三角形全等培优证明题100题(有答案)
数学数学全全等三角形截长补短的专项培优练习题(及答案

数学数学全全等三角形截长补短的专项培优练习题(及答案一、全等三角形截长补短1.如图1,在ABC 中,AB AC =,AC 平分BCD ∠,连接BD ,2ABD CBD ∠=∠,BDC ABD ACD ∠=∠+∠.(1)求A ∠的度数:(2)如图2,连接AD ,AE AD ⊥交BC 于E ,连接DE ,求证:DEC BAE ∠=∠; (3)如图3,在(2)的条件下,点G 为CE 的中点,连接AG 交BD 于点F ,若32ABC S =△,求线段AF 的长.2.如图,已知 B (-1, 0) , C (1, 0) , A 为 y 轴正半轴上一点, AB = AC ,点 D 为第二象限一动点,E 在 BD 的延长线上, CD 交 AB 于 F ,且∠BDC = ∠BAC .(1)求证: ∠ABD = ∠ACD ;(2)求证: AD 平分∠CDE ;(3)若在 D 点运动的过程中,始终有 DC = DA + DB ,在此过程中,∠BAC 的度数是否变化?如果变化,请说明理由;如果不变,请求出∠BAC 的度数?3.如图,在ABC 中,AC BC =,AD 平分CAB ∠.(1)如图1,若90ACB =︒,求证:AB AC CD =+;(2)如图2,若AB AC BD =+,求ACB ∠的度数;(3)如图3,若100ACB ∠=︒,求证:AB AD CD =+.4.已知在四边形ABCD中,∠ABC+∠ADC=180°,∠BAD+∠BCD=180°,AB=BC(1)如图1,连接BD,若∠BAD=90°,AD=7,求DC的长度.(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=∠ABP +∠QBC(3)若点Q在DC的延长线上,点P在DA的延长线上,如图3所示,仍然满足PQ=AP +CQ,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.5.问题提出,如图1所示,等边△ABC内接于⊙O,点P是AB上的任意一点,连结PA,PB,PC.线段PA、PB、PC满足怎样的数量关系?(尝试解决)为了解决这个问题,小明给出这样种解题思路:发现存在条件CA=CB,∠ACB=60°,从而将CP绕点逆时针旋转60°交PB延长线于点M,从而证明△PAC≌△MBC,请你完成余下思考,并直接写出答案:PA、PB、PC的数量关系是;(自主探索)如图2所示,把原问题中的“等边△ABC”改成“正方形ABCD”,其余条件不变,①PC与PA,PB有怎样的数量关系?请说明理由:②PC+PD与PA,PB的数量关系是.(直接写出结果)(灵活应用)把原问题中的“等边△ABC”改成“正五边形ABCDE”,其余条件不变,则PC+PD+PE与PA+PB的数量关系是.(直接写出结果)6.如图所示,//AB DC AB AD BE ⊥,,平分ABC CE ∠,平分BCD ∠; (1)求AB CD 、与BC 的数里关系,并说明你的理由.(2)若把AB AD ⊥条件去掉,则(1)中AB CD 、与BC 的数里关系还成立吗?并说明你的理由.7.如图1,在四边形ABCD 中,,,AB AD BC CD AB BC ⊥⊥=,2ABC EBF ∠=∠,它的两边分别交AD DC 、点,E F .且AE CF ≠.()1求证:.EF AE CF =+()2如图2,当MBN ∠的两边分别交,AD DC 的延长线于点,E F ,其余条件均不变时,()1中的结论是否成立?如果成立,请证明.如果不成立,线段,,AE CF EF 又有怎样的数量关系?并证明你的结论.8.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD ,以D 为顶点作MDN ∠,交边AC ,BC 于点M ,N .(1)如图(1),若30ACD ∠=︒,60MDN ∠=︒,当MDN ∠绕点D 旋转时,AM ,MN ,BN 三条线段之间有何种数量关系?证明你的结论;(2)如图(2),当90ACD MDN ∠+∠=︒时,AM ,MN ,BN 三条线段之间有何数量关系?证明你的结论;(3)如图(3),在(2)的条件下,若将M ,N 分别改在CA ,BC 的延长线上,完成图(3),其余条件不变,则AM ,MN ,BN 之间有何数量关系(直接写出结论,不必证明).9.如图所示,平行四边形ABCD 和平行四边形CDEF 有公共边CD ,边AB 和EF 在同一条直线上,AC ⊥CD 且AC=AF ,过点A 作AH ⊥BC 交CF 于点G ,交BC 于点H ,连接EG .(1)若AE=2,CD=5,则△BCF 的面积为 ;△BCF 的周长为 ;(2)求证:BC=AG+EG .10.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图,四边形ABCD ,AD ∥BC ,AB =AD ,E 为对角线AC 上一点,∠BEC =∠BAD =2∠DEC ,探究AB 与BC 的数量关系.某学习小组的同学经过思考,交流了自己的想法:小柏:“通过观察和度量,发现∠ACB =∠ABE ”;小源:“通过观察和度量,AE 和BE 存在一定的数量关系”;小亮:“通过构造三角形全等,再经过进一步推理,就可以得到线段AB 与BC 的数量关系”.……老师:“保留原题条件,如图2, AC 上存在点F ,使DF =CF =k AE ,连接DF 并延长交BC 于点G ,求AB FG的值”. (1)求证:∠ACB =∠ABE ;(2)探究线段AB 与BC 的数量关系,并证明;(3)若DF =CF =k AE ,求AB FG的值(用含k 的代数式表示).【参考答案】***试卷处理标记,请不要删除一、全等三角形截长补短1.(1)90A ∠=︒;(2)见解析;(3)4【分析】(1)设.DBC x ∠=推出2ABC x ∠=,3ABC ACB ACD x ∠=∠=∠=,5D x ∠=,利用三角形内角和定理构建方程求出x 即可;(2)先依据ASA 证明BEA CDA △≌△,再依据全等三角形的性质得到AE AD =,结合AE AD ⊥,依据三角形内角和求出45AED ∠=︒,再依据三角形外角的性质及等式的基本性质即可求证;(3)根据直角三角形的面积公式求出AB ,延长AG 至K ,使GK AG =,连接CK ,先依据SAS 证明AEG KCG △≌△,结合等量代换得到AE KC AD ==,ACK BAD ∠=∠,再依据SAS 证明AKC BDA △≌△,依据全等的性质求得CAG ABD ∠=∠215=⨯︒30=︒,从而得到60BAF ∠=︒,继而得到90AFB ∠=︒,最后依据直角三角形30度角的性质解决问题.【详解】()1解:如图1中,设DBC x ∠=.2ABD DBC ∠=∠,AB AC =,2ABD x ∴∠=,3ABD ACB x ∠=∠=, AC 平分BCD ∠,3ACD ACB x ∴∠=∠=,26DCB ACB x ∠=∠=,5D ABD ACD x ∠=+∠=,又∵在BCD ∆中,180D DBC DCB ∠+∠+∠=︒,56180x x x ∴++=︒,15x ∴=︒,45ABC ACB ∴∠=∠=︒,30ABD ∠=︒,180454590A ∴∠=︒-︒-︒=︒;(2)AE AD ⊥,90EAD ∴∠=︒,90BAC EAD ∠=∠=︒,BAC EAC EAD EAC ∴∠-∠=∠-∠,BAE CAD ∴∠=∠,=345ABE x ACD ∠=︒=∠,AB AC =()BEA CDA ASA ∴△≌△AE AD ∴=,又∵90EAD ∠=︒,∴45AED ADE ∠=∠=︒又AEC ABE BAE AED DEC ∠=∠+∠=∠+∠,DEC BAE ∴∠=∠;(3)延长AG 至K ,使GK AG =,连接CK点G 为CE 的中点,EG CG ∴=,AGE KGC ∠=∠,()AEG KCG SAS ∴△≌△,AE KC ∴=,AEG KCG ∠=∠,AE KC AD ∴==,45ACK ACB KCG AEC ∠=∠+∠=︒+∠4590ABE BAE BAE BAD =︒+∠+∠=︒+∠=∠AB AC =()AKC BDA SAS ∴△≌△21530CAG ABD ∠=∠=⨯︒=︒60BAF ∴∠=︒90AFB ∴∠=︒32ABC S =211=3222AB AC AB ∴⨯= 8AB ∴=142AF AB ∴==. 【点睛】本题属于三角形综合题,考查了三角形内角和定理,三角形外角的性质,三角形全等的判定和性质,含30度的直角三角形的性质,第(1)问的关键在于设未知数,列方程;第(2)问的关键得到了等腰直角三角形和利用三角形的外角性质建立起了两个待证量之间的等式;第(3)问的关键在于作辅助线证明了30CAG ∠=︒.2.(1)见解析;(2)见解析;(3)∠BAC 的度数不变化.∠BAC=60°.【解析】【分析】(1)根据三角形内角和定理等量代换可得结论;(2)作AM ⊥CD 于点M ,作AN ⊥BE 于点N ,证明△ACM ≌△ABN 即可;(3)用截长补短法在CD 上截取CP=BD ,连接AP ,证明△ABD ≌△ACP ,由全等性质可知△ADP 是等边三角形,易知∠BAC 的度数.【详解】(1)∵∠BDC=∠BAC ,∠DFB=∠AFC ,又∵∠ABD+∠BDC+∠DFB=∠BAC+∠ACD+∠AFC=180°,∴∠ABD=∠ACD ;(2)过点A 作AM ⊥CD 于点M ,作AN ⊥BE 于点N .则∠AMC=∠ANB=90°.∵OB=OC ,OA ⊥BC ,∴AB=AC ,∵∠ABD=∠ACD ,∴△ACM ≌△ABN (AAS )∴AM=AN .∴AD 平分∠CDE .(到角的两边距离相等的点在角的平分线上);(3)∠BAC 的度数不变化.在CD 上截取CP=BD ,连接AP .∵CD=AD+BD,AD=PD.∵AB=AC,∠ABD=∠ACD,BD=CP,∴△ABD≌△ACP.∴AD=AP;∠BAD=∠CAP.∴AD=AP=PD,即△ADP是等边三角形,∴∠DAP=60°.∴∠BAC=∠BAP+∠CAP=∠BAP+∠BAD=60°.【点睛】本题考查了三角形的综合,主要考查了三角形内角和定理、全等三角形的证明和性质,等腰等边三角形的性质和判定,采用合适的方法添加辅助线构造全等三角形是解题的关键. 3.(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D作DM⊥AB于M,由 CA=CB,90ACB=︒,得ABC是等腰直角三角形,根据角平分线的性质得到CD=MD,∠ABC=45°,根据全等三角形的性质得到AC=AM,于是得到结论;(2)如图2,设∠ACB=α,则∠CAB=∠CBA=90°−12α,在AB上截取AK=AC,连结DK,根据角平分线的定义得到∠CAD=∠KAD,根据全等三角形的性质得到∠ACD=∠AKD =α,根据三角形的内角和即可得到结论;(3)如图3,在AB上截取AH=AD,连接DH,根据等腰三角形的性质得到∠CAB=∠CBA =40°,根据角平分线的定义得到∠HAD=∠CAD=20°,求得∠ADH=∠AHD=80°,在AB 上截取AK=AC,连接DK,根据全等三角形的性质得到∠ACB=∠AKD=100°,CD=DK,根据等腰三角形的性质得到DH=BH,于是得到结论.【详解】(1)如图1,过D作DM⊥AB于M,∴在ABC 中,AC BC =,∴∠ABC =45°,∵∠ACB =90°,AD 是角平分线,∴CD =MD ,∴∠BDM =∠ABC =45°,∴BM =DM ,∴BM =CD ,在RT △ADC 和RT △ADM 中,CD MD AD AD ⎧⎨⎩==, ∴RT △ADC ≌RT △ADM (HL ),∴AC =AM ,∴AB =AM +BM =AC +CD ,即AB =AC +CD ;(2)设∠ACB =α,则∠CAB =∠CBA =90°−12α, 在AB 上截取AK =AC ,连结DK ,如图2,∵AB =AC +BD ,AB=AK+BK∴BK =BD ,∵AD 是角平分线,∴∠CAD =∠KAD ,在△CAD 和△KAD 中,AC AK CAD KAD AD AD ⎧⎪∠∠⎨⎪⎩=== ∴△CAD ≌△KAD (SAS ),∴∠ACD =∠AKD =α,∴∠BKD =180°−α,∵BK =BD ,∴∠BDK =180°−α,∴在△BDK 中,180°−α+180°−α+90°−12α=180°, ∴α=108°,∴∠ACB =108°;(3)如图3,在AB 上截取AH =AD ,连接DH ,∵∠ACB =100°,AC =BC ,∴∠CAB =∠CBA =40°,∵AD 是角平分线,∴∠HAD =∠CAD =20°,∴∠ADH =∠AHD =80°,在AB 上截取AK =AC ,连接DK ,由(1)得,△CAD ≌△KAD ,∴∠ACB =∠AKD =100°,CD =DK ,∴∠DKH =80°=∠DHK ,∴DK =DH =CD ,∵∠CBA =40°,∴∠BDH =∠DHK -∠CBA =40°,∴DH =BH ,∴BH =CD ,∵AB =AH +BH ,∴AB =AD +CD .【点睛】 本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.4.(1)7DC =;(2)见解析;(3)1902PBQ ADC ∠=︒+∠,证明见解析 【分析】(1)根据已知条件得出BDC 为直角三角形,再根据HL 证出△≌△Rt BAD Rt BCD ,从而证出AD CD =即可得出结论;(2)如图2,延长DC 到 K ,使得CK=AP ,连接BK ,通过证△BPA ≌△BCK (SAS )得到:∠1=∠2,BP=BK .然后根据SSS 证明得≌PBQ BKQ ,从而得出21PBQ CBQ CBQ ∠=∠+∠=∠+∠,然后得出结论;(3)如图3,在CD 延长线上找一点K ,使得KC=AP ,连接BK ,构建全等三角形:△BPA ≌△BCK (SAS ),由该全等三角形的性质和全等三角形的判定定理SSS 证得:△PBQ ≌△BKQ ,则其对应角相等:∠PBQ=∠KBQ ,结合四边形的内角和是360°可以推得:∠PBQ=90°+12∠ADC . 【详解】(1)证明:如图1,∵180ABC ADC ∠+∠=︒,90BAD ∠=︒,∴90BCD BAD ∠=∠=︒,在Rt BAD 和Rt BCD 中,BD BD AB BC =⎧⎨=⎩∴()△≌△Rt BAD Rt BCD HL ,∴AD DC =,∴7DC =;(2)如图2,延长DC 至点K ,使得CK AP =,连接BK∵180ABC ADC ∠+∠=︒,∴180BAD BCD ∠+∠=︒,∵180BCD BCK ∠+∠=︒,∴BAD BCK ∠=∠,∵AP CK =,AB BC =,∴()△≌△BPA BCK SAS , ∴12∠=∠,BP BK =,∵PQ AP CQ =+,QK CK CQ =+,∴PQ QK =,∵BP BK =,BQ BQ =,∴()≌PBQ BKQ SSS ,∴21PBQ CBQ CBQ ∠=∠+∠=∠+∠,∴PBQ ABP QBC ∠=∠+∠;(3)1902PBQ ADC ∠=︒+∠; 如图3,在CD 延长线上找一点K ,使得KC AP =,连接BK ,∵180ABC ADC ∠+∠=︒,∴180BAD BCD ∠+∠=︒,∵180BAD PAB ∠+∠=︒,∴PAB BCK ∠=∠,在BPA △和BCK 中,AP CK BAP BCK AB BC =⎧⎪∠=∠⎨⎪=⎩∴()△≌△BPA BCK SAS , ∴ABP CBK ∠=∠,BP BK =,∴PBK ABC ∠=∠,∵PQ AP CQ =+,∴PQ QK =,在PBQ △和BKQ 中,BP BK BQ BQ PQ KQ =⎧⎪=⎨⎪=⎩∴()≌PBQ BKQ SSS ,∴PBQ KBQ ∠=∠,∴22360PBQ PBK PBQ ABC ∠+∠=∠+∠=︒,∴()2180360PBQ ADC ∠+︒-∠=︒, ∴1902PBQ ADC ∠=︒+∠..【点睛】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.5.【尝试解决】PA+PB=PC ;【自主探索】①2PC PA PB =;理由见解析;②21)()PC PD PA PB +=+;【灵活应用】(52)()PC PD PE PA PB ++=+.【分析】尝试解决:利用旋转性质证明△PAC ≌△MBC ,得到PA=BM ,得到PM 等于PB 与PA 的和,再证明△PCM 是等边三角形,得到PM 等于PC ,即可得到结果;自主探索:①在PC 上截取QC=PA ,证出△CBQ 全等于△ABP ,得到△PBQ 是等腰直角三角形,PQ 等于PB 2倍,即可得到结果;②同①方法,即可得到PD 与PA 和PB 的关系,即可求出PC+PD 与PA 和PB 的关系; 灵活应用:类比(自主探索)中的方法证明PC 与PA 和PB 的关系,再用同样的方法证明PE 与PA 和PB 的关系,构造△CDM 全等于△CBP ,得到PD 与PC 的关系,进一步得到PD 与PA 和PB 的关系,最终求出PD+PE+PC 的和即可得到与PA 和PB 的关系.【详解】尝试解决:PA+PB=PC ;证明:因为∠ACP+∠PCB=60°,∠MCB+∠PCB=60°,∴∠ACP=∠MCB ,又∵CP=CM ,AC=MC ,∴△ACP ≌△BCM ,所以PA=BM ,∠CBM=∠CAP ,∵四边形APBC 内接于圆O ,∴∠CAP+∠CBP=180°,∴∠CBM+∠CBP=180° ,∴P 、B 、M 三点共线,∴△PCM 是等边三角形,∴PM=PC ,∴PC=PM=PB+BM=PB+PA ;自主探索:①PC 与PA 、PB 的数量关系为2PC PA PB =+;理由:截取CQ=PA ,,如图,∵四边形ABCD 是正方形,∴BC=AB ,∠ABC=∠BCD=∠CDA=∠DAB=90°,∵PA=CQ ,∠BCQ=BAP ,BC=AB∴△BCQ ≌△BAP ,∴∠CBQ=∠ABP ,BQ=BP , ∵∠CBQ+∠ABQ=90°,∴90ABP ABQ ∠+∠=︒,∴△PBQ 是等腰直角三角形,∴2PB ,∴2PC CQ PQ PA PB =+=+;②21)()PC PD PA PB +=+证明:在PD 上截取DH=PB ,∵DH=PB ,∠ADH=∠ABP ,AD=AB∴△ADH ≌△ABP∴∠DAH=∠BAP ,AH=AP ,∵∠DAH+∠HAP=90°, ∴∠BAP+∠HAP=90°,∴△HAP 是等腰直角三角形,∴2,∴2PA ,∴21)()PC PD PA PB +=+.灵活应用:52)()PC PD PE PA PB ++=+.证明:在PC 上截取FC=PA ,∵五边形ABCDE 是正五边形,∴BC=AB=CD=DE=AE ,∠ABC=∠EAB=108°,∵PA=CF ,AB=BC ,∠FCB=∠BAP ,∴△BAP ≌△BCF ,∴BF=PB ,∠CBF=∠ABP ,∵∠CBF+∠FBA=108°,∴∠ABP+∠FBA=108°,∴△FBP 是顶角为108°的等腰三角形,∴15+PB , ∴15+PB+PA , 同理可证15+PA+PB , 延长PD 至点M 使DM=PB ,∵∠MDC+∠CDP=180°,∠CDP+∠PBC=180°,∴∠CDM=∠CBP又∵CD=BC ,∴△CDM ≌△CBP∴CM=CP ,∠MCD=∠BCP ,又∵∠PCB+∠PCD=108°,∴∠MCD+∠PCD=108°,∴△MCP 是顶角108°的等腰三角形,∴PM=152+PC , ∴15+PC-PB , ∴PC+PD+PE 15+15+35+15+PB+PA )+152+PA=()()2525PA PB +++=()()25PA PB ++ 【点睛】 本题考查旋转性质、圆的有关性质、圆内接四边形、正五边形有关性质、三角形全等的相关性质和判定,综合性强,难度较大是一道好题,属中考压轴题型.6.(1)AB CD BC +=,见解析;(2)成立,见解析【分析】(1)先写出数量关系,过E 作EF BC ⊥于F ,然后证明CDE CFE ∆≅∆和ABE FBE ≅∆∆,便可得结论了.(2)成立, 在BC 上截取CF CD =证明CDE CFE ∆≅∆和ABE FBE ≅∆∆,便可得到结论.【详解】()1AB CD BC +=理由是:过E 作EF BC ⊥于FCE 为角平分线DCE FCE ∴∠=∠//AB DC AB AD ⊥,90D ∴∠=EF BC ⊥D CFE ∴∠=∠CE CE =()CDE CFE AAS ∆≅∆CD CF ∴=同理可证()ABE FBE AAS ∆≅∆AB BF ∴=CF BF AB +=AB CD BC ∴+=()2成立理由:在BC 上截取CF CD =CE 为角平分线DCE FCE ∴∠=∠CE CE =()CDE CFE SAS ∆≅∆CD CF ∴= D CFE ∠=∠//AB DC180D A ∴∠+∠=又180CFE EFB ∠+=A EFB ∴∠=∠ 又BE 是角平分线 ABE FBE ∴∠=∠BE BE =()BAE BFE AAS ∆≅∆AB FB ∴=∴ CF BF AB +=AB CD BC ∴+=7.(1)证明见解析;(2)不成立,AE=CF+EF ,理由见详解【分析】(1)延长FC 到H ,使CH AE =,连接BH ,由题意易证BCH BAE ∆∆≌,则有HBF EBF ∠=∠,进而可证HBF EBF ∆∆≌,然后根据线段的等量关系可求解; (2)在AE 上截取AH=CF ,连接BH ,然后根据题意易证△ABH ≌△CBF ,则有BH=BF ,∠ABH=∠CBF ,进而可得△EBF ≌△EBH ,最后根据线段的等量关系可求解.【详解】()1证明:延长FC 到H ,使CH AE =,连接BH ,如图所示:,AB AD BC CD ⊥⊥,90A BCH ∴∠=∠=︒,在BCH ∆和BAE ∆中BC BA BCH A CH AE =⎧⎪∠=∠⎨⎪=⎩,()BCH BAE SAS ∴∆∆≌,,BH BE CBH ABE ∴=∠=∠,2ABC EBF =∠∠,ABE CBF EBF ∴∠+∠=∠,HBC CBF EBF ∴∠+∠=∠,HBF EBF ∴∠=∠在HBF ∆和EBF ∆中BH BE HBF EBF BF BF =⎧⎪∠=∠⎨⎪=⎩,()HBF EBF SAS ∴∆∆≌HF EF ∴=,HF HC CF AE CF =+=+EF AE CF ∴=+;(2)不成立,AE=CF+EF ,理由如下:在AE 上截取AH=CF ,连接BH ,如图所示:,AB AD BC CD ⊥⊥,90A BCF ∴∠=∠=︒,∵AB=CB ,∴△ABH ≌△CBF (SAS ),∴BH=BF ,∠ABH=∠CBF ,∵2ABC EBF ∠=∠,∠EBF=∠CBF+∠CBE ,∠ABC=∠CBE+∠EBH+∠ABH , ∴∠EBF=∠EBH ,∵EB=EB ,∴△EBF ≌△EBH (SAS ),∴CF=AH ,EF=EH ,∵AE=AH+HE ,∴AE=CF+EF .【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.8.(1)AM BN MN +=;证明见解析;(2)AM BN MN +=;证明见解析;(3)补图见解析;BN AM MN -=;证明见解析.【分析】(1)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(2)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(3)在CB 截取BE=AM ,连接DE ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可.【详解】(1)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒,90A EBD ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =. MDN ADC BDC ∠=∠=∠,ADM NDC BDE ∴∠=∠=∠,MDC NDB ∠=∠, MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(2)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE . 90A CBD ∠=∠=︒,90A DBE ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=,ADC CDB ∠=∠. 在DAM △和DBE 中,A DBE AD BD ⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE MDA ∴∠=∠,DM DE =.90MDN ACD ∠+∠=︒,90ACD ADC ∠+∠=︒,ADC CDB ∠=∠,NDM ADC CDB ∴∠=∠=∠,ADM CDN BDE ∴∠=∠=∠,CDM NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+,AM BN MN ∴+=;(3)补充完成题图,如图所示.BN AM MN -=.证明如下:如上图,在CB 上截取BE=AM ,连接DE .90CDA ACD ∠+∠=︒,90MDN ACD ∠+∠=︒,MDN CDA ∴∠=∠,MDA CDN ∴∠=∠.90B CAD ∠=∠=︒,90B DAM ∴∠=∠=︒.在DAM △和DBE 中,DAM DBE AD BD ⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴≌,BDE ADM CDN ∴∠=∠=∠,DM DE =.ADC BDC MDN ∠=∠=∠,ADN CDE ∴∠=∠,MDN EDN ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BN BE BN AM =-=-,BN AM MN ∴-=.【点睛】本题考查了全等三角形的性质和判定的应用,作出辅助线构造全等三角形是解题的关键. 9.(1)3,2+2)见解析【分析】(1)根据平行和垂直的特点求出BF ,AF ,再根据勾股定理求出CD ,根据FP 与BA 的比值求出面积,再根据勾股定理求CF ,BC 即可得到周长.(2)在AD 上截取AM=AG ,连接CM ,证△FAG ≌△CAM ;证△EFG ≌△DCM .【详解】解:(1)面积为3;周长为2+∵四边形ABCD 和四边形CDEF 都是平行四边形,∴EF=CD ,AB=CD ,AB ∥CD∴EF=AB=CD=5∴AE=EF-AE=5-2=3∴BF=5-3=2过F 作FP ⊥BC则FP :AH=BF :AB=2:5,∴::2:5BCF BCA S S FP AH == ,∵AC ⊥CD ,AB ∥CD,∴AB ⊥AC ,即∠BAC=90°,∵AC=AF=3,∴CF=223332+= ,BC=223534+= ,∴2213552BCF BCA S S CD AC ==⨯⨯= ∴△BCF 的面积为3,△BCF 周长为23234++(2)在AD 上截取AM=AG ,连接CM ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC∵AH ⊥BC∴AD ⊥AH∴∠DAH=90°∵∠BAC=90°∴∠DAH=∠BAC∴∠DAH-∠CAH =∠BAC-∠CAH∴∠BAH=∠CAD∵AF=AC∴△FAG ≌△CAM∴FG=CM ,∠ACM=∠AFG∵四边形CDEF 是平行四边形,∴EF ∥CD ,EF=CD ,∴∠DCF+∠AFC=180°,∵AF=AC , ∠BAC=90°,∴∠AFC=∠ACF=45°,∴∠DCF=180°-∠AFC=135°,∴∠ACM=∠AFG=45°,∴∠DCM=∠FCD-∠ACF-∠ACM=45°,∴∠AFG=∠DCM ,∴△EFG ≌△DCM ,∴EG=DM ,∵AD=AM+DM ,∴AD=AG+EG ,∵AD=BC ,∴BC=AG+EG .【点睛】此题考查平行四边形的性质,平行线分线段成比例和勾股定理的应用.10.(1)见解析;(2)CB=2AB ;(3)AB FG k = 【分析】(1)利用平行线的性质以及角的等量代换求证即可;(2)在BE 边上取点H ,使BH=AE ,可证明△ABH ≌△DAE ,△ABE ∽△ACB ,利用相似三角形的性质从而得出结论;(3)连接BD 交AC 于点Q ,过点A 作AK ⊥BD 于点K ,得出12AD DK CB DB ==,通过证明△ADK ∽△DBC 得出∠BDC=∠AKD=90°,再证DF=FQ ,设AD=a ,因此有DF=FC=QF=ka ,再利用相似三角形的性质得出AC=3ka ,AB =,1122FG DF ka ==,从而得出答案.【详解】解:(1)∵∠BAD=∠BEC∠BAD=∠BAE+∠EAD∠BEC=∠ABE+BAE∴∠EAD=∠ABE∵AD ∥BC∴∠EAD=∠ACB∴∠ACB=∠ABE(2)在BE 边上取点H ,使BH=AE∵AB=AD∴△ABH ≌△DAE∴∠AHB=∠AED∵∠AHB+∠AHE=180°∠AED+∠DEC=180°∴∠AHE=∠DEC∵∠BEC=2∠DEC∠BEC=∠HAE+∠AHE∴∠AHE=∠HAE∴AE=EH∴BE=2AE∵∠ABE=∠ACB∠BAE=∠CAB∴△ABE ∽△ACB ∴EB AE CB AB= ∴CB=2AB ; (3)连接BD 交AC 于点Q ,过点A 作AK ⊥BD 于点K∵AD=AB∴12DK BD =∠AKD=90°∵12AB AD BC == ∴12AD DK CB DB == ∵AD ∥BC∴∠ADK=∠DBC∴△ADK ∽△DBC∴∠BDC=∠AKD=90°∵DF=FC∴∠FDC=∠DFC∵∠BDC=90°∴∠FDC+∠QDF=90°∠DQF+∠DCF=90°∴DF=FQ设AD=a∴DF=FC=QF=ka∵AD ∥BC∴∠DAQ=∠QCB∠ADQ=∠QBC∴△AQD ∽△CQB ∴12AD QA BC CQ== ∴AQ=ka=QF=CF∴AC=3ka∵△ABE ∽△ACB ∴AE AB AB AC= ∴AB =同理△AFD ∽△CFG12DF AF FG FC == ∴1122FG DF ka ==AB FG = 【点睛】本题是一道关于相似的综合题目,难度较大,根据题目作出合适的辅助线是解此题的关键,解决此题还需要较强的数形结合的能力以及较强的计算能力.。
北师大版七年级 数学下 全等三角形的判定小题精炼培优版(包含答案)

北师大七下全等三角形的判定小题精炼培优版一、单选题1.如图,AD =BC ,要得到△ABD 和△CDB 全等,可以添加的条件是( )A .AB //CD B .△ABC =△CDA C .△A =△CD .AD //BC2.如图,PD △AB ,PE △AC ,垂足分别为D 、E ,且P A 平分△BAC ,则△APD 与△APE 全等的理由是( )A .SASB .AASC .SSSD .ASA3.如图1,D 、E 、F 分别为△ABC 边AC 、AB 、BC 上的点,△A=△1=△C ,DE=DF ,下面的结论一定成立的是( )A .AE=FCB .AE=DEC .AE+FC=ACD .AD+FC=AB 4.如图,AB CD ,//AB CD ,判定ABC △CDA 的依据是( )A.SSS B.SAS C.ASA D.HL5.如图,AD△CD,AE△BE,垂足分别为D,E,且AB=AC,AD=AE,则下列结论△△ABE△△ACD△AM=AN:△△ABN△△ACM;△BO=EO;其中正确的有()A.4个B.3个C.2个D.1个6.如图,点B、F、C、E在一条直线上,AB△ED,AC△FD,那么添加下列一个条件后,仍无法判定△ABC△△DEF的是()A.AB=DE B.AC=DF C.△A=△D D.BF=EC7.如图,已知△ABC为等边三角形,点D、E分别在边BC、AC上,且AE=CD,AD与BE相交于点F,则△BFD的度数为()A.45°B.90°C.60°D.30°8.如图所示,AB=AC,AD=AE,△BAC=△DAE,△1=25°,△2=30°,则△3=()A.60°B.55°C.50°D.无法计算9.如图,AB//DE,AC//DF,AC=DF,下列条件中,不能判定△ABC△△DEF的是A.AB=DE B.△B=△E C.EF=BC D.EF//BC10.如图所示,Rt△ABE△Rt△ECD,点B、E、C在同一直线上,则结论:△AE=ED;△AE△DE;△BC=AB+CD;△AB△DC中成立的是()A.仅△B.仅△△C.仅△△△D.仅△△△△11.如图,AC=AD,BC=BD,则下列结果正确的是()A.AB△CD B.OA=OB C.△ACD=△BDC D.△ABC=△CAB12.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,则下列结论不一定成立的是()A.△ACE△△BCD B.△BGC△△AFC C.△DCG△△ECF D.△ADB△△CEA13.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙14.正三角形ABC中,BD=CE,AD与BE交于点P,△APE的度数为().A.45B.55C.60D.7515.如图,在等边△ABC中,D,E分别是BC,AC上的点,且BD=CE,AD与BE相交于点P,则△1+△2的度数是()A.45°B.55°C.60°D.75°16.如图,在下列条件中,不能证明△ABD△△ACD的是().A .BD =DC ,AB =ACB .△ADB =△ADC ,BD =DC C .△B =△C ,△BAD =△CAD D .△B =△C ,BD =DC17.如图,已知12AC AD ∠=∠=,,从下列条件:△AB AE =;△BC ED =;△C D ∠=∠;△B E ∠=∠中添加一个条件,能使ABC △△AED 的有()A .1个B .2个C .3个D .4个18.如图,在Rt△AEB 和Rt△AFC 中,BE 与AC 相交于点M ,与CF 相交于点D ,AB 与CF 相交于N ,△E =△F =90°,△EAC =△FAB ,AE =AF,给出下列结论:△△B =△C ;△CD =DN ;△BE =CF ;△△ACN△△ABM;其中正确的结论是( )A .△△△B .△△△C .△△△D .△△△19.如图是由4个相同的小正方形组成的网格图,其中△1+△2等于( )A.150°B.180°C.210°D.225°20.如图,已知△DCE=90°,△DAC=90°,BE△AC于B,且DC=EC.若BE=7,AB=3,则AD的长为()A.3B.5C.4D.不确定21.如图,在△ABC中,AB=AC,△BAC=90°,直角△EPF的顶点P是BC中点,PE,PF分别交AB,AC于点E,F,给出下列四个结论:△△APE△△CPF;△AE=CF;△△EAF是等腰直角三角形;△S△ABC=2S四边形AEPF,上述结论正确的有()A.1个B.2个C.3个D.4个22.如图,△ABC中,AB△BC,BE△AC,△1=△2,AD=AB,则下列结论不正确的是A.BF=DF B.△1=△EFD C.BF>EF D.FD△BC23.如图,已知AB =AC ,AF =AE ,△EAF =△BAC ,点C 、D 、E 、F 共线.则下列结论,其中正确的是( )△△AFB△△AEC ;△BF =CE ;△△BFC =△EAF ;△AB =BC .A .△△△B .△△△C .△△D .△△△△二、填空题 24.如图,某同学把三角形玻璃打碎三块,现在他要去配一块完全一样的,你帮他想一想,带________片去,应用的原理是________(用字母表示).25.如图,矩形ABCD 中,E 在AD 上,且EF EC ⊥,EF EC =,2DE =,矩形的周长为16,则AE 的长是______ .26.如图所示,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B ,D 作BF△a 于点F ,DE△a 于点E ,若DE =8,BF =5,则EF 的长为____.27.如图,△ACB=90°,AC=BC,AD△CE于D,BE△CD于E,AD=2.5cm,DE=1.6cm,则BE的长度为________.28.如图,已知△ABC中,AB=AC=20 cm,BC=16 cm,△B=△C,点D是AB的中点,点P在线段BC上以2 cm/s的速度由B点向C点运动,同时点Q在线段CA上由A点向C点运动,当△BPD与△CQP全等时,点Q的运动速度为______.29.如图所示,AB=AC,AD=AE,△BAC=△DAE,△1=25°,△2=30°,则△3=__________.30.在Rt△ABC中,△ACB=90°,BC=2cm,CD△AB,在AC上取一点E,使EC=BC,过点E作EF△AC交CD的延长线于点F,若EF=5cm,则AE= cm.31.如图,CA=CB,CD=CE,△ACB=△DCE=40°,AD、BE交于点H,连接CH,则△CHE=__________.32.如图,△ACB=90°,AC=BC,BE△CE,AD△CE,垂足分别为E,D,AD=25,DE=17,则BE=______.33.如图,在△ABC中,AD△BC于D,BE△AC于E,AD与BE相交于点F,若BF=AC,则△ABC =_____度.34.如图,AC△BC,AD△DB,要使△ABC△△BAD,还需添加条件_____.(只需写出符合条件一种情况)35.如图AB=AC,AD=AE,△BAC=△DAE,△BAD=25°,△ACE=30°,则△ADE=_____.36.如图,等边△ABC 边长为10,P 在AB 上,Q 在BC 延长线,CQ =P A ,过点P 作PE △AC 点E ,过点P 作PF △BQ ,交AC 边于点F ,连接PQ 交AC 于点D ,则DE 的长为_____.37.如图,△ABC 是等边三角形,AE =CD ,AD 、BE 相交于点P ,BQ△DA 于Q ,PQ =3,EP =1,则DA 的长是________.38.如图,90C ∠=︒,10AC =,5BC =,AM AC ⊥,点P 和点Q 从A 点出发,分别在射线AC 和射线AM 上运动,且Q 点运动的速度是P 点运动的速度的2倍,当点P 运动至__________时,ABC △与APQ 全等.39.如图,AB =BC 且AB △BC ,点P 为线段BC 上一点,P A △PD 且P A =PD ,若△A =22°,则△D 的度数为_________.40.如图,在△ABC中,△A=58°,AB=AC,BD=CF,BE=CD,则△EDF=____________度。
(完整)全等三角形证明经典50题(含答案),推荐文档

全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠24. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠CDAB B A CDF2 1 EAC D E F 21 A D BC A6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
求证:BC=AB+DC 。
13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C14. P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-AB15. 已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BED C B A FE PD A CB16. 已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC18.如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .19.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,A 、B 为垂足,AB 交OM 于点N .求证:∠OAB =∠OBA20.(5分)如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .21.如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B22.(6分)如图①,E 、F 分别为线段AC 上的两个动点,且DE ⊥AC 于E ,BF ⊥AC 于F ,若AB =CD ,AF =CE ,BD 交AC 于点M .(1)求证:MB =MD ,ME =MF(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.F AEDCB P E D CB A DC B A23.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点, (1)求证:△AED ≌△EBC . (2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):24.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .证明:25、如图:DF=CE ,AD=BC ,∠D=∠C 。
初二上数学培优专题(3)三角形全等

三角形全等例1:已知,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)如图1,求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP﹣DE的值;(3)如图3,已知点F坐标为(﹣2,﹣2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y 轴的负半轴上沿负方向运动时,以下两个结论:①m﹣n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.例2:已知△ABC中、∠ABC=∠ACB=40°,BD是∠ABC的平分线,延长BD至点E,使得DE=AD,求∠ECA的度数。
例3.已知∠GOH=90°,A、C分别是OG、OH上的点,且OA=OC=4,以OA为边长作正方形OABC.(1)E是边OC上一点,作∠AEF=90°使EF交正方形的外角平分线CF于点F(如图1),求证:EF=AE.(2)现将正方形OABC绕O点顺时针旋转,当A点第一次落在∠GOH的角平分线OP上时停止旋转;旋转过程中,AB边交OP于点M,BC边交OH于点N(如图2),①旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;②设△MBN的周长为p,在正方形OABC的旋转过程中,p值是否有变化?请证明你的结论.例4:如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上由点B出发向C点运动,同时,点Q在线段CA上由点C出发向A点运动.设运动时间为t(s).(1)若点P的运动速度为3cm/s,则t(s)时,BP= cm,CP= cm,(用含t的代数式表示).若点Q的运动速度与点P的运动速度相等,经过几秒后,△BPD与△CQP是否全等?请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,且点P的速度比点Q的速度慢1cm/s,则点Q的速度为多少时,能够使△BPD与△CQP全等?(3)若点Q以(2)中的速度从点C出发,点P以(2)中的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次相遇,相遇点在△ABC的哪条边上?1.∆ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=_____2.如图∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN ⑤EM=FN.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个 2题3.下列条件中能作出唯一的三角形的是()A.已知两边及一边的对角B.已知两边及第三边上的中线C.已知两角D.已知两边及第三边上的高线4.下列判断正确的是()A.有两边及其中一边的对角对应相等的两个三角形全等.B.有两边对应相等,且有一个角为30°的两个等腰三角形全等.C.有一个角和一边对应相等的两个直角三角形全等 .D.有两角和一边对应相等的两个三角形全等. 5题5.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③AO=CO=AC④四边形ABCD的面积=AC•BD,其中正确的结论有 .6.如图,在△ABC中,AB=AC,∠ABC、∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE;上述结论一定正确的是()A.①②③ B.②③④ C.①③⑤ D.①③④7.下列叙述:①任意一个三角形的三条高至少有一条在三角形内部;②以a,b,c为边(a,b,c都大于0,且a+b>c)一定可以构成一个三角形;③一个三角形内角之比为3:2:1,此三角形为直角三角形;④两个角和其中一角的对边对应相等的两个三角形全等;⑤两条边和其中一边的对角对应相等的两个三角形全等;⑥三个角对应相等的两个三角形全等;⑦两边和其中一边上的高分别相等的两个三角形全等。
全等三角形判定的方法(培优)

全等三角形判定(考试重点)姓名: 班级: 分数: 1.已知AC =BD ,AE =CF ,BE =DF ,证明:AE ∥CF 。
2、已知在四边形ABCD 中,AB =CD ,AD =CB ,证明:AB ∥CD 。
3、已知CD ∥AB ,DF ∥EB ,DF =EB ,证明:AF =CE 。
4、已知ED ⊥AB ,EF ⊥BC ,BD =EF ,证明:BM =ME 。
ACBDEFBADC EF BAC M EFBD5、点C 是AB 的中点,CD ∥BE ,且CD =BE ,证明:∠D =∠E 。
6、在⊿ABC 中,高AD 与BE 相交于点H ,且AD =BD ,证明:⊿BHD ≌⊿ACD 。
7已知AD =AE ,∠B =∠C ,证明:AC =AB 。
8、已知CE ⊥AB ,DF ⊥AB ,CE =DF ,AE =BF ,证明:⊿CEB ≌⊿DF A 。
ABCE HD ADEBCBACDEFD A ECB 129、如图:在△ABC 中,∠C=90°,AC=BC ,过点C 在△ABC 外作直线MN ,AM ⊥MN 于M ,BN ⊥MN 于N 。
求证:MN=AM+BN 。
10、已知,AC ⊥CE ,AC =CE , ∠ABC =∠DEC =900,求证:BD =AB +ED 。
11、已知AD 是⊿ABC 的中线,BE ⊥AD ,CF ⊥AD ,求证:BE =CF 。
12、已知∠BAC =∠DAE ,∠1=∠2,BD =CE ,求证:ABD ≌⊿ACE 。
NMCBAABCDEABCD FEADEBC12【知识点梳理】知识点一:全等三角形的概念——能够完全重合的两个三角形叫全等三角形.知识点二:全等三角形的性质.(1)全等三角形的对应边相等. (2)全等三角形的对应角相等.知识点三:判定两个三角形全等的方法.(1)SSS (2)SAS (3)ASA (4)AAS (5)HL(只对直角三形来说)知识点四:寻找全等三形对应边、对应角的规律.①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.③有公共边的,公共边一定是对应边. ④有公共角的,公共角一定是对应角.⑤有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角).知识点五:找全等三角形的方法.(1)一般来说,要证明相等的两条线段(或两个角),可以从结论出发,看它们分别落在哪两具可能的全等三角形中.(常用的办法)(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等.(3)可以从已知条件和结论综合考虑,看它们能否一同确定哪两个三角形全等.(4)如无法证证明全等时,可考虑作辅助线的方法,构造成全等三角形.知识点六:角平分线的性质及判定.(1)角平分线的性质:角平分线上的点到角两边的距离相等.(2)角平分线的判定:在角的内部到角的两边距离相等的点在角平分线上.(3)三角形三个内角平分线性质:三角形三条角平分线交于一点,且到三角形三边距离相等.知识点七:证明线段相等的方法.(重点)(1)中点性质(中位线、中线、垂直平分线)(2)证明两个三角形全等,则对应边相等(3)借助中间线段相等.知识点八:证明角相等的方法.(重点)(1)对顶角相等;(2)同角或等角的余角(或补角)相等;(3)两直线平行,内错角相等、同位角相等;(4)角平分线的定义;(5)垂直的定义;(6)全等三角形的对应角相等;(7)三角形的外角等于与它不相邻的两内角和.。
全等三角形证明经典100题

1. 已知:4,2,D 是中点,是整数,求2. 已知:D 是中点,∠90°,求证:12CD AB3. 已知:,∠∠E ,∠∠D ,F 是中点,求证:∠1=∠24. 已知:∠1=∠2,,,求证:C DF ADBC B C5. 已知:平分∠,,求证:∠2∠C6. 已知:平分∠,⊥,∠∠180°,求证:7. 已知:4,2,D 是中点,是整数,求BA C D F2 1 E C DB A8. 已知:D 是中点,∠90°,求证:12CD AB9. 已知:,∠∠E ,∠∠D ,F 是中点,求证:∠1=∠210.已知:∠1=∠2,,,求证:C DF ADBC B C11.已知:平分∠,,求证:∠2∠C12.已知:平分∠,⊥,∠∠180°,求证:BACDF21EC DBA12. 如图,四边形中,∥,、分别平分∠、∠,且点E 在上。
求证:。
13.已知:,∠∠,,,求证:∠∠C14.已知:,∠∠D ,求证:∠∠CDC BA F E AB C D15.P 是∠平分线上一点,>,求证:<16.已知∠3∠C ,∠1=∠2,⊥,求证:217.已知,E 是中点,,5,7,求P D ACBFA ED C B18.(5分)如图,在△中,,∠1=∠2,求证:⊥.19.(5分)如图,平分∠,⊥⊥,A、B为垂足,交于点N.求证:∠∠20.(5分)如图,已知∥,∠的平分线与∠的平分线相交于E,的连线交于D.求证:.21.(6分)如图,△中,是∠的平分线,且,求证:∠2∠B22.(6分)如图①,E 、F 分别为线段上的两个动点,且⊥于E ,⊥于F ,若,,交于点M . (1)求证:,(2)当E 、F 两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.PEDCBA D CBA23.(7分)已知:如图,∥,且,E 为的中点,(1)求证:△≌△.(2)观看图前,在不添辅助线的情况下,除△外,请再写出两个与△的面积相等的三角形.(直接写出结果,不要求证明):OEDCBA24.(7分)如图,△中,∠90度,,是∠的平分线,的延长线垂直于过C 点的直线于E ,直线交的延长线于F . 求证:2.25、(10分)如图:,,∠∠C 。
(完整版)全等三角形证明经典50的题目(含答案详解),推荐文档

精彩文档1.已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求ADADBC解:延长AD 到E,使AD=DE∵D 是BC 中点∴BD=DC在△ACD 和△BDE 中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE ∴AC=BE=2∵在△ABE 中 AB-BE <AE <AB+BE∵AB=4即4-2<2AD <4+21<AD <3∴AD=22.已知:D 是AB 中点,∠ACB=90°,求证:12CD AB延长CD 与P ,使D 为CP 中点。
连接AP,BPC ∵DP=DC,DA=DB∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形∴AB=CP=1/2AB3.已知:BC=DE ,∠B=∠E,∠C=∠D,F 是CD 中点,求证:∠1=∠2B证明:连接BF 和EF∵ BC=ED,CF=DF,∠BCF=∠EDF ∴ 三角形BCF 全等于三角形EDF(边角边)∴ BF=EF,∠CBF=∠DEF 连接BE 在三角形BEF 中,BF=EF ∴ ∠EBF=∠BEF。
∵ ∠ABC=∠AED。
∴ ∠ABE=∠AEB。
∴ AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 和三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)4.已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点GBA CDF21ECG∥EF,可得,∠EFD=CGDDE =DC ∠FDE=∠GDC(对顶角)∴△EFD≌△CGD EF =CG ∠CGD=∠EFD 又,EF∥AB ∴,∠EFD=∠1 ∠1=∠2 ∴∠CGD=∠2∴△AGC 为等腰三角形, AC =CG 又 EF =CG∴EF=AC 5.已知:AD 平分∠BAC,AC=AB+BD ,求证:∠B=2∠C 建议收藏下载本文,以便随时学习!证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD(SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在ADA精彩文档精彩文档上。
全等三角形典型例题培优版(含详解)绝对经典

全等三角形典型例题培优版【例题精选】: 例1:已知:如图,过∆ABC 的顶点A ,作AF ⊥AB 且AF=AB ,作AH ⊥AC ,使AH=AC ,连结BH 、CF ,且BH 与CF 交于D 点。
求证:(1)BH=CF (2)BH ⊥CF分析:从图中可观察分析,若证BH=CF ,显然,若能证出∆ABH ≌∆AFC ,问题就能解决。
从已知看,已经知道AF=AB ,AC=AH 。
这两个三角形已经具备两条边对应相等了。
还要证明第三条边相等,显然不可能用“边边边”公理了。
只能寻求两对应边的夹角了。
从已知看,∠BAF 和∠HAC 都是直角。
而图中的∠BAC 显然是公共角,根据等式性质,问题可以顺利解决。
证明:(1)∵AF ⊥AB ,AH ⊥AC ∴∠BAF=∠HAC=90︒∴∠BAF +∠BAC=∠HAC +∠BAC ∴即∠F AC=∠BAH在∆ABH 和∆AFC 中()()()AB AF BAH FAC AH AC =∠=∠=⎧⎨⎪⎪⎩⎪⎪已知已证已知 ∴∆ABH ≌∆AFC (边角边)∴BH=FC (全等三角形对应边相等) (2)设AC 与BH 交于点P在∆APH 中 ∵∠HAP=90︒∴∠2+∠3=90︒(直角三角形中两个锐角互余) ∵∠1=∠2(全等三角形对应角相等) ∠3=∠4∴∠1+∠4=∠2+∠3=90︒ 在∆PDC 中 ∵∠1+∠4=90︒ ∴∠HDC=90︒∴BH ⊥CF例2:已知,如图:BD 、CE 是∆ABC 的高,分别在高上取点P 与Q ,使BP=AC ,CQ=AB 。
求证:AQ=AP分析:从要证的结论AQ=AP ,只有在∆ABP 和∆QCA 中找对应原素,不难发现,已经有BP=AC 、CQ=AB ,也就是这两个三角形中已经有两条对应边相等。
也只有找到其中夹角相等,全等就可以了,问题的关键在于如何找出∠1=∠2?再分析已知条件,不难看出,既然BD 、CE 都是高,就有∠BDA=∠CEA=90︒,这样就可看出∠1和∠2都是∠BAC 的余角了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形证明题专项练习(100题)1.已知如图,△ABC≌△ADE,∠B=30°,∠E=20°,∠BAE=105°,求∠BAC的度数.∠BAC=_________.2.已知:如图,四边形ABCD中,AB∥CD,AD∥BC.求证:△ABD≌△CDB.3.如图,点E在△ABC外部,点D在边BC上,DE交AC于F.若∠1=∠2=∠3,AC=AE,请说明△ABC≌△ADE 的道理.4.如图,△ABC的两条高AD,BE相交于H,且AD=BD.试说明下列结论成立的理由.(1)∠DBH=∠DAC;(2)△BDH≌△ADC.5.如图,在△ABC中,D是BC边的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,则AB=AC,并说明理由.6.如图,AE是∠BAC的平分线,AB=AC,D是AE反向延长线的一点,则△ABD与△ACD全等吗?为什么?7.如图所示,A、D、F、B在同一直线上,AF=BD,AE=BC,且AE∥BC.求证:△AEF≌△BCD.8.如图,已知AB=AC,AD=AE,BE与CD相交于O,△ABE与△ACD全等吗?说明你的理由.9.如图,在△ABC中,AB=AC,D是BC的中点,点E在AD上,找出图中全等的三角形,并说明它们为什么是全等的.10.如图所示,CD=CA,∠1=∠2,EC=BC,求证:△ABC≌△DEC.11.已知AC=FE,BC=DE,点A、D、B、F在一条直线上,要使△ABC≌△FDE,应增加什么条件?并根据你所增加的条件证明:△ABC≌△FDE.12.如图,已知AB=AC,BD=CE,请说明△ABE≌△ACD.13.如图,△ABC中,∠ACB=90°,AC=BC,将△ABC绕点C逆时针旋转角α(0°<α<90°)得到△A1B1C,连接BB1.设CB1交AB于D,A1B1分别交AB,AC于E,F,在图中不再添加其他任何线段的情况下,请你找出一对全等的三角形,并加以证明.(△ABC与△A1B1C1全等除外)14.如图,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.15.如图,AB=AC,AD=AE,AB,DC相交于点M,AC,BE相交于点N,∠DAB=∠EAC.求证:△ADM≌△AEN.16.将两个大小不同的含45°角的直角三角板如图1所示放置在同一平面内.从图1中抽象出一个几何图形(如图2),B、C、E三点在同一条直线上,连接DC.求证:△ABE≌△ACD.17.如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.请在图中找出所有全等的三角形,用符号“≌”表示,并选择一对加以证明.18.如图,已知∠1=∠2,∠3=∠4,EC=AD.(1)求证:△ABD≌△EBC.(2)你可以从中得出哪些结论?请写出两个.19.等边△ABC边长为8,D为AB边上一动点,过点D作DE⊥BC于点E,过点E作EF⊥AC于点F.(1)若AD=2,求AF的长;(2)求当AD取何值时,DE=EF.20.巳知:如图,AB=AC,D、E分别是AB、AC上的点,AD=AE,BE与CD相交于G.(Ⅰ)问图中有多少对全等三角形?并将它们写出来.(Ⅱ)请你选出一对三角形,说明它们全等的理由(根椐所选三角形说理难易不同给分,即难的说对给分高,易的说对给分低)21.已知:如图,AB=DC,AC=BD,AC、BD相交于点E,过E点作EF∥BC,交CD于F,(1)根据给出的条件,可以直接证明哪两个三角形全等?并加以证明.(2)EF平分∠DEC吗?为什么?22.如图,己知∠1=∠2,∠ABC=∠DCB,那么△ABC与△DCB全等吗?为什么?23.如图,B,F,E,D在一条直线上,AB=CD,∠B=∠D,BF=DE.试证明:(1)△DFC≌△BEA;(2)△AFE≌△CEF.24.如图,AC=AE,∠BAF=∠BGD=∠EAC,图中是否存在与△ABE全等的三角形?并证明.25.如图,D是△ABC的边BC的中点,CE∥AB,E在AD的延长线上.试证明:△ABD≌△ECD.26.如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC;(2)求∠AEO的度数.27.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)28.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:△ABD≌△GCA;(2)请你确定△ADG的形状,并证明你的结论.29.如图,点D、F、E分别在△ABC的三边上,∠1=∠2=∠3,DE=DF,请你说明△ADE≌△CFD的理由.30.如图,在△ABC中,∠ABC=90°,BE⊥AC于点E,点F在线段BE上,∠1=∠2,点D在线段EC上,给出两个条件:①DF∥BC;②BF=DF.请你从中选择一个作为条件,证明:△AFD≌△AFB.31.如图,在△ABC中,点D在AB上,点E在BC上,AB=BC,BD=BE,EA=DC,求证:△BEA≌△BDC.32.阅读并填空:如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D.请说明△ADC≌△CEB的理由.解:∵BE⊥CE于点E(已知),∴∠E=90°_________,同理∠ADC=90°,∴∠E=∠ADC(等量代换).在△ADC中,∵∠1+∠2+∠ADC=180°_________,∴∠1+∠2=90°_________.∵∠ACB=90°(已知),∴∠3+∠2=90°,∴_________.在△ADC和△CEB中,.∴△ADC≌△CEB (A.A.S)33.已知:如图所示,AB∥DE,AB=DE,AF=DC.(1)写出图中你认为全等的三角形(不再添加辅助线);(2)选择你在(1)中写出的全等三角形中的任意一对进行证明.34.如图,点E在△ABC外部,点D在BC边上,DE交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.35.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.36.如图,在△ABC中,D是BC的中点,DE∥CA交AB于E,点P是线段AC上的一动点,连接PE.探究:当动点P运动到AC边上什么位置时,△APE≌△EDB?请你画出图形并证明△APE≌△EDB.37.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.38.如图,D为AB边上一点,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,CA=CB,CD=CE,图中有全等三角形吗?指出来并说明理由.39.如图,AB=AC,AD=AE,∠BAC=∠DAE.求证:△ABD≌△ACE.40.如图,已知D是△ABC的边BC的中点,过D作两条互相垂直的射线,分别交AB于E,交AC于F,求证:BE+CF>EF.41.如图所示,在△MNP中,H是高MQ与NE的交点,且QN=QM,猜想PM与HN有什么关系?试说明理由.42.如图,在△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥GF,交AB于点E,连接EG.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并证明你的结论.43.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE的长.44.如图,小明在完成数学作业时,遇到了这样一个问题,AB=CD,BC=AD,请说明:∠A=∠C的道理,小明动手测量了一下,发现∠A确实与∠C相等,但他不能说明其中的道理,你能帮助他说明这个道理吗?试试看.45.如图,AD是△ABC的中线,CE⊥AD于E,BF⊥AD,交AD的延长线于F.求证:CE=BF.46.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM交DA的延长线上于E.交BC于N,试说明:AE=CN.47.已知:如图,△ABC中,∠C=90°,CM⊥AB于M,AT平分∠BAC交CM于D,交BC于T,过D作DE∥AB 交BC于E,求证:CT=BE.48.如图,已知AB=AD,AC=AE,∠BAE=∠DAC.∠B与∠D相等吗?请你说明理由.49.D是AB上一点,DF交AC于点E,DE=EF,AE=CE,求证:AB∥CF.50.如图,M是△ABC的边BC上一点,BE∥CF,且BE=CF,求证:AM是△ABC的中线.51.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.52.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE;(2)若BF=13,EC=5,求BC的长.53.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.54.如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.55.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D.56.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.57.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF.58.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.59.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB求证:AE=CE.60.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.61.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.62.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2.(1)求证:BD=CE;(2)求证:∠M=∠N.63.如图,BE⊥AC,CD⊥AB,垂足分别为E,D,BE=CD.求证:AB=AC.64.如图,在△ABC和△CED中,AB∥CD,AB=CE,AC=CD.求证:∠B=∠E.65.如图,在△ABC中,AD平分∠BAC,且BD=CD,DE⊥AB于点E,DF⊥AC于点F.(1)求证:AB=AC;(2)若AD=2,∠DAC=30°,求AC的长.66.如图,Rt△ABC≌Rt△DBF,∠ACB=∠DFB=90°,∠D=28°,求∠GBF的度数.67.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:△ABC≌△BAD.68.已知:如图,点B、F、C、E在一条直线上,BF=CE,AC=DF,且AC∥DF.求证:△ABC≌△DEF.69.已知:点A、C、B、D在同一条直线,∠M=∠N,AM=CN.请你添加一个条件,使△ABM≌△CDN,并给出证明.(1)你添加的条件是:;(2)证明:.70.如图,AB=AC,AD=AE.求证:∠B=∠C.71.如图,在△ABC中,AD是△ABC的中线,分别过点B、C作AD及其延长线的垂线BE、CF,垂足分别为点E、F.求证:BE=CF.72.一个平分角的仪器如图所示,其中AB=AD,BC=DC.求证:∠BAC=∠DAC.73.在数学课上,林老师在黑板上画出如图所示的图形(其中点B、F、C、E在同一直线上),并写出四个条件:①AB=DE,②BF=EC,③∠B=∠E,④∠1=∠2.请你从这四个条件中选出三个作为题设,另一个作为结论,组成一个真命题,并给予证明.题设:;结论:.(均填写序号)证明:74.如图,在△ABC和△DEF中,AB=DE,BE=CF,∠B=∠1.求证:AC=DF.(要求:写出证明过程中的重要依据)75.如图,已知AB=DC,AC=DB.求证:∠1=∠2.76.如图,D、E分别为△ABC的边AB、AC上的点,BE与CD相交于O点.现有四个条件:①AB=AC;②OB=OC;③∠ABE=∠ACD;④BE=CD.(1)请你选出两个条件作为题设,余下的两个作为结论,写出一个正确的命题:命题的条件是和,命题的结论是和(均填序号);(2)证明你写出的命题.77.如图,已知AB∥DE,AB=DE,AF=DC,请问图中有哪几对全等三角形并任选其中一对给予证明.78.如图所示,在梯形ABCD中,AD∥BC,∠B=∠C,点E是BC边上的中点.求证:AE=DE.79.如图,给出下列论断:①DE=CE,②∠1=∠2,③∠3=∠4.请你将其中的两个作为条件,另一个作为结论,构成一个真命题,并加以证明.80.已知:如图,∠ACB=90°,AC=BC,CD是经过点C的一条直线,过点A、B分别作AE⊥CD、BF⊥CD,垂足为E、F,求证:CE=BF.81.如图,在△ABC中,AC⊥BC,AC=BC,D为AB上一点,AF⊥CD交于CD的延长线于点F,BE⊥CD于点E,求证:EF=CF﹣AF.82.如图,在△ABC中,∠BAC=90°,AB=AC,若MN是经过点A的直线,BD⊥MN于D,EC⊥MN于E.(1)求证:BD=AE;(2)若将MN绕点A旋转,使MN与BC相交于点O,其他条件都不变,BD与AE边相等吗?为什么?(3)BD、CE与DE有何关系?83.已知:如图,△ABC中,AB=AC,BD和CE为△ABC的高,BD和CE相交于点O.求证:OB=OC.84.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等.试说明AE=DF的理由.85.如图,在△ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取AE=AC,连接DE,已知DE=2cm,BD=3cm,求线段BC的长.86.如图:已知∠B=∠C,AD=AE,则AB=AC,请说明理由.87.如图△ABC中,点D在AC上,E在AB上,且AB=AC,BC=CD,AD=DE=BE.(1)求证△BCE≌△DCE;(2)求∠EDC的度数.88.已知:∠A=90°,AB=AC,BD平分∠ABC,CE⊥BD,垂足为E.求证:BD=2CE.89.如图,已知:AB=CD,AD=BC,过BD上一点O的直线分别交DA、BC的延长线于E、F.(1)求证:∠E=∠F;(2)OE与OF相等吗?若相等请证明,若不相等,需添加什么条件就能证得它们相等?请写出并证明你的想法.90.如下图,AD是∠BAC的平分线,DE垂直AB于点E,DF垂直AC于点F,且BD=DC.求证:BE=CF.91.如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B 落在点F处,连接FC,(1)求CF的长。