Molecular definitions of cell death subroutines
[JAMA述评]:全身性感染与感染性休克的新定义(原文)
![[JAMA述评]:全身性感染与感染性休克的新定义(原文)](https://img.taocdn.com/s3/m/f65c43caa48da0116c175f0e7cd184254b351bd5.png)
[JAMA述评]:全⾝性感染与感染性休克的新定义(原⽂)EDITORIALNew Definitions for Sepsis and SepticShock: Continuing Evolution but WithMuch Still to Be DoneEdward Abraham, MDJAMA 2016; 315: 757-759The diagnosis of sepsis is not a new concern. Indeed, as early as 700 BCE, the Greeksrecognized Σ?ψι? (sepsis), referring to decomposition or rot, as a life-threatening conditionassociated with infection and high risk of death. The primary criterion for sepsis has histori- and801 cally been progressive organ system dysfunction resulting from infection. Because the onlyavailable therapies for this condition, antimicrobials and supportive care, are not specific, therewas little concern about developing more detailed standards for diagnosis.Over the past 30 years, 2 major factors have led to a perceived need for better definitions. Inparticular, the increasing sophistication, at least in high-income countries, of modalitiesavailable for organ support in critical care units, including ventilators and dialysis, has resultedin growing numbers of patients with sepsis receiving care in intensive care units (ICUs) andenhanced awareness of the frequency and high costs associated with this condition. Inaddition, greater understanding of the underlying pathophysiologic mechanisms responsiblefor cellular dysfunction in experimental models and in patients with severe infection hasaccelerated the need for better entry criteria in clinical trials using therapies specificallydirected toward molecular events thought to contribute to sepsis-associated morbidity andmortality.In this issue of JAMA, the Sepsis Definitions Task Force presents 3 articles: the updateddefinitions for sepsis and sepsis shock [1] and 2 supporting reports with evidence for deri-vation and validation of these new definitions [2,3]. In their Special Communication, Singer and colleagues1 describe the importance, process used, issues addressed, key findings from theevidence, and synthesis to develop the third iteration of consensus conference definitions forsepsis and septic shock and present the new definitions in detail. Previous versions of thesedefinitions date from 1992 and 2003 [4,5] A major underpinning for the present effort was theuse of analyses in large cohorts to provide quantitative information in support of the revisedcriteria.The accompanying report by Seymour and colleagues [2] assesses the predictive validity ofthe Sequential [Sepsis-related] Organ Failure Assessment score (SOFA), systemicinflammatory response syndrome (SIRS) criteria, and the Logistic Organ Dysfunction System(LODS) score and derived a new score called quickSOFA (qSOFA) in a primary cohort that included 148 907 patient encounters with suspected sepsis and a confirmatory analysis that included 706 399 out-of- hospital and hospital patient encounters at 165 US and non-US hospitals. The investigators found that among ICU encounters with suspected infection (n = 7932), the predic- tive validity for in-hospital mortality of SOFA (area under the receiver operating characteristic curve [AUROC], 0.74 [95% CI, 0.73-0.76]) was not significantly different than that derived from the more complex LODS (AUROC, 0.75 [95% CI, 0.73-0.76]) but was superior to that from SIRS (AUROC, 0.64 [95% CI, 0.62-0.66]), supporting use of SOFA in clinical criteria for sepsis. Among patient encounters with suspected infection outside the ICU (n = 66 522), qSOFA had high pre- dictive validity for in-hospital mortality (AUROC, 0.81 [95% CI, 0.80-0.82]) that was statistically greater than that for SIRS (AUROC, 0.76 [95% CI, 0.75-0.77]), suggesting that it may have utility as a prompt to consider possible sepsis.In the other accompanying report, Shankar-Hari and colleagues [3] describe the process of developing a new definition and clinical criteria for identifying septic shock in adults. The authors conducted a systematic review and meta-analysis of 92 studies informing a Delphi process that created the new definition, then tested the variables identified by the Delphi process in cohort studies (Surviving Sepsis Campaign [n = 28 150; University of Pittsburgh Medical Center [n = 1 309 025], and Kaiser Permanente Northern California [n = 1 847 165]). According to the new definitions, sepsis is now defined as evidence of infection plus life-threatening organ dysfunction, clinically characterized by an acute change of 2 points or greater in the SOFA score. The new clinical criteria for septic shock include sepsis with fluid-unresponsive hypotension, serum lactate level greater than 2 mmol/L, and the need for vasopressors to maintain mean arterial pressure of 65 mm Hg or greater. A major change in the new definitions is the elimination of mention of SIRS. Components of SIRS include tachycardia, tachypnea, hyperthermia or hypothermia, and abnormalities in peripheral white blood cell count. Many studies have shown that the presence of SIRS is nearly ubiquitous in hospitalized patients and occurs in many benign conditions, both related and not related to infection, and thus is not adequately specific for the diagnosis of sepsis [6]. It is a strength of the consensus definition that it no longer includes SIRS.Patients with infections and organ dysfunction are exceptionally heterogeneous in terms of demographic characteristics, underlying conditions, microbiology, and other clinically relevant factors [7]. The updated definition for sepsis, like the previous versions, is broad with respect to diagnostic criteria and will not help in segmenting patients into sub- groups based on underlying microbiology, pathophysiology, or cellular alterations. For example, a previously healthy 18-year-old with meningococcemia, coagulopathy, and hypoxemia; a 45-year-old tourist returning from Southeast Asia with malaria, new-onset renal dysfunction, and hyper-bilirubinemia; and a 90-year-old with a medical history of Alzheimer disease, diabetes, and congestive heart failure who presents with worsening mental status, decreased uri- nary output, and a urinary tract infection related to an indwelling bladder catheter will all be categorized as septic, and all will have septic shock if they demonstrate an elevated serum lactate level and require vasopressors to maintain blood pressure. The inclusion of such a wide variety of patients with suspected, but not necessarily proven, infection, organ system dysfunction of multiple types, and a variety of underlying medical conditions ensures that even though the new definitions may be helpful in evaluating the epidemiology and economics relating to sepsis, they will be limited in their utility to strengthen the design of clinical trials and, most importantly, in directing care for individual patients.Although the use of large databases provides support for the new consensus definitions of sepsis and septic shock, there remain concerns with the information used to generate the up-dated criteria. In particular, the patient data are all almost exclusively from adults in high-income countries and primarily contain information from patients in the United States, so the utility of these definitions in other geographic regions, in settings that are less resource replete, and among pediatric popu- lations is presently unknown. As noted by the authors of these articles, the ability of the new definitions to predict morbidity and mortality in low- and middle-income countries, where levels of patient monitoring and supportive care commonly used in the United States and developed world are often not available, remains an unanswered question. An additional concern relates to the inclusion of serum lactate levels in the definition of septic shock, because such measurements may not be available in resource-limited settings.The consensus document also introduces a new bedside index, called the qSOFA, which isproposed to help identify patients with suspected infection who are being treated outside of critical care units and likely to develop complications of sepsis. The qSOFA requires at least 2 of the following 3 risk variables: respiratory rate of 22 or more breaths per minute, systolic blood pressure of 100 mm Hg or less, and altered mental status. However, because this index was retrospec- tively derived from databases that had substantial gaps in clinical information for patients treated outside of ICUs, qSOFA will require prospective, real-world validation before it can enter routine clinical practice. In addition, because analysis of the Veterans Affairs database appeared to show little additional predictive value in qSOFA from the inclusion of mental status changes, further simplification of this index may be possible.A fundamental component of the new definitions for sepsis and septic shock remains the presence of infection. Yet negative microbiologic cultures from blood or relevant anatomic sites are frequent in patients clinically identified as being septic [7]. While new techniques, such as those using matrix-associated laser desorption ionization–time of flight (MALDI-TOF) or polymerase chain reaction (PCR), are likely to enhance the current ability to diagnose infections [7,8], a major limitation continues to be the identification of patients whose organ system dysfunction is truly secondary to an underlying infection rather than other causes. This is a particularly important issue in critical care, where many noninfectious conditions, such as trauma and pancreatitis, are accompanied by the acute onset of organ failure, with the contributory role of concomitant infection often being extremely difficult to determine.In the same way that patients with sepsis are heteroge- neous in terms of their underlying microbiology, medical history, and clinical characteristics, so are the alterations in cellular function that accompany this condition [9,10]. Developments in genetics, genomics, immunology, and cellular biology have led to increased understanding of the derangements that contribute to organ dysfunction and death in experimental models and patients with severe infections. Pathways involving inflammatory and anti-inflammatory signaling, innate and adaptive immune response, apoptosis, mitochondrial function, translational and transcriptional regulation, and oxidative biology, as well as additional intracellular and extracellular events, are activated with differing kinetics in individuals with sepsis. Enhanced understanding of the range of underlying cellular events contributing to organ dysfunction associated with severe infection has highlighted the need to develop biomarkers that identify the alterations present in patients with sepsis so specific therapies can be used in an appropriate manner.The epidemiologic strengths of the new consensus conference definitions of sepsis and septic shock are accompanied by weaknesses in their ability to be used in the treatment of individual patients or in clinical trials. Although the new definitions provide a broad view of the universe of sepsis and may help in facilitating early identification of patients with this condition, they will be of only limited help in directing specific therapies to individual patients or in designing clinical trials focused on specific mechanisms of sepsis-induced organ dysfunction.Precision medicine, in which individualized therapies are provided to patients based on the specific genomic and cellular alterations accompanying their disease process, is revolutionizing the treatment of cancer and other conditions [11]. Such targeted treatment has been shown to be associated with enhanced clinical response among patients with cancer, often with diminished toxicity. There would appear to be substantial potential for a similarly tailored approach to sepsis, given the heterogeneity of cellular responses associated with this condition. However, the lack of molecular components in the new consensus definitions does not advance this exciting possibility.An ongoing issue, discussed in the articles in this issue of JAMA, is that sepsis is a syndrome and not a specific disease. The new definitions do not alleviate this concern. Other conditions, most notably cancer, were previously described in a similar manner but are now further characterized based not just on anatomic location and cell type but most recently on expression of specific biomarkers, including cellular receptors, activation of intracellular pathways, and genomic alterations. Such characterization has enabled development of therapies targeted to specific patients, with remarkable improvements in outcome. Although the present definition for sepsis provides needed evolution in categorization of this syndrome, incorporation of more information about the molecular and cellular characterization of sepsis may have been helpful. Hopefully, the next iteration of this consensus process will take full advan- tage of the rapidly advancing understanding of molecular processes that lead from infection to organ failure and death so that sepsis and septic shock will no longer need to be defined as a syndrome but rather as a group of identifiable diseases, each characterized byspecific cellular alterations and linked biomarkers. Such evolution will be required to truly transform care for the millions of patients worldwide who develop these life-threatening conditions.REFERENCES1. Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. doi:10.1001/jama.2016.0287.2. Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. doi:10.1001 /jama.2016.0288.3. Shankar-Hari M, Phillips GS, Levy ML, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA. doi:10.1001/jama .2016.0289.4. Bone RC, Balk RA, Cerra FB, et al. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992; 20(6): 864-874.5. Levy MM, Fink MP, Marshall JC, et al; SCCM/ESICM/ACCP/ATS/SIS. 2001SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003; 31(4): 1250-1256.6. Vincent J-L, Opal SM, Marshall JC, Tracey KJ. Sepsis definitions: time for change. Lancet. 2013; 381(9868): 774-775.7. Cohen J, Vincent J-L, Adhikari NK, et al. Sepsis: a roadmap for future research. Lancet Infect Dis. 2015; 15(5): 581-614.8. Buehler SS, Madison B, Snyder SR, et al. Effectiveness of practices to increase timeliness of providing targeted therapy for inpatients with bloodstream infections: a laboratory medicine best practices systematic review and meta-analysis. Clin Microbiol Rev. 2016; 29(1): 59-103.9. Deutschman CS, Tracey KJ. Sepsis: current dogma and new perspectives. Immunity. 2014; 40(4): 463-475.10. Delano MJ, Ward PA. Sepsis-induced immune dysfunction: can immune therapies reduce mortality? J Clin Invest. 2016; 126(1): 23-31.11. Jameson JL, Longo DL. Precision medicine—personalized, problematic, and promising. N Engl J Med. 2015; 372(23): 2229-2234.。
文档:免疫反应和细胞死亡

免疫反应和细胞死亡免疫反应是指机体对于异己成分或者变异的自体成分做出的防御反应。
免疫反应可分为非特异性免疫反应和特异性免疫反应。
非特异性免疫构成人体防卫功能的第一道防线,并协同和参与特异性免疫反应。
特异性免疫反应是指针对特异病原的免疫反应。
免疫反应相关分子能诱导细胞死亡的发生,免疫反应的结果经常伴有被感染细胞的死亡。
细胞死亡是细胞生命现象的结束,细胞死亡经常发生,它是维持机体功能所必须的生物学过程,在以前的报道中人们认为细胞死亡包括细胞和细胞被动死亡()。
近年来,由于炎症小体的发现使得科学家们对炎症性细胞死亡的认识更加深入,他们发现免疫反应能够通过多种方式导致细胞死亡,包括细胞坏死,坏死性凋亡,细胞凋亡,细胞焦亡和自噬。
细胞死亡后同样能引起免疫反应的变化,包括减轻免疫反应例如凋亡、自噬,以及加剧免疫反应例如坏死、焦亡等。
因此,免疫反应与细胞死亡之间有着千丝万缕的关联。
细胞凋亡(apoptosis)是免疫反应导致细胞死亡的最主要的一种方式,也是被研究的最透彻的一种细胞死亡。
细胞凋亡可以通过胞外Fas信号诱导,进而激活胞内caspase8等分子组成死亡触发信号复合物(DISC),再激活caspase-3/7切割胞内底物,使细胞萎缩DNA 断裂死亡。
细胞凋亡很少在正常机体内发生,他们通常被免疫应答信号分子激活,而凋亡的细胞最终会被巨噬细胞吞噬,。
凋亡小体的形成,使得细胞内容物不被释放,因此不会引起进一步免疫反应的放大。
自噬是细胞受到刺激后,细胞内成分自我降解的过程。
包括自噬的诱导、自噬体膜的形成、自噬体的形成、自噬体与溶酶体的融合以及内容物的降解。
根据细胞内底物运送到溶酶体腔的方式不同, 自噬可分为大自噬、小自噬、分子伴侣介导的自噬,此外还有些选择性自噬如线粒体自噬、聚集体自噬。
自噬能通过清除内源性的炎性小体激活物质及免疫激活物,控制免疫反应的进一步发生。
而下述的几种细胞死亡方式,均能引起免疫反应的级联放大。
细胞生物学名词及其释义

细胞生物学名词及其释义α-actinin 辅肌动蛋白一种使肌动蛋白成束的蛋白,有两个相距较远的肌动蛋白结合位点,故形成的肌动蛋白纤维束较为松散。
A kinase (PKA)A激酶因细胞内cAMP浓度升高而被激活催化靶蛋白磷酸化的酶。
accessory cell 辅佐细胞在免疫应答过程中,能摄取、加工、处理并将抗原信息提呈给淋巴细胞的免疫细胞,又称抗原提呈细胞。
actin 肌动蛋白真核细胞中含量丰富,构成肌动蛋白丝的一种蛋白质。
单体称球形肌动蛋白(G-actin);聚合物称丝状肌动蛋白(F-actin)。
actin-binding protein 肌动蛋白结合蛋白在细胞中与肌动蛋白单体或肌动蛋白纤维结合的、能改变其特性的蛋白质。
actinin 辅肌动蛋白一种肌动蛋白结合蛋白,集中分布在Z线和与质膜结合的应力纤维点状黏附端。
actin-related protein(ARP)肌动蛋白相关蛋白促进肌动蛋白丝集结的蛋白质复合物。
active transport 主动运输溶质通过细胞膜逆浓度梯度运输的现象,是一个耗能的生理过程。
actomere 肌动蛋白粒由未聚合的抑丝蛋白-肌动蛋白复合物和一小段肌动蛋白丝束组成的结构。
一旦抑丝蛋白-肌动蛋白复合物发生解离,则引起肌动蛋白聚合成丝。
actomyosin 肌动球蛋白肌肉收缩时肌动蛋白与肌球蛋白瞬时接触形成的复合物。
adaptin 衔接蛋白参与成笼蛋白衣被形成的一类蛋白质,能同时与跨膜受体以及成笼蛋白结合,在两者间起衔接作用。
adaptor protein 衔接器蛋白在细胞内信号传递途径中,凡是在不同蛋白质间起连接作用的蛋白质的通称。
adducin 聚拢蛋白质膜骨架蛋白,为异二聚体。
在钙离子浓度为mmolar级时,加速血影蛋白到血影蛋白-肌动蛋白复合物的装配。
adherens junction 黏合连接在质膜的胞质面附着有肌动蛋白纤维的细胞连接,包括连接相邻的上皮细胞的黏着带和体外培养的成纤维细胞底面的黏着斑(focal contact)。
生物学专业英语词汇(M)

生物学专业英语词汇(M)macchia 马基群落macerating enzyme 组织浸解酶maceration 浸渍machine milking 机品乳mackerel 鲭macroanalysis 常量分析macrobiotic 长命的macroblast 巨成红细胞macrochromosome 大染色体macroclimate 大气候macroconidium 大分生孢子macrocyst 大包囊macrocyte 巨红血球macroelement 常量元素macroergic compound 高能量化合物macroevolution 宏观进化macrofauna 大型动物区系macroflora 大型植物区系macrogamete 大配子macrogamy 整体配合macroglobulin 巨球蛋白macrolymphocyte 大淋巴细胞macromere 大裂球macromesenterium 大隔膜macromesentery 大隔膜macromutation 大突变macronucleus 大核macrophage 巨噬细胞macrophage activating factor 巨噬细胞活化因素macrophage aggregating factor 巨噬细胞凝集因子macrophage chemotactic fator 巨噬钳因子macrophage system 巨噬细胞系macrophyll 大型叶macroplankton 大型浮游生物macrosclere 大骨针macroscopic 肉眼的macroscopical 肉眼的macrospheric form 大球型macrospheric generation 大球世代macrosporangium 大孢子囊macrospore 大孢子macrosporogenesis 大孢子发生macrosporophyll 大孢子叶macrura 长尾类macular lutea 黄斑mad cow disease 狂牛病madreporic canal 石管madreporic plate 穿孔板madreporite 穿孔板magenta 品红maggot 蛆magnesium 镤magnetic bacteria 磁性细菌magnetic field 磁场magnetic stirrer 磁力搅拌器magnetic storm 磁气暴风magnetic vibration 磁振动magnetobiology 磁生物学magnetotactic bacterium 桥性细菌magnetotropism 向磁性运动magnifying glass 放大镜magnolia 木兰magpie 喜鹊main axis 轴main crop 诛main lead 挚main root 柱main vein 嘱maintenance heat 维持热maize 玉蜀黍maize husks 玉蜀黍的包皮major element 常量元素major gene 柱因major mutation 大突变major spiral 大螺旋malacology 软体动物学malacozoology 软体动物学malady 疾病malagasy subregion 马尔加什亚区malar bone 颧骨malaria 疟malaria mosquito 疟蚊malate dehyrogenase 苹果酸酶male 雄性的male egg 雄卵male flower 雄花male hormone 雄激素male intersex 雄性间性male line 雄性系male line of breeding 雄性系male nucleus 雄核male parent 父本male phase 雄相male pronucleus 雄前核male receptacle 雄菩male sterile line 雄性不育系maleate 顺丁烯二酸maleic acid 马来酸maleness 雄性malformation 畸形malic acid 苹甲酸malic dehydrogenase 苹果酸脱氢酶malic enzyme 苹果酸酶malignant edema 恶性浮肿malignant oedema 恶性浮肿malleus 锤骨malnutrition 营养不良malonic acid 丙二酸malonyl 丙二酰malpighian body 肾小体malpighian layer 马尔比基氏层malpighian tube 马尔比基氏管malpighian tubule 马尔比基氏管malt 麦芽thermocouple pyrometer 热电偶高温计malt extract 麦芽提取物malt sugar 麦芽糖maltase 麦芽糖酶maltodextrin 麦芽糊精maltose 麦芽糖mamilla 乳头mamma carcinoma 乳癌mamma lacteal gland 乳腺mammalia 哺乳类mammalogy 哺乳动物学mammals 哺乳类mammary cancer 乳癌mammary gland 乳腺mammary tumour virus 乳癌病毒mammogen 乳腺发育腺素mammogenic hormone 乳腺发育腺素mammoth tree 巨杉mammotrophic hormone 催乳激素mammotrophin 催乳激素mammotropin 催乳激素man 人man like ape 类人猿manchette 上位菌环mandible 上颚mandibular arch 下颌弓mandibular gland 上颚腺manganese 锰mange 痂mange mite 疥癣虫mangrove 红手manifestation 特枕示manila hemp 蕉麻manioc 木薯manipulation 操作manipulator 操作mannan 甘露聚糖mannase 甘露聚糖酶mannite 甘露醇mannitol 甘露醇mannose 甘露糖manometer 压力计manometry 测压法mantle 套膜mantle cavity 套腔mantle eye 外套眼mantle groove 套沟mantle line 套线manubrium 口柄manure 肥料manure unity 堆肥单位manurial experiment 施肥试验manuring 施肥manuring requirement 要求施肥map 地图map distance 地图距离map unit 图单位maple 槭mapping 编图mapping of chromosomes 染色体准mapping of vegetation 植被准marcescent 诞的margin 边界marginal analysis 限界值分析marginal cell 缘细胞marginal growth 边缘生长marginal lappet 缘瓣marginal lobe 缘瓣marginal lobe organ 缘瓣瀑marginal sinus 缘窦marine algae 海藻类marine bacteriophage 海洋噬菌体marine biology 海洋生物学marine biotechnology 海洋生物工程marine ecology 海洋生态学marine fauna 海洋动物群marine flora 海洋植物群marine laboratory 海洋实验室marine plankton 海洋浮游生物marine plankton ecology 海洋浮游生态学marine products 海产marine sediment 海洋沉积物maritime climate 海岸气候mark 标记mark of distinction 分别标记marker 标志marker gene 标志基因marking and recapture method 标记重捕法marmot 土拨鼠marrow 骨髓marrow brain 末脑marrow cavity 骨髓腔marrow cell 骨髓细胞marrow sheath 髓鞘marsh plants 沼生植物marshy 有沼泽的marsupial bone 袋骨marsupials 有袋类marsupium 袋状雌弃marten 貂masculine 雄性的masculine uterus 雄性子宫masculinism 男性化masculinity 雄性masking 隐蔽mass culture 大量培养mass mutation 大量突变mass pollination 混合授粉mass selection 混合选择mass spectrum 质谱masseter 咬肌mast cell 肥大细胞mastax 肌胃master factor 知因素mastication 咀嚼masticatory stomach 肌胃mastigophores 鞭毛虫类mastitis 乳腺炎mastocarcinoma 乳癌mastocyte 肥大细胞mastoid process 乳头状突起mate 配偶体mate killer 接合致死者maternal 母的maternal effect 母性效应maternal inheritance 母体遗传maternal instinct 母性本能maternal quality 母性的才能maternity 母性mating 交尾mating behavior 交尾行为mating call 交尾叫mating pair 接合对mating partner 配偶体mating season 交尾季节mating time 交尾季节mating type 接合型matrix 胞间质matrix bridge 基质桥matroclinal inheritance 偏母遗传matroclinous haploid 偏母单倍体matrocliny 偏母现象maturase 成熟酶maturation 成熟maturation division 成熟分裂maturation phase 成熟期mature embryo 成熟胚maw worm 蛔虫maxam gilbert method 马克萨姆吉利别尔特法maxicell 大型细胞maxilla 上颌骨maxillary bone 上颌骨maxillary fossa 犬齿窝maxillary gland 下颚腺maxillary palp 下颚须maxillary palpus 下颚须maxillipede 颚足maximum dose 极量maximum reaction velocity 最大反应速度maximum yield 最高收获量may bug 五月虫maze learning 迷宫学习mbryonic ectoderm 胚外外胚层mcf 巨噬钳因子meadow 草地meadow weeds 草地杂草mean 平均值mean deviation 平均偏差mean life 平均寿命mean temperature 平均温度measuration 测量measurement 测量measuring 测量measuring device 测量仪表meat 肉meat extract 肉汁mechanical isolation 机械隔离mechanical tissue 支持组织mechanics of development 发育机制学mechanism 机械论mechanistic view of life 机械论mechanomorphosis 机械变态mechanoreceptor 机械感受器mechanosensitive channel 机械感应通路media 中脉medial vein 中脉median 中位数median eye 中眼median lethal dose 半数致死量median plane 正中面mediastinum 纵隔mediator 病媒动物medicinal herb 药草medicinal plant 药用植物medicine 药mediterranean region 地中海地域medium 介质medium component 培养基成分medulla 骨髓medulla oblongata 延髓medulla spinalis 脊髓medullary 脊髓的medullary canal 髓管medullary cell 骨髓细胞medullary fold 髓褶medullary groove 髓沟medullary ray 髓射线medullary ray cell 髓射线细胞medullary sheath 髓鞘medullary space 骨髓腔medullary substance 髓质medullary tube 神经管medulloblast 神经管胚细胞medusa 水母medusoid 水母megabacterium 巨型细菌megacoccus 巨型球菌megagamete 大配子megakaryocyte 巨核细胞megalecithal egg 多黄卵megaloblast 巨成红细胞megalocarpous 大果实的megalocyte 巨红细胞megalokaryocyte 巨核细胞megalopa 大眼幼体megaphanerophyte 大高位芽植物megasclere 大骨针megasporangium 大孢子囊megaspore 大孢子megasporocyte 大孢子母细胞megasporophyll 大孢子叶megatherm 高温植物megatherm plant 高温植物megatrophic plant 富养植物meibomian gland 睑板腺meiocyte 性母细胞meiosis 减数分裂meiospore 减数胞子meiotic apogamy 减数分裂无配子生殖meiotic division 减数分裂meiotic drive 减数分裂驱动meiotic mitosis 减数有丝分裂meissner plexus 麦斯纳氏丛meissner's tactile corpuscule 麦斯纳氏小体melanin 黑色素melanism 黑化型melanoblast 成黑素细胞melanocarcinoma 黑癌melanocyte 黑素细胞melanocyte stimulating hormone 促黑激素melanogen 黑素原melanophore 黑素细胞melanophore hormone 黑素细胞激素melanosome 黑素体melanospermous 黑种子的melanotic cancer 黑癌melanotonin 褪黑激素melanotropin 促黑激素melatonin 褪黑激素melibiose 蜜二糖酶meliot 草木犀melitose 棉子糖melitriose 棉子糖melliferous plant 生蜜植物mellowing 成熟melon 甜公melt 融解melting of dna dna 融解melting point 熔点members 肢membrane 膜membrane bone 膜骨membrane bound enzyme 膜结合酶membrane capacity 膜容量membrane electrode 膜电极membrane fussion 膜聚合membrane potential 膜电位membrane transport 膜输送membranella 小膜membranous filter 膜滤器membranous labyrinth 膜迷路memory cell 记忆细胞menadione 2 甲萘醌mendel's first law 孟德尔第一定律mendel's second law 孟德尔第二定律mendel's third law 孟德尔第三定律mendelian factor 孟德尔基因mendelian gene 孟德尔基因mendelian inheritance 孟德尔遗传mendelian population 孟德尔式集团mendelism 孟德尔遗传说meninx 脑膜meniscocyte 镰状细胞menotaxis 停留窃menstrual hemorrhage 月经menthol 薄荷醇mentor method 蒙导法mercaptan 硫醇mercapturic acid 硫醇尿酸mercuric ion resistance 汞离子抗性mercury 汞mericarp 双悬果mericlinal chimera 周缘区分嵌合体mericlone 分生组织克隆meridional canal 子午管meridional cleavage 经裂meristele 分体中柱meristem 分生组织meristem culture 分生组织培养meristematic tissue 分生组织meroblastic cleavage 部分卵裂merocrine gland 局泌腺merocyte 剩余精核merodiploid 部分二倍体merogamy 小体配合merogony 卵片发育meromixis 部分融合meromorphosis 部分再生meromyosin 酶解肌球蛋白meropodite 长节merosporangium 柱孢子囊merozoite 裂殖子merozygote 部分接合子merus 长节mesarch 中始式mesectoderm 中外层mesencephalon 中脑mesenchyma 间质mesenchyme 间质mesenterial filament 隔膜丝mesenteric artery 肠系膜动脉mesenteric vein 肠系膜静脉mesenterium 肠系膜mesenteron 中肠mesentery 隔膜mesoblast 中胚层mesoblastic somite 中胚层体节mesocardium 心系膜mesocarp 中果皮mesocoel 中脑腔mesocotyl 中胚轴mesoderm 中胚层mesodermal band 中胚层带mesodermalizing agent 中胚层化因素mesogloea 中胶层mesoinositol 不旋肌醇mesolecithal egg 中黄卵mesomere 中裂球mesometrium 子宫系膜mesomitosis 核内有丝分裂mesonephric duct 中肾管mesonephros 沃耳夫氏体mesophanerophyte 中高位芽植物mesophilic bacterium 嗜中温细菌mesophilous forest 中生林mesophyll 叶肉mesophyte 中生植物mesophytic era 裸子植物时代mesosome 间体mesothelium 间皮mesotherm 中温植物mesothorax 中胸mesotriaene 中央三叉体mesotrophic 半自养的mesotrophy 半自养mesovarium 卵巢系膜mesoxerophytes 半旱生植物mesozoa 中生动物mesozoic era 中生代messenger rna 信使 rnametabiosis 半共生metabolic antagonist 代谢对抗体metabolic change 代谢更换metabolic disorder 代谢异常metabolic disturbance 代谢异常metabolic intermediate 代谢中间物metabolic pathway 代谢途径metabolic regulation 代谢第metabolic turnover 代谢更新metabolism 物质代谢metabolism of pigment 色素代谢metabolism temperature curve 代谢温度曲线metabolite 代谢物metabolous insects 有翅类metaboly 变形metacarpal bone 掌骨metacarpus 掌骨metacentric 具中间着丝粒的metacercaria 后囊蚴metacercoid 囊状幼虫metachromasia 异染性metachromasy 异染性metachromatic granule 异染粒metachromatin 异染质metachronism 继时性metacoel 后腔metafemale 超雌metagenesis 真正世代交替metakinesis 中期metalimnion 斜温层metallobiochemistry 金属生物化学metallocarboxypeptidase 金属羧肽酶metalloenzyme 金属酶metalloflavoprotein 含金属黄素蛋白metallothionein 亲金属蛋白metamere 体节metameric segmentation 分节现象metamerism 分节现象metamitosis 有丝分裂末期metamorphosis 变态metamorphosis hormone 变态激素metanauplius 后无节幼虫metanephros 后肾metaphase 中期metaphase pairing index 中期配对指数metaphloem 后生韧皮部metaphosphoric acid 偏磷酸metaphyll 后生叶metaphyte 后生植物metaplasia 化生metaplasm 后生质metaplast 后形质体metapleure 腹褶metapleuric fold 腹褶metapodium 后足metasequoia 水杉metastable 亚稳定的metastasis 转移metastatic tumour 转移肿瘤metastomium 口后部metatarsus 跖metathorax 后胸metatrophic bacterium 腐生细菌metatrophy 腐生营养metaxenia 后生异粉性metaxylem 后生木质部metazoa 后生动物metazoea 后水蚤幼虫metazoology 中生动物学metencephalon 后脑meteor 陨石meteorobiology 气象生物学meteorological elements 气象要素meteorological observation 气象观测meteorological report 气象通报meteorology 气象学meteoropathology 气候病理学meterological satellite 气象卫星methaemoglobin 高铁血红蛋白methane 甲烷methane bacterium 甲烷细菌methionine 甲硫氨酸method 方法method of ascertainment 确认法method of breeding 育种法method of locomotion 运动法method of planting 种植法methyl alcohol 甲醇methylated cellulose 甲基纤维素methylation 甲基化酌methylation of dna dna的甲基化methylene 亚甲methylene blue 美蓝methylglyoxal 丙酮醛metrorrhagia 子宫出血micell 胶粒micellar structure 胶粒结构micelle 胶粒michaelis constant 米氏常数micro element 痕量元素microanalysis 微量分析microautoradiography 微量自动射线照相术microbalance 微量天平microbe 微生物microbial battery 微生物电池microbial content 菌数microbial genetics 微生物遗传学microbial world 微生物界microbicidal 杀微生物的microbioacoustics 微生物声学microbiological degradation 微生物分解microbiological industry 微生物工业microbiological oxidation 微生物氧化microbiology 微生物学microbiomechanics 微生物力学microbody 微体microcentrifuge 微型离心机microcentrum 中心粒团microcephaly 小头microchemistry 微量化学microcinematography 显微摄影术microclimate 小气候micrococcal deoxyribonuclease 小球菌脱氧核糖核酸酶micrococcus 小球菌microcolony 小菌落microconsumer 微型消费者microculture 微量培养microcuvette 微量吸收池microcyte 小红细胞microdissection 显微解剖microecology 微生态学microelectrode 微电极microelement 微量元素microentomology 显微昆虫学microenvironment 小环境microfibril 微纤丝microfilament 微丝microfilaria 微丝蚴microfilm 显微胶片microflora 微生物区系microgametangium 小配子囊microgenetics 显微遗传学microgrphy 显微照相术microhabitat 小生境microhistology 显微组织学microincineration 显微灰化法micromanipulator 显微操作micromelia 短肢micromere 小分裂球micrometer 测微计micromutation 微突变micron 微米micronucleus 小核micronutrient 微量营养物microorganism 微生物micropalaeontology 微古生物学micropaleobiomorphology 微古生物形态学micropaleobiosystematics 微古生物分类学micropaleobotany 微古植物学micropaleozoology 微古动物学microperoxisome 微过氧物酶体microperoxysome 微过氧物酶体microphage 小噬细胞microphotography 显微照相术法microphyll 小型叶microphyte 微植物microphytology 微本草学microplanktology 微浮游生物学microplankton 小型浮游生物micropyle 珠孔microsatellite analysis 小随体分析microsclerotium 小菌核microscope 显微镜microscopical preparation 显微镜制片microsomal enzyme 微粒体酶microsome 微粒体microspecies 约旦种microspectrophotometer 显微分光光度计microsphere 微球体microsporangium 小孢子襄microsporocyte 花粉母细胞microsporogenesis 小孢子发生microsubspecies 微亚种microsyringe 微量第注射器microtatory society 迁移群落microtechnique 显微技术microtitration 微量滴定microtome 切片机microtubule 微管microvillus 微绒毛micturition 撒尿mid brain 中脑mid gut 中肠mid gut gland 中肠腺mid intestinal gland 中肠腺mid leg 中足mid rib 中脉middle ear 中耳middle lamella 中层middle piece 中段migrating fish 回游性鱼migrating species 迁移种migration 回游migration mobility 迁移度migration species 迁移种migration speed 回游速度migratory bird 漂鸟migratory cell 游走细胞migratory community 迁移群落migratory flock 迁移兽群migratory instinct 迁移本能migratory locust 飞蝗migratory route 迁移途径milch cow 乳牛mild humus 腐熟殖质milk 乳milk area 乳区milk clotting enzyme 凝乳酶milk cow 乳牛milk enzyme 奶酶milk fever 授乳热milk gland 乳腺milk line 乳线milk secretion 泌乳milk sugar 乳糖milk tooth 乳齿milk tube 乳管milk vein 乳静脉milk vessel 乳管milky juice 乳汁millet 黍millipedes 多足类millipore filter 微孔滤膜milt 脾milter 雄鱼mimesis 拟态mimetic 拟态的mimetism 拟态mimic 模拟者mimic expression 用手势模仿mimic gene 拟态基因mimicry 拟态mineral constituents 矿质成分mineral fertilizer 矿物肥料mineral matter 矿物质物mineral medium 矿质培养基mineral nutrient 矿质营养素mineral spring 矿泉mineralization 矿化mineralocorticosteroid 盐皮质类醇minerals 矿物质物miniature end plate potential 小终极电势minicell 微细胞miniclimate 小气候minimal area 群落最小面积minimal medium 基本培养基minimum law 最低量定律minimum lethal dose 最小致死量minimum temperature 最低温度miniplasmid 极微质粒minor base 稀有碱基minor element 微量元素minor elements 痕量元素minor gene 副基因minor spiral 小螺旋mint 薄荷minute colony 微小菌落miocene epoch 中新世miosis 瞳孔缩小miracidium 纤毛幼虫mire system 沼泽系mire vegetation 沼泽地植被mirror image 镜象miscoding 错编码miscopying 基因错抄misdivision 错分裂misincorporation 错误插入mismatch correction 失配校正mismatch repair 失配校正mispairing 错配misreplication 复制错误missense 错义missense mutation 错义突变missense suppressor 误义抑制基因mist 雾mistake 误差mistranslation 错译mite 螨mitochondria 线粒体mitochondrial dna 线粒体 dnamitochondrial membrane 线粒体膜mitochondrial shrinkage 线粒体收缩mitochondrion 线粒体mitochondyial concentration 线粒体收缩mitogen 有丝分裂原mitogenetic radiation 分生射线mitogenetic ray 分生射线mitosis 核分裂mitosome 纺锤剩体mitotic apparatus 有丝分裂器mitotic crossing over 体细胞交叉mitotic cycle 分裂周期mitotic division 有丝分裂mitotic poison 有丝分裂毒mitotic recombination 有丝分裂重组mitotic reduction 有丝分裂减数mitral valve 二尖瓣mixed bud 混合芽mixed cultivation 混合栽培mixed culture 混合培养mixed feed 复合饲料mixed forest 混交林mixed function oxidase 双功能氧化酶mixed infection 混合感染mixoameba 粘菌变形虫mixochromosome 偶合染色体mixoploidy 混倍性mixotroph 兼养微生物mixotrophic 混合菅养的mixotrophism 混合营养mixture 混合物mixture of varieties 品种混合mmary vein 乳静脉mn blood group mn 血型mnemonic center 记忆中枢mobile dune 移动沙丘mobile gene 迁移基因mobile genetic element 迁移遗传成分mobile glasshouse 移动温窒mobile greenhouse 移动温窒mobile protein 可移动的蛋白质mobility 可动性mobility spectrum 迁移率谱mobilization 可动化mode of life 生活方式model 模型model experiment 模型实验model of enzymes 酶模型modelling 模拟modification 变态modification enzyme 修饰酶modifier 修饰基因modifying factor 修饰基因modulating codon 蝶密码子modulator 抑扬第剂moiety 一部分moist biotope 有湿生物小区moist forest 潮湿森林moisture 湿气moisture content 含水量moisture holding capacity 持水量moisture loving plant 喜湿植物moisture meter 湿度计molality 克分子浓度molar absorption coefficient 克分子吸光系数molar activity 克分子活性molar tooth 臼齿molarity 体积摩尔浓度molasses 糖蜜mold 霉mole 摩尔molecular activity 分子活性molecular anthropology 分子人类学molecular arrangement 分子排列molecular biology 分子生物学molecular cloning 分子克隆法molecular disease 分子病molecular evolution 分子进化molecular genetics 分子遗传学molecular hybridization 分子杂交molecular recognition 分子认识molecular sieve 分子筛molecular weight 分子量molecule 分子molehills 鼠丘molluscicide 软体动物驱除药molluscoides 拟软体动物molluscs 软体动物类mollusks 软体动物类molt 换羽molting hormone 蜕皮激素molybdenum 钼molybdoferredoxin 固氮铁钼蛋白moment 力矩monad 单分体monandrian 具单一雄蕊的monandrous 具单一雄蕊的monaster 单星体monitor 监视器monitoring 探测monkey 猿monkshood 乌头monoamine oxidase inhibitor 单胺氧化酶抑制物monoblast 成单核细胞monocarp 一次结实植物monocarpic 结一次果的monocarpic plant 一次结实植物monocarpous 结一次果的monocaryon mycelium 单核菌丝体monocellular 单细胞的monocellular culture 单细胞培养monochasium 单歧聚伞花序monochlamydeous 单被的monochromatic light 单色光monocistronic operon 单顺反子操纵子monoclimax 单元演替顶极monoclinic 雌雄同花的monoclinous 雌雄同花的monoclonal antibody 单克隆抗体monococcus 单球菌monocoenosis 单群落monocotyledonous 单子叶的monocotyledonous plant 单子叶植物类monocotyledonous plants 单子叶植物类monocotyledons 单子叶植物类monocular vision 单眼视觉monoculture 单一农作单一经营monocyte 单核细胞monoecism 雌雄同体monoecy 雌雄同体monoesterase 单酯酶monogamy 单配性monogenesis 单性生殖monogenic 单基因的monogenic hybrid 单基因杂种monogenic resistance 单基因抗性monogony 无性生殖monoinfection 单菌性传染monokaric 单核的monokaryon 单核monolayer 单层monolayer culture 单层培养monolocular 一室的monomer 单体monomolecular film 单分子膜mononeural 一神经的mononuclear 单核的mononuclear phagocyte system 单核吞噬细胞系mononucleate 单核的mononucleosome 单核小体thermocouple pyrometer 热电偶高温计mononucleotide 单核苷酸monooxygenase 加一氧酶monoparasitism 单寄生monopetalous 单瓣的monophagous animals 单食性动物monophagy 单食性monophasic 单相的monophenol oxidase 单酚氧化酶monophosphate 单磷体monophyletic evolution 单系列演化monophyletic species 单源物种monophyletic theory 单元说monophyly 单系统monoploid 一倍体monoplont 一倍体生物monopodial branching 单轴分枝monopodial vein 单轴叶脉monopodium 单轴monopyrenous 单核的monosaccharide 单糖monose 单糖monosome 单体性monosomic analysis 单染色体分析monosomy 单体monospecific antiserum 单特异性抗血清monospermy 单精受精monosporangium 单孢子襄囊monosporial culture 单孢子培养monostichous 单列的monosymmetric 两侧对称的monosynaptic reflex 单突触反射monotrichic 单鞭毛菌的monotrichous 单鞭毛菌的monotrochal larva 单毛轮幼虫monotrophic animals 单食性动物monovalent chromosome 一价染色体monozygotic twins 单卵双生monsoon 季风monsoon forest 季雨林monsoonal forest 季雨林monster 畸形mood 心境moorland 泽地mor 粗腐殖质moraine 堆石morbidity 患病率mordant 媒染剂morgan unit 摩尔根单位morgan's law 摩尔根定律morphallaxis 变形再生morphine 吗啡morphine receptor 吗啡感受器morphinomimetic peptide 吗啡样肽morphoclimax 形态演替顶极morphocytology 细胞形态学morphogenesis 形态发生morphogenetic field 形态形成场morphogenetic gene 形态形成基因morphogenetic movement 形态发生运动morphogenetic potential 形态发生势morphogenic process 形态形成过程morphogeny 形态发生morphological specificity 形态特征morphological sterility 形态不稔性morphology 形态学morphophysiology 形态生理学morphoplasm 成形质morphosis 形态形成mortality rate 死亡率mortality table 命表morula 桑椹胚morulation 桑椹胚形成mosaic 嵌合体mosaic community 镶嵌群落mosaic developement 镶嵌发生mosaic egg 镶嵌卵mosaic gene 嵌合基因mosaic stage 镶嵌期mosaic structure 镶嵌结构mosaic theory 镶嵌说mosaic virus 花叶病毒mosaicism 镶嵌发生mosquito 蚊moss animalcules 苔藓虫类moss layer 藓层moss starch 地衣淀粉moss tundra 藓类冻原mosses 藓类moth 蛾mother cell 母细胞mother of pearl layer 珍珠层mother star 单星体mother tree 母树种子树mothering ability 母性的才能motile cilium 运动纤毛motility 游动性motion 运动motivating factor 激发因子motivation 动机综合motivational factor 激发因子motive 单元;动机motoneuron 运动神经元motor area 运动野motor fiber 运动纤维motor neuron 运动神经元motor root 运动根motor speech center 运动性言语中枢motor unit 运动单位mottle 斑点mottling 斑点mould 霉mould fungi 霉菌类mould like bacterium 霉菌形细菌moult 换羽moulting fluid 蜕皮液moulting gland 蜕腺moulting hormone 蜕皮激素mountain 山mountain belt 低山的植物层mountain chain 山脉mountain climaye 山地气候mountain of ice 冰山mountain range 山脉mountain sickness 高山病mouse 小耗子mousetrap 捕鼠器mouth 口mouth appendage 口肢mouth breathing 口呼吸mouth cavity 口腔mouth part 口器movement 运动movement perception 运动感觉movement vision 运动视觉moving boundary 移动界面moving boundary sedimentation 移动界面沉降法mowing 采伐mrna 信使 rnamsh inhibiting factor msh 抑制因子msh inhibiting hormone msh 抑制因子mucic acid 粘液酸mucilage 粘液mucilage canal 粘液道mucilage cell 粘液细胞mucilage duct 粘液道mucilage hair 粘液毛mucin 粘蛋白mucinase 粘蛋白酶mucoid 类粘蛋白mucoid colony 粘液状菌落mucopolymer 肽葡聚糖mucopolysaccharide 粘多糖类mucoprotein 粘蛋白mucosa 粘膜mucous cell 粘液细胞mucous connective tissue 粘液组织mucous gland 粘液腺mucous layer 粘液层mucous membrane 粘膜mucus 粘液mucus secretion 粘液分泌mud soil 软泥土mulberry 桑mulch 覆盖戍muld 泥mule 骡mull 腐熟殖质mullet 鲻multi purpose breed 多目的品种multicamerate 多室的multicellular colony 多细胞集落multicellular gland 多细胞腺multicellular organism 多细胞生物multicellularity 多细胞性multicollinearity 多共线性multicomponent virus 多组分病毒multicopy plasmid 多拷贝原粒multidomain protein 多区域蛋白multienzyme 多酶multienzyme complex 多酶复合物multifunctional carrier 多功能载体multigene family 多基因族multigene fragment 多基因断片multimer 多体multinuclear cell 多核细胞multiparasitism 多寄生multiple alleles 复等位基因multiple allelismus 复等位性multiple allelomorphos 复等位基因multiple binding 多重结合multiple chromosome 多染色体multiple crossing over 多交叉multiple division 重复分裂multiple factor 多基因multiple fruit 聚花果multiple innervation 多重神经支配multiple parasitism 多寄生multiple pregnancy 多胎妊娠multiplication 增殖multiplication capacity 增殖能力multiplication culture 增殖培养multiplication rate 增殖速度multiplicative reproduction 裂殖生殖multiplicity 多重性multiplying disease 增加性疾病multipolar spindle 多极纺锤体multivalent 多价体multivalent chromosome 多价染色体multivalent vaccine 多价疫苗multivesicular body 多泡体mummification 干尸化mummy 干尸muramic acid 胞壁酸muramidase 胞壁酸酶muramyl peptide 胞壁肽murein 胞壁质muscarine 蕈毒碱musci 藓类muscle 肌muscle action potential 肌动诅位muscle area 肌域muscle banner 肌旗muscle cell 肌细胞muscle fibril 肌原纤维muscle field 肌域muscle model 肌模型muscle plate 肌板muscle protein 肌肉蛋白muscle spindle 肌纺锤muscle tonue 肌紧张muscology 苔藓植物学muscular cell 肌细胞muscular dystrophy 肌营养障碍muscular movement 肌运动muscular sense 肌肉觉muscular tonocity 肌紧张muscularelaxation 肌弛缓musculartone 肌紧张musculature 肌肉系统mushroom 蕈mushroom bodies 蕈形体mushroom polysaccharide 蕈多糖类musk 香musk deer 香鹿musk gland 腺muskone 香酮musky ground 南瓜mussels 双壳类must 葡萄液mustard 芥子mutability 突变可能性mutable gene 易变基因mutable site 易变位点mutagen 诱变剂mutagene specificity 诱变剂特异性mutagenesis 突变发生mutagenic compound 诱变剂mutagenic primer 诱变引物mutagenicity 诱变性mutant 突变体mutant clon 突变克隆mutant protein 突变体蛋白mutant strain 突变菌株mutarotation 变旋光mutase 变位酶mutation 突变mutation breeding 诱变育种mutation construction 突变构成mutation expression 突变表现mutation frequency 突变频率mutation map 突变图mutation matrix 突变基质mutation rate 突变率mutation spectrum 突变谱mutation theory 突变理论mutational load 突变负荷mutator 增变基因mutator gene 增变基因muton 突变子mutual aid 相互援助mutual conversion 交替转换mutual exclusion 互斥现象mutualism 互惠共生muzzle 鼻口部mycelial structure 菌丝结构mycelium 菌丝体mycetism 食菌中毒mycetocole animals 栖菌动物mycetocoles 栖菌动物mycetocyte 菌细胞mycetoma 足分枝菌病mycobacterial adjuvant 分枝杆菌佐剂mycobacterium 分枝杆菌mycocecidium 菌瘿mycoflora 真菌菌丛mycolic acid 分枝菌酸mycology 真菌学myconeutral junction 神经肌肉接头mycophage 真菌噬菌体mycophyta 真菌mycoplasma 支原体mycorhiza 菌根mycorrhyza 菌根thermocouple pyrometer 热电偶高温计mycosis 真菌病mycotoxicology 真菌毒理学mycotoxin 真菌毒素mycotrophy 菌根营养mydriasis 瞳孔放大myelencephalon 末脑myelin 骨磷脂myelin basic protein 髓鞘碱性蛋白myelin sheath 髓鞘myelination 髓鞘生成myelinogenesis 髓鞘生成myeloma 骨髓瘤myeloma protein 骨髓瘤蛋白myelopoietic organ 生血瀑myenteric reflex 肠肌反射myo epithelium 肌上皮myo inositol 肌醇myoblast 成肌细胞myocardium 心肌myocyte 肌细胞myodemia 肌脂肪变性myoepithelical cell 肌上皮细胞myofibril 肌原纤维myogen 肌浆蛋白myogenicity 肌原性myoglia 肌胶质myoglobin 肌红蛋白myograph 肌动描记器肌动计myohaemoglobin 肌红蛋白myoid cell 肌样细胞myokinase 肌激酶myolemma 肌纤维膜myology 肌学myolysis 肌肉分解myomere 肌节myometrium 子宫肌层myoneme 肌丝myoneural 肌神经的myoparalysis 肌麻痹myoparesis 肌麻痹myopia 近视myoplasm 肌浆myoplegia 肌麻痹myoprotein 肌肉蛋白myosin 肌球蛋白myosin atpase 肌球蛋白 atp酶myosin filament 肌桨球蛋白丝myosis 瞳孔缩小myotatic reflex 牵张反射myotome 肌节myotonometer 肌张力计myriapods 多足类myrmecology 蚁学myrmecophile animal 适蚁动物myrmecophilous plant 适蚁植物myrmecophyte 适蚁植物myrmecophytes 蚁植物myrosin 芥子酶mysis stage larva 糠虾幼体myxoameba 粘菌变形虫myxobacterium 粘液细菌myxoflagellates 粘鞭毛虫类myxomycetes 粘菌类myxopodium 胶状伪足。
细胞生物学名词表法文

细胞生物学中-英-法文名词表第一章细胞cell (cellule)细胞生物学cell biology (biologie cellulaire)原核细胞prokaryocyte (prokaryote)真核细胞eukaryocyte (eukaryocyte)生殖细胞germ cell (cellules germinales)体细胞somatic cell (cellule somatique )癌细胞cancer cell (cellule du cancer)干细胞stem cell (cellules souches)细胞治疗cell therapy (thérapie cellulaire)组织工程tissue engineering (ingénierie tissulaire)第二章构建单元building block (élément fondamental, élément de base)单糖monosaccharide (monosaccharide)脂肪酸fatty acid (acide gras)氨基酸amino acid (acide aminé)核苷酸nucleotide (nucleotide)环腺苷酸adenosine 3’,5’-monophosphate, cAMP(l'adénosine 3 ',5 ' –monophosphate)环鸟苷酸guanosine 3’,5’-monophosphate, cGMP(guanosine 3 ',5 ' –monophosphate)多糖polysaccharide (polysaccharide)糖原glycogen (glycogène)脂质lipid (lipide)三酰甘油triacylglycerol (triacylglycérol)蛋白质protein (protéine)肽peptide (peptide)多肽链polypeptide chain (chaîne polypeptide)α螺旋α helix (α hélice)β折叠β pleated sheet (β pliage)翻译后修饰post-translational modification(modification post-traductionnelle)核酸nucleic acid (acides nucléiques)核糖核酸ribonucleic acid, RNA (acide ribonucléique, ARN)脱氧核糖核酸deoxyribonucleic acid, DNA (acide désoxyribonucléique, ADN) (DNA)双螺旋结构double helix structure (structure en double hélice)信使核糖核酸messenger ribonucleic acid, mRNA(acide ribonucléique messager, ARN messager ouARNm)转运核糖核酸transfer ribonucleic acid, tRNA(acide ribonucléique de transfert, ARNt) 核糖体核糖核酸ribosome ribonucleic acid, rRNA(acide ribonucléique ribosomique, ARNr) 质膜plasma membrane (membrane plasmique )细胞质cytoplasm (cytoplasme)细胞器organelle (organite)细胞骨架cytoskeleton (cytosquelette)胞质溶胶cytosol (cytosol)细胞核nucleus (noyau)染色质chromatin (chromatine)染色体chromosome (chromosome)核仁nucleolus (nucleoli)第三章激光扫描共聚焦显微镜laser scanning confocal microscope(microscope confocal à balayage laser)电子显微镜electron microscope (microscope électronique)细胞化学技术cytochemistry (cytochimie)免疫细胞化学技术immunocytochemistry (immunocytochimie) 流式细胞术flow cytometry (cytométrie de flux)细胞培养cell culture (la culture cellulaire)第四章细胞核nucleus (noyau)核被膜nuclear envelope (envelope nucléaire)核膜nuclear membrane (membrane nucléaire)核孔nuclear pore (pores nucléaires)核孔复合体nuclear pore complex (pores nucléaires complexes) 核纤层nuclear lamina (lamina nucléaire)染色质chromatin (chromatine)染色体chromosome (chromosome)异染色质heterochromatin (hétérochromatine)常染色质euchromatin (euchromatine)核型karyotype (caryotype)基因gene (gène)基因表达gene expression (expression génique)外显子exon (exon)内含子intron (intron)基因组genome (genome)复制起始点replication origin (origine de replication)着丝粒centromere (centromère)端粒telomere (telomère)组蛋白histon (histone)非组蛋白non-histon (non-histone)核小体nucleosome (nucléosome)组蛋白修饰histon modification (histone modification)DNA复制DNA replication (réplication de l'ADN)半保留复制semiconservative replication (réplication semiconservative )复制叉replication fork (fourche de replication)前导链leading strand ( brin précoce)后随链lagging strand (brin tardif)DNA修复DNA repair (réparation de l'ADN)转录transcription (transcription)非编码RNA non-coding RNA (ARN non codant)微小RNA microRNA (microARN)小干扰RNA small interfering RNA (petits ARN interférents)核仁组织者nucleolus organizer (nucléole organiseur)核仁nucleolus (nucléole)第五章核糖体ribosome (ribosome)游离核糖体free ribosome (ribosomes libres)膜结合核糖体membrane-bound ribosome (ribosomes associés aux membranes) 密码子codon (codon)mRNA (ARNm)tRNA (ARNt)rRNA (ARNr)泛素-蛋白酶体系统ubiquitin-proteasome system(systèm de l'ubiquitine-protéasome)泛素ubiquitin (ubiquitine)蛋白酶体proteasome (protéasome)泛素化ubiquitination (l'ubiquitination)内质网endoplasmic reticulum,ER (réticulum endoplasmique)糙面内质网rough endoplasmic reticulum,RER(réticulum endoplasmique rugueux)光面内质网smooth endoplasmic reticulum,SER(réticulum endoplasmique lisse)蛋白质糖基化protein glycosylation (glycosylation des protéines)蛋白质折叠protein folding (repliement des protéines )内质网应激ER stress未折叠蛋白反应unfolded protein response高尔基体Golgi apparatus (appareil de Golgi)蛋白质分选protein sorting (tri des protéines)溶酶体lysosome (lysosome)异体吞噬泡heterophagic vacuole (vacuole heterophagique)自体吞噬泡autophagic vacuole (vacuole autophagique)吞噬作用phagocytosis (phagocytose)吞饮作用pinocytosis (pinocytosis)自体吞噬autophagy (autophagie)过氧化物酶体peroxisome (peroxysome)线粒体mitochondria (mitochondrie)电子传递链electron-transport chain (la chaîne de transport d'électrons)呼吸链respiratory chain (chaîne respiratoire)(线粒体)基粒elementary particle (particule élémentaire)化学渗透偶联chemiosmotic coupling (couplage chimiosmotique)质子动力势proton-motive force (la force proton motrice)氧化磷酸化oxidative phosphorylation (la phosphorylation oxydative )线粒体DNA mitochondrial DNA, mtDNA (ADN mitochondrial, ADNmt) 细胞骨架cytoskeleton (cytosquelette)微管microtubule (microtubule)微管蛋白tubulin (tubuline)马达蛋白motor protein (protéines du moteur)微管组织中心microtubule organizing center, MTOC(le centre organisateur des microtubule)中心体centrosome (centrosome )中心粒centriole (centriole)细胞质微管cytoplasmic microtubule (microtubule cytoplasmique)纺锤体微管spindle microtubule ( microtubules du fuseau)微丝microfilament (microfilaments)肌动蛋白actin (actine)微绒毛microivilli (microivilli)中间丝intermediate filament (filament intermédiaire)角蛋白keratin (kératine)第六章质膜plasma membrane (membrane cytoplasmique)脂筏lipid raft (radeaux lipidiques)第七章细胞连接cell junction (jonctions cellulaires)细胞黏附cell adhesion (adhérence cellulaire )细胞外基质extracellular matrix (matrice extracellulaire)紧密连接tight junction (jonctions serrées ou jonctions étanches)锚定连接anchoring junction (jonction d'ancrage)黏合带adhesion belt (adhésion en ceinture)v http://biologie.univ-mrs.fr/upload/p204/adherence2.pdf黏合斑adhesion plaque (plaque adherence)桥粒desmosome (desmosome)半桥粒hemidesmosome (hemidesmosome)间隙连接gap junction (jonction gap)细胞黏附分子cell adhesion molecules (molécules d'adhérence cellulaire)钙黏素Cadherin (cadhérine)上皮-间质转变epithelial-mesenchymal transition(transition épithéliale-mésenchymateuse)选择素selectin (sélectine)免疫球蛋白超家族黏附分子the immunoglobulin superfamily cell adhesion molecules(les molécules d'adhérence cellulaire de la superfamille des immunoglobulines) 整合素integrin (intégrine)胶原collagen (collagène)纤粘连蛋白fibronectin (fibronectine)层粘连蛋白laminin (laminine)糖胺聚糖glycosaminoglycan (glycosaminoglycanes)蛋白聚糖proteoglycan (protéoglycanes)基膜basal lamina (lamina basale)失巢凋亡anoikis (anoïkis)第八章单纯扩散simple diffusion (simple diffusion)膜运输蛋白membrane transport protein (protéine de transport de la membrane)易化扩散facilitated diffusion (diffusion facilitée)电化学梯度 electrochemical gradient (gradient électrochimique)转运体transporter (transporteur)偶联转运体 coupled transporter (transporteur couplé)钠钾泵 sodium potassium pump (pompe sodium-potassium)通道蛋白 channel protein (protéine de canal)离子通道ion channel (canal ionique)水通道water channel (canal d'eau)电压门控通道voltage-gated channel (canal voltage-dépendant)递质门控通道transmitter-gated channel (canal transmetteur-dépendant)乙酰胆碱受体acetylcholinergic receptor (récepteur acétylcholinergique)水孔蛋白aquaporin (aquaporine)第九章蛋白质分选 protein sorting (tri des protéines)蛋白质分选信号protein sorting signals (signaux de tri de protéines)信号肽 signal peptide (peptide signal)信号斑Signal spot (tache de signal)门控运输gated transport (transports fermée)穿膜运输transmembrane transport (transport transmembranaire)小泡运输vesicular transport (transport vésiculaire)共翻译转运Cotranslational translocation (translocation cotraductionnelle)信号识别颗粒signal recognition particle(particle de reconnaissance de signaux)有被小泡coated vesicle (vésicule couché)内体endosome (endosome)受体介导的胞吞receptor-mediated endocytosis固有分泌途径constitutive secretory pathway (voie de sécrétion constitutive) 受调分泌途径regulated secretory pathway (voie de sécrétion régulée)第十章细胞通讯cell communication (communication cellulaire)信号分子signaling molecule (molécule de signalisation)配体ligand (ligand)(细胞)信号转导(cell) signalling (la transduction du signal cellulaire)膜受体membrane receptor (récepteur membranaire)细胞内受体(核受体)intracellular receptor(récepteur intracellulaire, récepteur nuclaire)细胞内信号转导蛋白intracellular signaling proteins(protéines de signalisation intracellulaires)分子开关molecular switch (commutateur moléculaire)小分子信使small messenger molecule (petite molécule messagère)G蛋白偶联受体G protein-coupled receptor (récepteur couplé à la G-protéine) 酶偶联受体enzyme-linked receptor (récepteurs liés à une enzyme)受体酪氨酸激酶receptor tyrosine kinase (récepteur tyrosine kinase)第十一章转录调控蛋白transcription regulator (régulateur transcriptionnelle)基因调节蛋白gene regulatory protein (protéine de régulation génique)转录因子transcription factor (facteur de transcription)组成性基因表达constitutive gene expression (l'expression du gène constitutif) 核糖开关riboswitch微小RNA micro RNA (micro ARN)RNA干扰RNA interference, RNAi (l'interférence ARN)组合调控combinatorial regulation (réglementation combinatoire)细胞记忆cell memory (mémoire cellulaire)第十二章细胞增殖cell proliferation (prolifération cellulaire)细胞周期cell cycle (cycle cellulaire)限制点restriction point (point de restriction)有丝分裂mitosis (mitose)细胞核分裂karyokinesis (karyokinèse)细胞质分裂cytokinesis (cytokinèse)减数分裂meiosis (méiose)动粒kinetochore (kinétochore)纺锤体(mitotic) spindle (fuseau mitotique)周期蛋白cyclin (cycline)周期蛋白依赖性激酶cyclin-dependent kinase, Cdk (la kinase cyclin-dépendante) 周期蛋白依赖性激酶抑制物cyclin-dependent kinase inhibitor, CKI(inhibitrices de Cdk)检查点check point (points de contrôle)第十三章细胞分化cell differentiation (la différenciation cellulaire)分化潜能differentiation potential (potentiel de différenciation)全能性totipotency (totipotence)胚胎干细胞embryonic stem cell, ES cell (les cellules souches embryonnaires)去分化dedifferentiation (dédifférenciation)(干细胞)自我更新(stem cell) self-renewal(auto-renouvellement (de cellules souches))组织干细胞(成体干细胞)tissue stem cells, adult stem cells(les cellules souches de tissu)奢侈基因luxury gene (gène de luxe)基因的差异性表达differential expression of genes(gènes exprimés de manière différentielle)第十四章细胞凋亡apoptosis (apoptose)坏死necrosis (nécrose)程序性坏死programmed necrosis (nécrose programmée)程序性细胞死亡programmed cell death (la mort cellulaire programmée)胱冬肽酶caspases (caspases)死亡受体death receptors (récepteurs de mort)。
大鼠肾缺血再灌注损伤程序性坏死的形态学观察

大鼠肾缺血再灌注损伤程序性坏死的形态学观察李郭锦;张路;穆长征;宋小峰;郭敏【摘要】目的观察大鼠肾缺血再灌注损伤程序性坏死的形态学变化.方法应用免疫印迹技术、免疫组织化学染色技术以及光学和电子显微镜技术对缺血60min再灌注24h的大鼠肾脏进行观察和分析.结果免疫印迹分析结果表明,与假手术组比较,大鼠肾缺血再灌注后受体相互作用蛋白激酶3(RIPK3)和肿瘤坏死因子受体α(TNFRα]表达增强.缺血再灌注损伤的肾组织内出现RIPK3免疫组化染色阳性细胞,主要分布于肾小管上皮.光镜下皮质和髓质外带的肾小管出现了程序性坏死,表现为细胞肿胀,着色苍白,细胞核固缩.电镜下程序性坏死表现为细胞质肿胀,细胞器肿胀、破碎,含有一个凋亡样细胞核.结论大鼠肾脏缺血60min再灌注24h后部分肾小管细胞发生了程序性坏死,肾组织中RIPK3表达增强.【期刊名称】《解放军医学杂志》【年(卷),期】2013(039)010【总页数】4页(P792-795)【关键词】肾;再灌注损伤;程序性坏死;大鼠【作者】李郭锦;张路;穆长征;宋小峰;郭敏【作者单位】121001辽宁锦州辽宁医学院附属第三医院影像科;124010 辽宁盘锦盘锦市职业技术学院临床护理系;121001 辽宁锦州辽宁医学院组织胚胎学教研室;121001 辽宁锦州辽宁医学院组织胚胎学教研室;121001 辽宁锦州辽宁医学院组织胚胎学教研室【正文语种】中文【中图分类】R320.2345肾缺血再灌注损伤(renal ischemia-reperfusion injury,RIRI)是诱发急性肾损伤(acute kidney injury,AKI)的主要原因,如肾移植、肾血管手术后都可发生RIRI,从而诱发AKI[1]。
大鼠常用于建立RIRI引起的AKI动物模型,虽然有关大鼠RIRI 引起肾脏细胞损伤的报道很多,但多集中在细胞坏死和细胞凋亡等[2-3]。
近年来随着对细胞死亡机制研究的深入,出现了从生物化学或分子生物学变化角度分类和命名的新的细胞死亡方式。
炎症小体介导的焦亡在宿主细胞抵御病毒感染中的作用及机制

炎症小体介导的焦亡在宿主细胞抵御病毒感染中的作用及机制邵青青; 陈琢; 段倩旎; 刘桐; 黄聪【期刊名称】《《华中科技大学学报(医学版)》》【年(卷),期】2019(048)004【总页数】5页(P488-491,496)【关键词】细胞焦亡; 炎症小体; 病毒感染; 凋亡相关斑点样蛋白(ASC); 天冬氨酸蛋白水解酶1【作者】邵青青; 陈琢; 段倩旎; 刘桐; 黄聪【作者单位】华中科技大学同济医学院附属同济医院中西医结合科武汉430030; 华中科技大学同济医学院附属同济医院中西医结合研究所武汉430030【正文语种】中文【中图分类】R329.252细胞死亡是机体抗感染免疫反应过程中重要的组成部分,可分为程序性死亡和被动性死亡。
前者需要代谢能量,由特定的细胞信号和效应分子介导,主要包括焦亡(pyroptosis)、自噬(autophagy)及凋亡(apoptosis)等;后者由外力失控诱导,主要包括坏死(necrosis)[1]。
细胞焦亡是由Zychlinsky等[2]于1992年研究弗氏志贺菌感染的巨噬细胞时观察到的一种细胞溶解死亡形式。
因其具备凋亡的部分特征,如DNA断裂、核凝聚和依赖天冬氨酸蛋白水解酶(Caspase),最初被归为细胞凋亡。
随着进一步研究,发现其与依赖Caspase-3的细胞凋亡明显不同,因而于2001年正式命名为焦亡[3],可分为依赖Caspase-1的经典途径和依赖Caspase-4/5/11的非经典途径。
细胞质中的应激源与炎症信号识别受体(NLRs或ALRs)结合后,炎症信号识别受体自身寡聚化并招募凋亡相关斑点样蛋白(ASC),进而募集pro-Caspase-1,并使其裂解活化为具有活性的Caspase-1,形成大分子复合物炎症小体。
Caspase-1一方面诱导促炎因子IL-1β和IL-18的激活和分泌,另一方面可激活自抑制的Gasdermin-D(GSDMD)蛋白,最终在细胞膜上形成孔洞,使得细胞肿胀并渗透溶解死亡,即细胞焦亡[4-5]。
cell-1-2007

Eukaryotic Cells
10~30µm(10~100) Nucleus, has nuclear envelope & nucleolus, large amounts of DNA, many linear molecules of DNA numerous organelles, including internal membranous & nonmembranous structures (mostly)Mitosis, (sexual)meiosis, (sometimes) Amitosis
医学细胞生物学
MEDICAL CELL BIOLOGY
GO
联 系 参考书
Outline
由细胞构成, 由细胞构成,基本功 Commonness 能的发生机制相似
Oganisms Individual character
Chapter1 Cell Biology vs.Medicine Chapter2 Origin & Evolution of Cell Chapter3 Essential Characteristics Of Cell Chapter5 Cell membrane
纲
要
• 【掌握】 掌握】 细胞的大分子物质: 蛋白质的一级结构; 1、细胞的大分子物质:⑴蛋白质的一级结构;⑵核酸 的分类、结构和功能。 的分类、结构和功能。 细胞的结构。 2、细胞的结构。 • 【熟悉】 熟悉】 细胞的小分子物质(单糖、脂肪酸、氨基酸、核苷酸) 细胞的小分子物质(单糖、脂肪酸、氨基酸、核苷酸) 的结构和功能。 的结构和功能。 • 【了解】 了解】 蛋白质的空间结构( 四级结构) 1、蛋白质的空间结构(二、三、四级结构)的主要特 点。 细胞的大小、数目和形态。 2、细胞的大小、数目和形态。 3、细胞的生命特征
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ReviewMolecular definitions of cell death subroutines:recommendations of the Nomenclature Committee on Cell Death 2012L Galluzzi 1,2,3,I Vitale 1,2,3,JM Abrams 4,ES Alnemri 5,EH Baehrecke 6,MV Blagosklonny 7,TM Dawson 8,VL Dawson 8,WS El-Deiry 9,S Fulda 10,E Gottlieb 11,DR Green 12,MO Hengartner 13,O Kepp 1,2,3,RA Knight 14,S Kumar 15,16,SA Lipton 17,18,19,20,X Lu 21,F Madeo 22,W Malorni 23,24,P Mehlen 25,26,27,28,G Nun˜ez 29,ME Peter 30,M Piacentini 31,32,DC Rubinsztein 33,Y Shi 34,H-U Simon 35,P Vandenabeele 36,37,E White 38,J Yuan 39,B Zhivotovsky 40,G Melino 41,42and G Kroemer*,1,43,44,45,46In 2009,the Nomenclature Committee on Cell Death (NCCD)proposed a set of recommendations for the definition of distinct cell death morphologies and for the appropriate use of cell death-related terminology,including ‘apoptosis’,‘necrosis’and ‘mitotic catastrophe’.In view of the substantial progress in the biochemical and genetic exploration of cell death,time has come to switch from morphological to molecular definitions of cell death modalities.Here we propose a functional classification of cell death subroutines that applies to both in vitro and in vivo settings and includes extrinsic apoptosis,caspase-dependent or -independent intrinsic apoptosis,regulated necrosis,autophagic cell death and mitotic catastrophe.Moreover,we discuss the utility of expressions indicating additional cell death modalities.On the basis of the new,revised NCCD classification,cell death subroutines are defined by a series of precise,measurable biochemical features.Cell Death and Differentiation advance online publication,15July 2011;doi:10.1038/cdd.2011.96Received 16.5.11;accepted 13.6.11;Edited by V De Laurenzi1INSERM U848,‘Apoptosis,Cancer and Immunity’,94805Villejuif,France;2Institut Gustave Roussy,94805Villejuif,France;3Universite´Paris Sud-XI,94805Villejuif,France;4Department of Cell Biology,UT Southwestern Medical Center,Dallas,TX 75390,USA;5Department of Biochemistry and Molecular Biology,Center for Apoptosis Research,Kimmel Cancer Institute,Thomas Jefferson University,Philadelphia,PA 19107,USA;6Department of Cancer Biology,University of Massachusetts Medical School,Worcester,MA 01605,USA;7Department of Cell Stress Biology,Roswell Park Cancer Institute,Buffalo,NY 14263,USA;8Neuroregeneration and Stem Cell Programs,Institute for Cell Engineering,Johns Hopkins University School of Medicine,Baltimore,MD 21205,USA;9Cancer Institute Penn State,Hershey Medical Center,Philadelphia,PA 17033,USA;10Institute for Experimental Cancer Research in Pediatrics,Goethe University,Frankfurt 60528,Germany;11The Beatson Institute for Cancer Research,Glasgow G611BD,UK;12Department of Immunology,St.Jude Children’s Research Hospital,Memphis,TN 38105,USA;13Institute of Molecular Life Sciences,University of Zurich,8057Zurich,Switzerland;14Institute of Child Health,University College London,London WC1N 3JH,UK;15Centre for Cancer Biology,SA Pathology,Adelaide,South Australia 5000,Australia;16Department of Medicine,University of Adelaide,Adelaide,South Australia 5005,Australia;17Sanford-Burnham Medical Research Institute,San Diego,CA 92037,USA;18Salk Institute for Biological Studies,,La Jolla,CA 92037,USA;19The Scripps Research Institute,La Jolla,CA 92037,USA;20Univerisity of California,San Diego,La Jolla,CA 92093,USA;21Ludwig Institute for Cancer Research,Oxford OX37DQ,UK;22Institute of Molecular Biosciences,University of Graz,8010Graz,Austria;23Department of Therapeutic Research and Medicines Evaluation,Section of Cell Aging andDegeneration,Istituto Superiore di Sanita`,00161Rome,Italy;24Istituto San Raffaele Sulmona,67039Sulmona,Italy;25Apoptosis,Cancer and Development,CRCL,69008Lyon,France;26INSERM,U1052,69008Lyon,France;27CNRS,UMR5286,69008Lyon,France;28Centre Le´on Be ´rard,69008Lyon,France;29University of Michigan Medical School,Ann Arbor,MI 48109,USA;30Northwestern University Feinberg School of Medicine,Chicago,IL 60637,USA;31Laboratory of Cell Biology,National Institute for Infectious Diseases IRCCS ‘L Spallanzani’,00149Rome,Italy;32Department of Biology,University of Rome ‘Tor Vergata’,00133Rome,Italy;33Cambridge Institute for Medical Research,Cambridge CB20XY,UK;34Shanghai Institutes for Biological Sciences,200031Shanghai,China;35Institute of Pharmacology,University of Bern,3010Bern,Switzerland;36Department for Molecular Biology,Gent University,9052Gent,Belgium;37Department for Molecular Biomedical Research,VIB,9052Gent,Belgium;38The Cancer Institute of New Jersey,New Brunswick,NJ 08903,USA;39Department of Cell Biology,Harvard Medical School,Boston,MA 02115,USA;40Institute of Environmental Medicine,Division of Toxicology,Karolinska Institutet,17177Stockholm,Sweden;41Biochemical Laboratory IDI-IRCCS,Department of Experimental Medicine,University of Rome ‘Tor Vergata’,00133Rome,Italy;42Medical Research Council,Toxicology Unit,Leicester University,Leicester LE19HN,UK;43Metabolomics Platform,Institut Gustave Roussy,94805Villejuif,France;44Centre de Recherche des Cordeliers,75005Paris,France;45Poˆle de Biologie,Ho ˆpital Europe ´en Georges Pompidou,AP-HP,75908Paris,France;46Universite ´Paris Descartes,Paris 5,75270Paris,France *Corresponding author:G Kroemer,INSERM U848,‘Apoptosis,Cancer and Immunity’,Institut Gustave Roussy,Pavillon de Recherche 1,39rue Camille Desmoulins,94805Villejuif,France.Tel:þ33142116046;Fax þ33142116047;E-mail:kroemer@orange.frKeywords:autophagy;mitochondrial membrane permeabilization;necroptosis;parthanatos;TNFR1;TP53Abbreviations:AIM2,absent in melanoma 2;AIF,apoptosis-inducing factor;BID,BH3-interacting domain death agonist;cIAP,cellular inhibitor of apoptosis protein;CrmA,cytokine response modifier A;CYTC,cytochrome c ;D c m ,mitochondrial transmembrane potential;DAPK1,death-associated protein kinase 1;DCC,deleted in colorectal carcinoma;DD,death domain;DIABLO,direct IAP-binding protein with low pI;DISC,death-inducing signaling complex;EGFR,epidermal growth factor receptor;ENDOG,endonuclease G;FADD,FAS-associated protein with a death domain;GMCSF,granulocyte-macrophage colony-stimulating factor;HTRA2,high temperature requirement protein A2;IL,interleukin;MOMP,mitochondrial outer membrane permeabilization;mTOR,mammalian target of rapamycin;NCCD,Nomenclature Committee on Cell Death;PAR,poly(ADP-ribose);NETs,neutrophil extracellular traps;PARP,PAR polymerase;PP2A,protein phosphatase 2A;PS,phosphatidylserine;RIP,receptor-interacting protein kinase;RNAi,RNA interference;ROS,reactive oxygen species;SMAC,second mitochondria-derived activator of caspases;ROCK1,RHO-associated,coiled-coil containing protein kinase 1;SQSTM1,sequestosome 1;TAB,TAK1-binding protein;TAK1,TGF b -activated kinase 1;tBID,truncated BID;TG,transglutaminase;TGF b ,transforming growth factor b ;TNF a ,tumor necrosis factor a ;TNFR,TNF a receptor;TRADD,TNFR-associated DD;TRAF,TNFR-associated factor;TRAIL,TNF a -related apoptosis-inducing ligand;TRAILR,TRAIL receptor;Z-VAD-fmk,N -benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone;Z-YVAD-fmk,N -benzyloxycarbonyl-Tyr-Val-Ala-DL-Asp-fluoromethylketoneCell Death and Differentiation (2011),1–14&2011Macmillan Publishers Limited All rights reserved 1350-9047/11/cddPrefaceSince thefirst descriptions of programmed cell death mechanisms,which date back to the mid-1960s,1–3several attempts have been made to classify cell death subroutines based on morphological characteristics.Thus,in1973 Schweichel and Merker4proposed a classification of several cell death modalities,including‘type I cell death’associated with heterophagy,‘type II cell death’associated with autophagy and‘type III cell death’,which was not associated with any type of digestion,corresponding to apoptosis, autophagic cell death and necrosis,respectively.5,6Even though deep insights into the molecular pathways that regulate and execute cell death have been gained and biochemical assays for monitoring cell death-related phenom-ena have become laboratory routine,the scientific community has not yet adopted a systematic classification of cell death modalities based on biochemical rather than morphological criteria.Nonetheless,there has been a tendency to dichot-omize cell death events into either of two mutually exclusive groups.Thus,caspase-dependent,tolerogenic,programmed and physiological cell death instances have been contrasted to their caspase-independent,immunogenic,accidental and pathological counterparts,respectively.7The Nomenclature Committee on Cell Death(NCCD)has formulated two subsequent rounds of recommendations in 2005and2009,in Cell Death and Differentiation.6,8Therein, unified criteria for the definition of cell death morphotypes were proposed and guidelines on the use of cell death-related terminology were given.The mission of the NCCD,as formulated previously,is‘to provide a forum in which names describing distinct modalities of cell death are critically evaluated and recommendations on their definition and use are formulated,hoping that a non-rigid,yet uniform nomen-clature will facilitate the communication among scientists and ultimately accelerate the pace of discovery’.8In line with this mission statement and following recent breakthroughs in cell death research that have invalidated the notion that necrosis would represent a merely accidental cell death mode(see below),9–12the NCCD believes that the time has become appropriate for a novel systematic classification of cell death based on measurable biochemical features.Pros and Cons of Morphological Versus Biochemical Classifications of Cell DeathThe veryfirst catalogs of cell death4necessarily relied on morphological traits,because the biochemical tests that are available nowadays for assessing the cell demise13were only developed decades later.Nevertheless,morphological clas-sifications have dominated the cell death research scene even after the introduction of biochemical assays into the laboratory routine.Several economical,methodological,educational and theoretical reasons can be invoked to explain why the scientific community has clung to a conservative,morpholo-gical classification of cell death modalities.First,while conventional light microscopy is available in all cell biology laboratories,this is not the case for more sophisticated equipment(e.g.,fluorescence readers for monitoring caspase activity).Second,virtually all cell biologists are familiar with the observation of cell cultures under the microscope before any sort of experimental intervention,a routine practice that has certainly contributed to the persistence of morphological classifications.Third,it has been assumed for a long time that some degree of morphological uniformity would represent the activation of identical or at least similar lethal signaling cascades.Only recently has it become clear that apparently similar cell death morphotypes most often hide a great degree of functional,biochemical and immunological heterogene-ity.5,8,14Moreover,it should always be remembered that the presence of specific morphological features is not sufficient to establish a causal link between a given process and cellular demise.Biochemical methods for assessing cell death have many advantages over morphological techniques in that they are quantitative,and hence less prone to operator-dependent misinterpretations.However,these methods also have major drawbacks and must be interpreted with caution,especially when single parameters are being investigated.13,15Thus,it should always be kept in mind that single biochemical readouts cannot be used as unequivocal indicators of a precise death modality,for a variety of reasons.First,a cell death pathway that is often associated with a particular biochemical process may be normally executed in the absence of this process.Thus,at least in vitro,caspase activation is not a strict requirement for multiple cases of apoptosis(see below).16,17Similarly,phosphatidylserine(PS) exposure,which is widely considered as an early marker of apoptotic cell death,18reportedly does not occur in autop-hagy-deficient cells succumbing to apoptosis.19Second,a ‘specific’cell death-related phenomenon may occur along with the execution of another cell death mode.For instance, excessive generation of reactive oxygen species(ROS)and reactive nitrogen species has been associated with several cases of apoptosis,20–22yet it also occurs during regulated necrosis.23,24Along similar lines,PS exposure is not a prerogative of apoptotic cell death,as it also constitutes an early feature of parthanatos and netosis(see below).25,26 Third,a cell death-associated biochemical process can develop at a sublethal or transient level,which does not lead to the cell demise.Thus,while full-blown mitochondrial outer membrane permeabilization(MOMP)constitutes a point-of-no-return of intrinsic apoptosis(see below),20limited extents of MOMP(i.e.,concerning a fraction of the mitochondrial pool) and the consequent(localized)activation of caspase-3have been shown to participate in several cell death-unrelated programs such as the differentiation of megakaryocytes and granulocytes.27Definition of‘Extrinsic Apoptosis’The term‘extrinsic apoptosis’has been extensively used to indicate instances of apoptotic cell death that are induced by extracellular stress signals that are sensed and propagated by specific transmembrane receptors.28–30Extrinsic apoptosis can be initiated by the binding of lethal ligands,such as FAS/ CD95ligand(FASL/CD95L),tumor necrosis factor a(TNF a) and TNF(ligand)superfamily,member10(TNFSF10,best known as TNF-related apoptosis inducing ligand,TRAIL),to various death receptors(i.e.,FAS/CD95,TNF a receptor1Functional classification of cell death modalitiesL Galluzzi et al 2Cell Death and Differentiation(TNFR1)and TRAIL receptor(TRAILR)1–2,respectively).28 Alternatively,an extrinsic pro-apoptotic signal can be dis-patched by the so-called‘dependence receptors’,including netrin receptors(e.g.,UNC5A-D and deleted in colorectal carcinoma,DCC),which only exert lethal functions when the concentration of their specific ligands falls below a critical threshold level.30One prototypic signaling pathway leading to extrinsic apoptosis is elicited by FAS ligation.In the absence of FASL, FAS subunits spontaneously assemble at the plasma membrane to generate trimers,owing to the so-called pre-ligand assembly domain(PLAD).31Ligand binding stabilizes such trimers while inducing a conformational change that allows for the assembly of a dynamic multiprotein complex at the cytosolic tail of the receptor.This occurs owing to a conserved sequence of80residues that is shared by all death receptors,the so-called‘death domain’(DD).32,33Proteins recruited at the DD of FAS include receptor-interacting protein kinase1(RIPK1,best known as RIP1);FAS-associated protein with a DD(FADD);multiple isoforms of c-FLIP;34,35 cellular inhibitor of apoptosis proteins(cIAPs),E3ubiquitin ligases that also inhibit apoptosis owing to their ability to interfere with caspase activation;36and pro-caspase-8(or -10).37–41The resulting supramolecular complex,which has been dubbed‘death-inducing signaling complex’(DISC), constitutes a platform that regulates the activation of caspase-8(or-10).38,42Of note,TNFR1-like proteins also require TNFR-associated DD(TRADD)for recruiting FADD and caspase-8,whereas FAS and TRAILR1/2do not,29pointing to the existence of subgroups of death receptors with specific signaling properties. Similarly,the DDs of some death receptors,for instance, TNFR1,recruit several other proteins that are not found at FADD-assembled DISCs,including TNFR-associated factor2 (TRAF2)and TRAF5.43In this specific context,RIP1is polyubiquitinated by cIAPs,44allowing for the recruitment of transforming growth factor b(TGF b)-activated kinase1 (TAK1),TAK1-binding protein2(TAB2)and TAB3,which together can stimulate the canonical activation pathway for the multifunctional transcription factor NF-k B.45Thus,death receptor activation not always entails the transduction of a lethal signal.This is particularly true for TNFR1,which has been shown to mediate cellular outcomes as different as proliferation and(distinct modalities of)cell death(see below).Irrespective of these variations,both FAS-and TNFR1-elicited signaling pathways appear to be subjected to a consistent degree of regulation upon receptor compartmentalization.A detailed discussion of these aspects goes largely beyond the scope of this paper and can be found in Schutze et al.29In some cell types including lymphocytes(which have been dubbed‘type I cells’),46,47active caspase-8directly catalyzes the proteolytic maturation of caspase-3,thereby triggering the executioner phase of caspase-dependent apoptosis in a mitochondrion-independent manner.48In other cells such as hepatocytes and pancreatic b cells(‘type II cells’),46,47,49 caspase-8mediates the proteolytic cleavage of BH3-interact-ing domain death agonist(BID),leading to the generation of a mitochondrion-permeabilizing fragment(known as truncated BID,tBID).49–51Thus,while type I cells undergo extrinsic apoptosis irrespective of any contribution by mitochondria (tBID and MOMP can occur in these cells,but they are dispensable for the execution of extrinsic apoptosis),type IIcells succumb from the activation of death receptors while showing signs of MOMP,including the dissipation of mitochondrial transmembrane potential(D c m)and the releaseof toxic proteins that are normally retained within the mitochondrial intermembrane space(IMS).20Among these, cytochrome c(CYTC)drives–together with the cytoplasmic adaptor protein APAF1and dATP–the assembly of the apoptosome,another caspase-activating multiprotein com-plex(see below).52The actual contribution of caspase-10,aclose homolog of caspase-8,to extrinsic apoptosis remains unclear.Thus,whereas several reports indicate that caspase-10is recruited at the DISC and gets activated in responseto death receptor signaling,41,53it seems that caspase-10 cannot functionally substitute for caspase-8.53Moreover,ithas recently been suggested that caspase-10might be required for the lethal signaling cascade ignited by death receptors in the presence of caspase inhibitors(see below).54The molecular routes by which dependence receptors are connected to the rapid activation of executioner caspases,in particular caspase-3,have only recently begun to emerge. Thus,in the absence of their ligands,some dependence receptors like Patched and DCC appear to interact with the cytoplasmic adaptor protein DRAL to assemble a caspase-9-activating platform.55Another dependence receptor,UNC5B, responds to the withdrawal of netrin-1by recruiting a signaling complex that includes protein phosphatase2A(PP2A)anddeath-associated protein kinase1(DAPK1).56This multi-protein interaction would lead to the PP2A-mediated depho-sphorylation of DAPK,in turn unleashing its multifacetedpro-apoptotic potential.57As a note,there are several other transmembrane proteinsthat–at least under selected circumstances–can transducelethal signals in response to ligand binding,including (although presumably not limited to)CD2,58CD4,59 TNFRSF8/CD30,60,61TNFRSF5/CD40,60CD45,62CXCR459and class I/II MHC molecules.63Similar to TNFR1,most ofthese proteins have dual functions:depending on the cellular context and triggering stimulus they can engage eitherpro-survival or pro-death signals.However,the molecular cascades triggered by these receptors are complex and oftenpoorly elucidated,in particular with regard to their dependencyon caspases.On the basis of these considerations,we propose the following operational definition of extrinsic apoptosis.Extrinsic apoptosis is a caspase-dependent cell death subroutine,and hence can be suppressed(at least theoretically)by pan-caspase chemical inhibitors such as N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone(Z-VAD-fmk)or by the overexpression of viral inhibitors of caspases like cytokine response modifier A(CrmA).64Extrinsic apoptosis would feature one among three major lethal signaling cascades:(i)death receptor signaling and activation of the caspase-8(or-10)-caspase-3cascade;(ii)death receptor signaling and activation of the caspase-8-tBID-MOMP-caspase-9-caspase-3pathway;or(iii)ligand deprivation-induced depen-dence receptor signaling followed by(direct or MOMP-depen-dent)activation of the caspase-9-caspase-3cascade(Table1and Figure1).Functional classification of cell death modalitiesL Galluzzi et al3Cell Death and DifferentiationDefinition of caspase-dependent and caspase-independent ‘intrinsic apoptosis’.The apoptotic demise of cells can be triggered by a plethora of intracellular stress conditions,including DNA damage,oxidative stress,cytosolic Ca 2þoverload,mild excitotoxicity (related to glutamate receptor overstimulation in the nervous system),accumulation of unfolded proteins in the endoplasmic reticulum (ER)and many others.Although the signaling cascades that trigger intrinsic apoptosis are highlyheterogeneous as far as the initiating stimuli are concerned,they are all wired to a mitochondrion-centered control mechanism.20Frequently,along with the propagation of the pro-apoptotic signaling cascade,anti-apoptotic mechanisms are also engaged,in an attempt to allow cells to cope with stress.In this scenario,both pro-and anti-apoptotic signals converge at mitochondrial membranes,which become permeabilized when the former predominate over the latter.20MOMP can start at the outer mitochondrialTable 1Functional classification of regulated cell death modesMain biochemical featuresCaspase dependenceExamples of inhibitory interventions a AnoikisDownregulation of EGFR Inhibition of ERK1signaling Lack of b 1-integrin engagement Overexpression of BIMCaspase-3(-6,-7)activation ++BCL-2overexpression Z-VAD-fmk administrationAutophagic cell death MAP1LC3lipidation SQSTM1degradation ÀÀVPS34inhibitorsAMBRA1,ATG5,ATG7,ATG12or BCN1genetic inhibition Caspase-dependent intrinsic apoptosis Caspase-independent intrinsic apoptosis MOMPIrreversible D c m dissipation Release of IMS proteins Respiratory chain inhibition ++ÀÀBCL-2overexpression Z-VAD-fmk administration BCL-2overexpressionCornification Activation of transglutaminases Caspase-14activation +Genetic inhibition of TG1,TG3or TG5Genetic inhibition of caspase-14EntosisRHO activation ROCK1activationÀÀGenetic inhibition of metallothionein 2A Lysosomal inhibitorsExtrinsic apoptosis by death receptorsDeath receptor signaling Caspase-8(-10)activationBID cleavage and MOMP (in type II cells)Caspase-3(-6,-7)activation ++CrmA expressionGenetic inhibition of caspases (8and 3)Z-VAD-fmk administrationExtrinsic apoptosis by dependence receptorsDependence receptor signaling PP2A activation DAPK1activation Caspase-9activationCaspase-3(-6,-7)activation++Genetic inhibition of caspases (9and 3)Genetic inhibition of PP2A Z-VAD-fmk administrationMitotic catastrophe Caspase-2activation (in some instances)TP53or TP73activation (in some instances)Mitotic arrestÀÀGenetic inhibition of TP53(in some instances)Pharmacological or genetic inhibition of caspase-2(in some instances)Necroptosis Death receptor signaling Caspase inhibitionRIP1and/or RIP3activation ÀÀAdministration of necrostatin(s)Genetic inhibition of RIP1/RIP3Netosis Caspase inhibitionNADPH oxidase activationNET release (in some instances)ÀÀAutophagy inhibitionNADPH oxidase inhibition Genetic inhibition of PAD4Parthanatos PARP1-mediated PAR accumulation Irreversible D c m dissipation ATP and NADH depletionPAR binding to AIF and AIF nuclear translocationÀÀGenetic inhibition of AIF Pharmacological or genetic inhibition of PARP1Pyroptosis Caspase-1activation Caspase-7activationSecretion of IL-1b and IL-18++Administration of Z-YVAD-fmk Genetic inhibition of caspase-1Abbreviations:ATG,autophagy;BCN1,beclin 1;D c m ,mitochondrial transmembrane potential;CrmA,cytokine response modifier A;DAPK1,death-associated protein kinase 1;EGFR,epidermal growth factor receptor;ERK1,extracellular-regulated kinase 1;IL,interleukin;MAP1LC3,microtubule-associated protein 1light chain 3;MOMP,mitochondrial outer membrane permeabilization;NET,neutrophil extracellular trap;PAD4,peptidylarginine deiminase 4;PAR,poly(ADP-ribose);PARP1,poly(ADP-ribose)polymerase 1;PP2A,protein phosphatase 2A;ROCK1,RHO-associated,coiled-coil containing protein kinase 1;SQSTM1,sequestosome 1;TG,transglutaminase;Z-VAD-fmk,N -benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone;Z-YVAD-fmk,N -benzyloxycarbonyl-Tyr-Val-Ala-DL-Asp-fluoromethylketone.a For classification purposes,pharmacological and genetic interventions should be considered inhibitory when they truly reduce the incidence of cell death,but not when they only provoke a shift between different cell death modalities or when they change the morphology of cell death.For further details,please refer to the ‘Notes of Caution’and ‘Concluding Remarks’sectionsFunctional classification of cell death modalitiesL Galluzzi et al4Cell Death and Differentiationmembrane owing to the pore-forming activity of pro-apoptotic members of the BCL-2protein family such as BAK and BAX or can result from a phenomenon (the so-called mitochondrial permeability transition,MPT)that originates at the inner mitochondrial membrane due to the opening of a multiprotein complex known as the permeability transition pore complex (PTPC).65,66Irrespective of the precise biochemical and physical mechanisms through which it develops,irreversible MOMP affecting most mitochondria within a single cell has multiple lethal consequences:(i)the dissipation of the D c m ,with cessation of mitochondrial ATP synthesis and D c m -dependent transport activities;(ii)the release of toxic proteins from the IMS into the cytosol,as this applies to CYTC,apoptosis-inducing factor (AIF),endonuclease G (ENDOG),direct IAP-binding protein withlow pI (DIABLO,also known as second mitochondria-derived activator of caspases,SMAC)and high temperature requirement protein A2(HTRA2);and (iii)the inhibition of the respiratory chain (favored by the loss of CYTC),eliciting or aggravating ROS overproduction and hence activating a feed-forward circuit for the amplification of the apoptotic signal.20Thus,intrinsic apoptosis results from a bioenergetic and metabolic catastrophe coupled to multiple active executioner mechanisms.Upon MOMP,cytosolic CYTC participates with APAF1and dATP in the formation of the apoptosome,which triggers the caspase-9-caspase-3proteolytic cascade.52,67AIF and ENDOG relocate to the nucleus,where they mediate large-scale DNA fragmentation independently of cas-pases.68–71SMAC/DIABLO and HTRA2inhibit the anti-apoptotic function of several members of the IAP family,thereby derepressing caspase activation.72–74In addition,HTRA2exerts caspase-independent pro-apoptotic effects by virtue of its serine protease activity.75,76These mechanisms present a considerable degree of redundancy,as demon-strated by the fact that the knockout or genetic inhibition of single IMS proteins not always affects the execution of intrinsic apoptosis.77Moreover,the relative contribution of these processes to intrinsic apoptosis varies in distinct physiological,pathological and experimental scenarios.Thus,while ENDOG appears to be dispensable for intrinsic apoptosis in mammalian models,77Nuc1p,the yeast ortholog of ENDOG,has an important role during the apoptotic response of Saccharomyces cerevisiae to chronological aging in non-fermentable carbon sources (which potentiate mitochondrial respiration).71DRONC,the ortholog of cas-pase-9in Drosophila melanogaster ,is required for many forms of developmental cell deaths and apoptosis induced by DNA damage in vivo .78Conversely,caspase activation seems to have a prominent role in a limited number of instances of stress-induced intrinsic apoptosis in vitro ,as demonstrated by the fact that –in contrast to extrinsic apoptosis –chemical and/or genetic inhibition of caspases rarely,if ever,confers long-term cytoprotective effects and truly prevents cell death.In this context,caspase inhibition only delays the execution of cell death,which eventually can even exhibit morphological features of necrosis.16,17,79In view of these observations,we suggest to define ‘intrinsic apoptosis’as a cell death process that is mediated by MOMP and hence is always associated with (i)generalized and irreversible D c m dissipation,(ii)release of IMS proteins into the cytosol (and their possible relocalization to other subcellular compartments)and (iii)respiratory chain inhibi-tion.We propose to differentiate between caspase-dependent and caspase-independent intrinsic apoptosis based on the extent of cytoprotection conferred by (pharmacological or genetic)inhibition of caspases (Table 1and Figure 2).This distinction is particularly relevant in vivo ,as in some 78,80(but not all)81instances of developmental cell death,caspase inhibition has been shown to provide stable cytoprotection.In vitro ,in the long run,caspase-independent mechanisms,be they active (e.g.,AIF,ENDOG)or passive (e.g.,ATP depletion),tend to prevail over caspase inhibition and to kill cells even in instances of intrinsic apoptosis that would have normally been rapidly executed by the caspasecascade.Figure 1Extrinsic apoptosis.Upon FAS ligand (FASL)binding,the cytoplasmic tails of FAS (also known as CD95,a prototypic death receptor)trimers recruit (among other proteins)FAS-associated protein with a death domain (FADD),cellular inhibitor of apoptosis proteins (cIAPs),c-FLIPs and pro-caspase-8(or -10).This supramolecular platform,which has been dubbed ‘death-inducing signaling complex’(DISC),controls the activation of caspase-8(-10).Within the DISC,c-FLIPs and cIAPs exert pro-survival functions.However,when lethal signals prevail,caspase-8gets activated and can directly trigger the caspase cascade by mediating the proteolytic maturation of caspase-3(in type I cells)or stimulate mitochondrial outer membrane permeabilization (MOMP)by cleaving the BH3-only protein BID (in type II cells).Extrinsic apoptosis can also be ignited by dependence receptors like DCC or UNC5B,which relay lethal signals in the absence of their ligand (netrin-1).In the case of DCC and UNC5B,the pro-apoptotic signaling proceeds through the assembly of a DRAL-and TUCAN-(or NLRP1-)containing caspase-9-activating platform or by the dephosphorylation-mediated activation of death-associated protein kinase 1(DAPK1)by UNC5B-bound protein phosphatase 2A (PP2A),respectively.DAPK1can mediate the direct activation of executioner caspases or favor MOMP.tBID,truncated BIDFunctional classification of cell death modalities L Galluzzi et al5Cell Death and Differentiation。