,确保准确.解数学选择题的常用方法,主要分为直接法和间接法两大类.直接法是解答选择题最基本、最常用的方法;但高考的题量较大,如果所有选择题都用直接法解答,不但时间不允许,甚至有些题目根本无法解答.因此,我们还要掌握一些特殊的解答选择题的方法.填空题是将一个数学真命题,写成其中缺少一些语句的不完整形式,要求学生在指定空位上将缺少的语句填写清楚、准确. 它是一个不完整的陈述句形式,填写的可以是一个词语、数字、符号、数学语句等. 填空题大多能在课本中找到原型和背景,故可以化归为我们熟知的题目或基本题型. 填空题不需过程,不设中间分值,更易失分,因而在解答过程中应力求准确无误.根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求考生填写数值、数集或数量关系,如:方程的解、不等式解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等. 由于填空题和选择题相比,缺少选择的信息,所以高考题多数是以定量型问题出现.二是定性型,要求填写的是具有某种性质的对象或者填写给定数学对象的某种性质,如:给定二次曲线的焦点坐标、离心率等等. 近几年出现了定性型的具有多重选择性的填空题.填空题缺少选择的信息,故解答题的求解思路可以原封不动地移植到填空题上. 但填空题既不用说明理由,又无需书写过程,因而解选择题的有关策略、方法有时也适合于填空题.填空题虽题小,但跨度大,覆盖面广,形式灵活,可以有目的、和谐地结合一些问题,突出训练学生准确、严谨、全面、灵活地运用知识的能力和基本运算能力,突出以图助算、列表分析、精算与估算相结合等计算能力. 想要又快又准地答好填空题,除直接推理计算外,还要讲究一些解题策略,尽量避开常规解法.解答填空题时,由于不反映过程,只要求结果,故对正确性的要求比解答题更高、更严格. 《考试说明》中对解答填空题提出的基本要求是“正确、合理、迅速”. 为此在解填空题时要做到:快——运算要快,力戒小题大作;稳——变形要稳,不可操之过急;全——答案要全,力避残缺不齐;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意.第一节选择题的解题策略(1)【解法一】直接法:直接从题设条件出发,运用有关概念、性质、定理、法则和公式等知识,通过严密的推理和准确的运算,从而得出正确的结论,然后对照题目所给出选项“对号入座”,作出相应的选择. 涉及概念、性质的辨析或运算较简单的题目常用直接法.例1 双曲线方程为22-=,则它的右焦点坐标为()21x yA .0)2B.0)2C. 0)2D. 0)点拨:此题是有关圆锥曲线的基础题,将双曲线方程化为标准形式,再根据,,a b c 的关系求出c ,继而求出右焦点的坐标.解:22213122c a b =+=+=,所以右焦点坐标为(0)2,答案选C.易错点:(1)忽视双曲线标准方程的形式,错误认为22b =;(2)混淆椭圆和双曲线标准方程中,,a b c 的关系,在双曲线标准方程中222c a b =+.例 2阅读右图所示的程序框图,运行相应的程序,输出的i 值等于( )A .2 B.3 C.4 D.5点拨:此题是程序框图与数列求和的简单综合题.解:由程序框图可知,该框图的功能是输出使和123122233211iS i =⋅+⋅+⋅++⋅> 时的i 的值加1,因为1212221011⋅+⋅=<,12312223311⋅+⋅+⋅>,所以当11S >时,计算到3i =故输出的i 是4,答案选C.易错点:没有注意到1i i =+的位置,错解3i =.实际上 i 使得11S >后加1再 输出,所以输出的i 是4.变式与引申: 根据所示的程序框图(其中[]x 表示不大于x 的最大整数),输出r =( ).A .73B.74C.2D.32例3正方体ABCD -1111A B C D 中,1B B 与平面1AC D 所成角的余弦值为( )A 33C.233点拨:此题考查立体几何线面角的求解.通过平行直线与同一平面所成角相等的性质及sin h lθ=转化后,只需求点到面的距离.解:因为1B B ∥1D D ,所以1B B 与平面1AC D 所成角和1D D 与平面1AC D 所 成角相等,设DO ⊥平面1AC D ,由等体积法得11D AC D DAC DV V --=,即111133AC D AC D S D O S D D ∆∆⋅=⋅.设1D D =a ,则122211111sin 60),22222AC D AC D S AC AD S AC C D a =⋅=⨯⨯=⋅=,.所以131,3AC D AC D S D D D O a S ⋅===记1D D 与平面1AC D 所成角为θ,则1sin 3D O D D θ==,所以cos 3θ=,故答案选D.易错点:考虑直接找1B B 与平面1AC D 所成角,没有注意到角的转化,导致思路受阻. 点评:直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高直接法解选择题的能力.准确把握题目的特点,用简便的方法巧解选择题,是建立在扎实掌握“三基”的基础上,否则一味求快则会快中出错.【解法二】 特例法:用特殊值代替题设普遍条件,得出特殊结论,对各个选项进行检验,从而作出正确的判断.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等. 例4:在平面直角坐标系xoy 中,已知△ABC 的顶点A(-4,0) 和C(4,0),且顶点B 在椭圆221259x y +=上,则sin sin sin A C B +=( )A.54B. 35C.1D.45点拨:此题是椭圆性质与三角形的简单综合题,可根据性质直接求解,但正弦定理的使用不易想到,可根据性质用取特殊值的方法求解.解:根据B 在椭圆221259x y +=上,令B 在短轴顶点处,即可得答案选A.例5已知函数()f x =lg ,01016,102x x x x ⎧<≤⎪⎨-+>⎪⎩ 若,,a b c 均不相等,且()()()f a f b f c ==,则abc 的取值范围是 ( )A .(1,10) B.(5,6) C.(10,12) D.(20,24)点拨:此题是函数综合题,涉及分段函数,对数函数,函数图像变换,可结合图像,利用方程与函数的思想直接求解,但变量多,关系复杂,直接求解较繁,采用特例法却可以很快得出答案.解:不妨设a b c <<,取特例,如取1()()()2f a f b f c ===,则易得112210,10,11a b c -===,从而11abc =,故答案选C .另解:不妨设a b c <<,则由()()1f a f b ab =⇒=,再根据图像易得1012c <<.实际上,,a b c 中较小的两个数互为倒数.例6记实数12,,x x …n x 中的最大数为12m ax{,,}n x x x ⋅⋅⋅,最小数为12min{,,}n x x x ⋅⋅⋅.已知ABC ∆的三边边长为a 、b 、c (a b c ≤≤),定义它的倾斜度为m ax{,,}m in{,,}a b c a b ct b c a b c a=⋅,则“1t =”是“ABC ∆为等边三角形”的( )A . 充分布不必要的条件 B.必要而不充分的条件C. 充要条件D.既不充分也不必要的条件点拨:此题引入新定义,需根据新信息进行解题,必要性容易判断. 解:若△ABC 为等边三角形时、即a b c ==,则m a x {,,}1m i n {,,}a b ca b c b c ab c a==则t=1;若△ABC 为等腰三角形,如2,2,3a b c ===时,则32m ax ,,,m in ,,23a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎨⎬⎪⎭⎩⎭⎩,此时t=1仍成立但△ABC 不为等边三角形, 所以答案选B.点评:当正确的选择对象在题设条件都成立的情况下,用特殊值(取的越简单越好)进行探求,从而清晰、快捷地得到正确的答案,即通过对特殊情况的研究来判断一般规律,是解答本类选择题的最佳策略. 【解法三】 排除法:充分运用选择题中单选的特征(即有且只有一个正确选项),通过分析、推理、计算、判断,逐一排除,最终达到目的.例7 下列函数中,周期为π,且在[,]42ππ上为减函数的是( )A .sin(2)2y x π=+ B.cos(2)2y x π=+C.sin()2y x π=+D.cos()2y x π=+点拨:此题考查三角函数的周期和单调性. 解:C 、D 中函数周期为2π,所以错误.当[,]42x ππ∈时,32,22x πππ⎡⎤+∈⎢⎥⎣⎦,函数sin(2)2y x π=+为减函数,而函数cos(2)2y x π=+为增函数,所以答案选A.例8函数22x y x =-的图像大致是( )点拨:此题考查函数图像,需要结合函数特点进行分析,考虑观察零点. 解:因为当x =2或4时,220xx -=,所以排除B 、C ;当x =-2时,22xx -=14<04-,故排除D ,所以答案选A.易错点:易利用导数分析单调性不清导致错误.例9 设函数()212log 0log ()0xx f x x x >⎧⎪=⎨-<⎪⎩ , 若()()f a f a >-, 则实数a 的取值范围是( )A . (1,0)(0,1)-⋃ B. (,1)(1,)-∞-⋃+∞ C. (1,0)(1,)-⋃+∞ D.(,1)(0,1)-∞-⋃点拨:此题是分段函数,对数函数,解不等式的综合题,需要结合函数单调性,对数运算性质进行分析,分类讨论,解对数不等式,运算较复杂,运用排除法较易得出答案.解:取2a =验证满足题意,排除A 、D. 取2a =-验证不满足题意, 排除B.所以答案选C. 易错点:直接求解利用函数解析时,若忽略自变量应符合相应的范围,易解错点评:排除法适用于定性型或不易直接求解的选择题.当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小的选项范围内找出矛盾,这样逐步排除,直到得出正确的选择.它与特例法、图解法等结合使用是解选择题, 尤其是选项为范围的选择题的常用方法.【解法四】 验证法:将选项中给出的答案代入题干逐一检验,从而确定正确答案.例10 将函数()sin()f x x ωϕ=+的图像向左平移2π个单位.若所得图像与原图像重合,则ω的值不可能...等于( ) A .4 B.6 C.8 D.12点拨:此题考查三角函数图像变换及诱导公式,ω的值有很多可能,用验证较易得出答案. 解:逐项代入验证即可得答案选B.实际上,函数()sin()f x x ωϕ=+的图像向左平移2π个单位所得函数为()sin[()]2f x x πωϕ=++=sin[()]2x πωϕω++⋅,此函数图像与原函数图像重合,即sin[()]2x πωϕω++⋅sin()x ωϕ=+,于是ω为4的倍数.易错点:()sin()f x x ωϕ=+的图像向左平移2π个单位所得函数解析式,应将原解析式中的x 变为2x π+,图像左右平移或x 轴的伸缩变换均只对x 产生影响,其中平移符合左加右减原则,这一点需要对图像变换有深刻的理解.例11设数列{}n a 中, 32,211+==+n n a a a , 则通项n a 是( )A .n 35-B .1231-⋅-n C .235n -D .3251-⋅-n点拨:此题考查数列的通项公式,直接求n a ,不好求,宜用验证法. 解:把1a 代入递推公式得:27a =,再把各项逐一代入验证可知,答案选D. 易错点:利用递推公式直接推导,运算量大,不容易求解.例12 下列双曲线中离心率为2的是( )A .22124xy-= B.22142xy-= C .22146xy-= D.221410xy-=点拨:此题考查双曲线的性质,没有确定形式,只能根据选项验证得出答案. 解:依据双曲线22221x y ab-=的离心率c e a=,逐一验证可知选B.易错点:双曲线中222c a b =+,与椭圆中222c a b =-混淆,错选D.变式与引申:下列曲线中离心率为2的是( )A .22124xy+= B.22142xy-= C .22146xy-= D.221410xy-=答案:选B 点评:验证法适用于题设复杂,但结论简单的选择题. 若能根据题意确定代入顺序则能较大提高解题速度.习题 7-1 1. 已知:p 直线1:10l x y --=与直线2:20l x ay +-=平行,:1q a =-,则p 是q 的A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件2.某人要制作一个三角形,要求它的三条高的长度分别为111,,13115,则此人能( )A .不能作出这样的三角形 B.作出一个锐角三角形 C.作出一个直角三角形 D.作出一个钝角三角形3.设{}n a 是任意等比数列,它的前n 项、前2n 项、与前3n 项和分别为,,X Y Z ,则下列等式中恒成立的是( )A .2X Z Y += B.()()Y Y X Z Z X -=- C.2Y XZ =D.()()Y Y X X Z X -=-4.定义在R 上的奇函数()f x 为减函数,设0a b +≤,给出下列不等式:①()()0f a f a ⋅-≤;②()()0f b f b ⋅-≥;③()()()()f a f b f a f b +≤-+-④()()()()f a f b f a f b +≥-+-,其中正确的不等序号是( )A .①②④ B.①④ C.②③ D.①③5.如图,在棱柱的侧棱1A A 和1B B 上各有一动点P Q、满足1A P B Q =,过三点P Q C、、的截面把棱柱分成两部分,则其体积之比为( )A .3:1 B.2:1 C.4:16.已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为( )A .22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D. 22(1)(1)2x y +++= 7. 要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( )A .向右平移π6个单位B .向右平移π3个单位C .向左平移π3个单位D .向左平移π6个单位【答案】 习题 7-13. D.提示:法一:(直接法)设等比数列公比为q 则 2,n n n Y X X q Z X X q X q =+⋅=+⋅+⋅2,nnnnY X X qX X Z XX q X qX X qY-⋅===-⋅+⋅+⋅即()()Y Y X X Z X -=-.法二:(特例法)取等比数列1,2,4,令1n =得1,3,7X Y Z ===代入验算、只有选项D 满足. 4. B .提示:法一:(直接法)根据()f x 为奇函数知()=(),()=()f a f a f b f b ----, 由0a b +≤知a b ≤-,b a ≤-,再根据()f x 为减函数可得()(),()()f a f b f b f a ≤-≤-,故①④正确.法二:(特例法)取()f x x =-,逐项检验可得. 5.B .。

高考数学答题技巧方法大全

高考数学答题技巧方法大全

高考数学答题技巧方法大全高考数学作为一门综合性、重要性极高的科目,常常会让很多考生感到头疼。

而提高高考数学的得分,不仅需要掌握知识点,还需要掌握一些答题技巧和方法。

本文将为大家介绍高考数学答题的技巧和方法,希望对考生备战高考有所帮助。

技巧一:掌握基本运算和概念高考数学题目的答案往往简洁明了,但是要想得出这样的答案,就必须掌握数学的基本运算和概念。

掌握好这些基本技能,能够在初步正确理解问题的基础上,避免犯低级错误。

所以,要在高一、高二的时候好好学习基础知识,踏实练好基本功。

技巧二:清除干扰项在高考数学试卷中,常常会有一些干扰项,这些干扰项是考试命制者用来让考生分散注意力、增加难度的。

因此,我们在做数学题时,要特别注意这些干扰项,往往只要我们认真注意,很容易就能找到正解。

技巧三:先易后难我们在做高考数学题时,很容易陷入到一道题目中,耽误了时间,无法完成题目,这就涉及到解题思路问题。

要避免这种情况,我们可以先解决一些简单的问题,再去解决更复杂的问题。

这种思路可以帮助我们更好的安排时间,在时间充足的情况下提高做题效率。

技巧四:寻找规律高考数学试卷中往往会出现一些符号复杂、难以立刻解决的题目。

这时我们就需要寻找规律。

通过规律,我们可以得到对题目的认识,从而结合我们掌握的知识综合分析,找到解题的突破口。

技巧五:多与数学老师和同学交流与数学老师和同学交流有助于我们解决一些感到困惑的问题,同时也能够了解其他人的思路,让我们的思路得到拓展。

当我们在遇到一些比较难的题目时,也可以向老师请教,让老师给我们指点迷津。

技巧六:平时要多做模拟卷和真题在平时的备考过程中,我们可以不断练习模拟卷、真题等,熟悉高考数学试卷的题型和难度。

这不仅可以让我们提高解题的速度和准确性,还可以帮助我们摸清考试命制者的思路,对我们的应考策略有很大的帮助。

技巧七:答题要仔细在高考数学考试中,答题时一定要非常仔细,不能马虎。

一些细小的错误有可能会导致一道题目失分。

高考数学必考题型及答题技巧锦集

高考数学必考题型及答题技巧锦集

高考数学必考题型及答题技巧锦集【篇1】高考数学必考题型及答题技巧①单项选择考试范围。

集合的基本运算、复数的基本运算、统计与概率-排列组合、立体几何、概率事件、指数与对数函数、平面向量与平面几何、函数的与导数。

②多项选择考试范围。

解析几何(双曲线)、三角函数、不等式应用、对数运算及不等式基本性质。

③填空题考试范围。

解析几何(抛物线)、数列(等差或等比)、三角函数、立体几何轨迹计算。

④解答题考试范围。

三角函数(正弦余弦定理)、等比数列及其求和、统计与概率、立体几何、解析几何、函数与导数。

高考数学不及格影响院校录取吗?高考有科目不及格,不会影响太大,只要总分足够高,还是能上好的大学,只是在同等分数下,你的分数不及格,学校可能会优先选择及格的学生。

【篇2】高考数学必考题型及答题技巧高考数学必考题型是什么题型一运用同三角函数关系、诱导公式、和、差、倍、半等公式进行化简求值类。

题型二运用三角函数性质解题,通常考查正弦、余弦函数的单调性、周期性、最值、对称轴及对称中心。

题型三解三角函数问题、判断三角形形状、正余弦定理的应用。

题型四数列的通向公式的求法。

高考数学答题技巧有哪些1、函数或方程或不等式的题目,先直接思考后建立三者的联系。

首先考虑定义域,其次使用“三合一定理”。

2、如果在方程或是不等式中出现超越式,优先选择数形结合的思想方法;3、面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。

如所过的定点,二次函数的对称轴或是……;4、选择与填空中出现不等式的题目,优选特殊值法;5、求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法;6、恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏;7、圆锥曲线的题目优先选择它们的定义完成,直线与圆锥曲线相交问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法;使用韦达定理必须先考虑是否为二次及根的判别式;【篇3】高考数学必考题型及答题技巧无论是全国卷,还是各个省的自命题卷,虽然对知识的考察重点不同,但是,题型却有很多共性。

高考数学答题技巧总结

高考数学答题技巧总结

高考数学答题技巧总结高考数学,对于众多考生来说,是一场关键的战役。

想要在这场战役中取得佳绩,除了扎实的知识基础,掌握有效的答题技巧也是至关重要的。

以下是为大家总结的一些高考数学答题技巧,希望能对大家有所帮助。

一、考前准备1、熟悉考试大纲和题型在备考阶段,要仔细研究高考数学的考试大纲,了解考试的重点和难点,以及各种题型的分布和特点。

这样在答题时就能心中有数,合理分配时间和精力。

2、做好复习计划制定合理的复习计划,将知识点进行系统的梳理和复习。

注重基础知识的巩固,同时也要对难题进行有针对性的训练。

3、进行模拟考试在考前要多进行模拟考试,模拟考试的环境和时间,让自己适应高考的节奏和压力。

通过模拟考试,发现自己的薄弱环节,及时进行查漏补缺。

4、调整心态保持良好的心态是取得好成绩的关键。

不要给自己太大的压力,相信自己的能力,以平和、自信的心态迎接考试。

二、答题过程中的技巧1、认真审题这是答题的第一步,也是最为关键的一步。

要仔细阅读题目,理解题目的意思,明确题目所给的条件和要求。

注意题目中的关键词、限制条件和隐含信息,避免因为粗心大意而误解题意。

2、选择合适的解题方法根据题目所考查的知识点和题型,选择合适的解题方法。

有时候一种题目可能有多种解题方法,要选择最简便、最快捷的方法,以节省时间。

3、分步答题对于一些复杂的题目,可以采用分步答题的方法。

将问题分解成几个小问题,逐步解决,这样可以降低难度,提高答题的准确性。

4、注意答题规范书写要工整、清晰,答题步骤要完整、有条理。

在解答计算题时,要按照先列式、再计算、最后得出答案的步骤进行。

在解答证明题时,要逻辑严密,推理清晰。

5、合理安排时间高考数学考试时间有限,要合理安排时间。

一般来说,选择题和填空题要控制在 40 分钟左右,解答题要保证有足够的时间思考和作答。

遇到不会做的题目,不要死磕,先跳过,等做完其他题目后再回头思考。

6、检查答案在考试结束前,要留出一定的时间检查答案。

高考数学答题技巧及时间分配

高考数学答题技巧及时间分配

高考数学答题技巧及时间分配大家都知道,高考数学考试分为选择题、填空题、解答题三大部分,由于三部分所占的分数份额不同,难度不同,考生可以就自己平时的速度,将这三者的答题时间合理分配。

这三个部分,相对来说,高考数学选择题是可以通过排除法、答案代入法、任意数字代入法等方式得到答案,需要的时间也相对较少,填空题的计算过程通常不会太复杂,每个空格所占的分数也不会很高,因此,高考中要适当地将时间留给更好做数学解答题。

高考考生们,想要在高考中取得高分,切记遇到难题不愿意、不甘心放弃,要懂得适当地迂回战术,遇到难题先将其略过,等到其他题目都完成以后,利用剩下的时间再慢慢研究,避免得不偿失的状况出现,还可以节省时间,分配出高考数学难题答题时间。

并且,数学解答题每写出一个步骤,所得到的分数,都远远可能高于一道数学选择题或者填空题的分数,因此,做题也要分清轻重。

同学们在步入高中后,由于对数学自学压力体会不浅,随着高中数学知识点的减少、科学知识难度的减少浅,慢慢积累了许多大问题。

这些累积的问题难在数学考试中发动出,引致高中高中生解不出题目或者错题多。

因此,高中高中生在自学数学时必须稳扎稳打,对高中数学科学知识融会贯通,学会举一反三。

在高中数学学习中常出现的问题,要总结经验,有学习方法、学习习惯以及学习态度方面的问题。

在高中数学学习方法上容易出现的问题,要及时采取对策,一般有做几何题不会做辅助线;考虑问题不全面,不会分类讨论;做题自信不足,不敢下手。

对于这种情况,高中高中生在备考时必须注重数学几何模型的定义、性质和认定,学会画辅助线。

在做题过程中,总结出来常用的数学辅助线,例如对角线、三线合一、倍短中线等等。

考虑问题不全面,不会充分讨论,导致高中生在做题时经常漏情况,不能得满分。

高中生在平时的做题复习中,应该注意数学中的分类讨论问题,那些需要分类讨论以及讨论的方法。

也就是,在做题时,注意写清步骤以及取舍问题,并不是所有情况都是正确答案,这需要检验。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学填空题常胜技巧
数学填空题是一种只要求写出结果,不要求写出解答过程的客观性试题,是
高考数学中的三种常考题型之一,填空题的类型一般可分为:完形填空题、多选
填空题、条件与结论开放的填空题. 这说明了填空题是数学高考命题改革的试验
田,创新型的填空题将会不断出现. 因此,我们在备考时,既要关注这一新动向,
又要做好应试的技能准备.解题时,要有合理的分析和判断,要求推理、运算的
每一步骤都正确无误,还要求将答案表达得准确、完整. 合情推理、优化思路、
少算多思将是快速、准确地解答填空题的基本要求
数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试
题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。求解填空题
的基本策略是要在“准”、“巧”、“快”上下功夫。常用的方法有直接法、特
殊化法、数行结合法、等价转化法等。

一、直接法
这是解填空题的基本方法,它是直接从题设条件出发、利用定义、定理、性质、
公式等知识,通过变形、推理、运算等过程,直接得到结果。
例1设 其中i,j为互相垂直的单位向量,又 ,则实数m
= 。
解: ∵ ,∴ ∴ ,而i,j为互相垂直的单位向量,故可得 ∴ 。
例2已知函数 在区间 上为增函数,则实数a的取值范围是 。
解: ,由复合函数的增减性可知, 在 上为增函数,∴ ,∴ 。
例3现时盛行的足球彩票,其规则如下:全部13场足球比赛,每场比赛有3种
结果:胜、平、负,13长比赛全部猜中的为特等奖,仅猜中12场为一等奖,其
它不设奖,则某人获得特等奖的概率为 。
解:由题设,此人猜中某一场的概率为 ,且猜中每场比赛结果的事件为相互独
立事件,故某人全部猜中即获得特等奖的概率为 。

二、特殊化法
当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题
中变化的不定量用特殊值代替,即可以得到正确结果。
例4 在△ABC中,角A、B、C所对的边分别为a、b、c。若a、b、c成等差数列,
则 。
解:特殊化:令 ,则△ABC为直角三角形, ,从而所求值为 。
例5 过抛物线 的焦点F作一直线交抛物线交于P、Q两点,若线段PF、FQ的长
分别为p、q,则 。
分析:此抛物线开口向上,过焦点且斜率为k的直线与抛物线均有两个交点P、
Q,当k变化时PF、FQ的长均变化,但从题设可以得到这样的信息:尽管PF、
FQ不定,但其倒数和应为定值,所以可以针对直线的某一特定位置进行求解,
而不失一般性。
解:设k = 0,因抛物线焦点坐标为 把直线方程 代入抛物线方程得 ,∴ ,从
而 。
例6 求值 。
分析:题目中“求值”二字提供了这样信息:答案为一定值,于是不妨令 ,得
结果为 。

三、数形结合法
对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地
解决问题,得出正确的结果。
例7 如果不等式 的解集为A,且 ,那么实数a的取值范围
是 。
解:根据不等式解集的几何意义,作函数 和
函数 的图象(如图),从图上容易得出实数a的取
值范围是 。
例8 求值 。
解: ,
构造如图所示的直角三角形,则其中的角 即为 ,从而
所以可得结果为 。
例9 已知实数x、y满足 ,则 的最大值是 。
解: 可看作是过点P(x,y)与M(1,0)的直线的斜率,其中点P的圆 上,
如图,当直线处于图中切线位置时,斜率 最大,最大值为 。

四、等价转化法
通过“化复杂为简单、化陌生为熟悉”,将问题等价地转化成便于解决的问题,
从而得出正确的结果。
例10 不等式 的解集为(4,b),则a= ,
b= 。
解:设 ,则原不等式可转化为: ∴a > 0,且2与 是方程 的两根,由此可得: 。
例11 不论k为何实数,直线 与曲线 恒有交点,则实数a的取值范围
是 。
解:题设条件等价于点(0,1)在圆内或圆上,或等价于点(0,1)到圆 ,∴ 。
例12 函数 单调递减区间为 。
解:易知 ∵y与y2有相同的单调区间,而 ,∴可得结果为 。
总之,能够多角度思考问题,灵活选择方法,是快速准确地解数学填空
题的关键。

相关文档
最新文档