因式分解之简答题---讲义(1对1辅导精品)

合集下载

因式分解教案1及所有题型(配习题)

因式分解教案1及所有题型(配习题)

第二章 分解因式(1)一、整式乘法:把几个整式相乘,化成一个多项式。

例;3x(x-1)=x x 332- m(a+b+c)=ma+mb+mc(m+4)(m-4)=2m -16 2)3(-y =962+-y y根据上面的算式填空32x -3x=( )( ) 2m -16=( )( )ma+mb+mc=( )( ) 962+-y y =( )( )二、分解因式:把一个多项式化成几个整式乘积的形式。

注:①分解因式的对象必须是多项式 ②结果是几个整式乘积的形式 ③分解要彻底下列属于分解因式的是( )A .(x +3)(x -3)=x 2-9B .x 2+x -5=(x -2)(x +3)+1C .a 2b+ab 2=ab (a+b )D .三、分解因式的方法 1、提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

这种分解因式的方法叫做提公因式法。

步骤:①找公因式 ②提供因式确定公因式的方法:①系数:应取各项系数的最大公约数②字母:取各项相同的字母,字母的指数取其次数最小的。

需要注意:①公因式的系数“+”、“—”一般由首项来决定②当某项全部提出后,剩下的是1,而不是0③分解完单项式要写在多项式的前面。

④对于含有分数系数的多项式,分母取各分母的最小公倍数,分子取各分子的最大公约数。

⑤当多项式的因式中出现互为相反数的因式时,先变号,在提供因式。

例:分解下列因式。

(1) a5b-a2b3+a2b (2) -7x2y-14xy2+49x2y2(3) (x+y)(a2+a+1)-(x-y)(a2+a+1) (4) y(2x-y)2-2x(y-2x)2(5)18x2(x-2y)2-24xy(2y-x)2-12x(2y-x)36(7)3m(x-y)-2(y-x)2(7) x(x+y-z)+y(x+y-z)+z(z-x-y) (8)-5x3(3a-2b)2+(2b-3a)2(9)3a2b(2x-y)-6ab2(y-2x) (10) -3a2b3+6a3b2c+3a2b(11)3a2b(2x-y)-6ab2(y-2x) (12) 2a(a-b)3-a2(a-b)2+ab(b-a)22、运用公式法如果多项式的各项有公因式,那么先提公因式,如果多项式中没有公因式,那么可以尝试运用公式来分解。

初中数学十字相乘法因式分解讲义及习题

初中数学十字相乘法因式分解讲义及习题

数学十字相乘法因式分解一、2()x p q x pq +++型的因式分解特点是:(1)二次项的系数是1(2)常数项是两个数之积(3)一次项系数是常数的两个因数之和。

对这个式子先去括号,得到:pq x q p x +++)(2)()(22pq qx px x pq qx px x +++=+++=))(()()(q x p x p x q p x x ++=+++=利用此式的结果可以直接将某些二次项系数是1的二次三项式分解因式。

[例1](1)232++x x (2)672+-x x[例2] (1)22-+x x (2)1522--x x二、一般二次三项式2ax bx c ++的分解因式大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++。

反过来,就可得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,那么2ax bx c ++就可以分解成1122()()a x c a x c ++.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法。

[例3] 把下列各式因式分解。

(1)3722+-x x (2)5762--x x (3)22865y xy x -+[例4] 将40)(3)(2----y x y x 分解因式[例5] 把222265x y x y x --分解因式[例6] 将xy y x 168155-分解因式注意:多项式分解因式的一般步骤是:(1)如果多项式各项有公因式,那么先提出公因式。

(2)在各项提出公因式后,或各项没有公因式的情况下,可考虑运用公式法,对于四项式多项式可以考虑运用分组分解法。

鲁教版八年级上册《因式分解》常见题型与考点精讲(1)(共18PPT)

鲁教版八年级上册《因式分解》常见题型与考点精讲(1)(共18PPT)
=﹣3×4, =﹣12.
因式分解求面积
例5.我们可以用几何图形来解决一些代数问题, 如图可以来解释:
(a+b)2=


变式训练:
1.如图,由一个边长为a的小正方形与两个长、 宽分别为a、b的小矩形拼成一个大矩形,则整 个图形可以表达出一些有关多项式因式分解的 等式,则其中一个可以为______.
整式乘法 因式分解
(5).(a-3)(a+3)=a2-9
整式乘法
(6).m2-42=(m+4)(m-4) (7).2 πR+ 2 πr= 2 π(R+r)
因式分解 因式分解
因式分解的应用
在初中,我们可以接触到以下几类应用: 1.计算。利用因式分解计算,比较简捷; 2.与几何有关的应用题。
3.代数推理的需要。
一个正方形和2个长方形的面积为:a2+2ab, 整个长方形的面积为:a(a+2b), ∴等式为:a2+2ab=a(a+2b). 故答案为:a2+2ab=a(a+2b).
其他题型:
1.(2018•临安区)阅读下列题目的解题过程:
已知a、b、c为△ABC的三边,且满足 a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.
(2)根据题目中B到C可知没有考虑a=b的情 况;
(3)根据题意可以写出正确的结论. 【解答】解:(1)由题目中的解答步骤可得, 错误步骤的代号为:C, 故答案为:C;
(2)错误的原因为:没有考虑a=b的情况, 故答案为:没有考虑a=b的情况; (3)本题正确的结论为:△ABC是等腰三角
10、阅读一切好书如同和过去最杰出的人谈话。06:31:5506:31:5506:318/14/2021 6:31:55 AM

因式分解习题50道及答案

因式分解习题50道及答案

因式分解习题50道及答案因式分解是数学中的一个重要概念,它在代数运算中起着关键的作用。

通过因式分解,我们可以将一个复杂的代数式简化为更简单的形式,从而更好地理解和解决问题。

下面我将给大家提供50道因式分解的习题及答案,希望对大家的学习有所帮助。

1. 将x^2 + 4x + 4因式分解。

答案:(x + 2)^22. 将2x^2 + 8x + 6因式分解。

答案:2(x + 1)(x + 3)3. 将x^2 - 9因式分解。

答案:(x - 3)(x + 3)4. 将x^2 - 4因式分解。

答案:(x - 2)(x + 2)5. 将x^2 + 5x + 6因式分解。

答案:(x + 2)(x + 3)6. 将x^2 - 7x + 12因式分解。

答案:(x - 3)(x - 4)7. 将x^2 + 3x - 4因式分解。

答案:(x + 4)(x - 1)8. 将x^2 + 2x - 3因式分解。

答案:(x + 3)(x - 1)9. 将x^2 - 5x + 6因式分解。

10. 将x^2 + 6x + 9因式分解。

答案:(x + 3)^211. 将x^2 - 8x + 16因式分解。

答案:(x - 4)^212. 将x^2 - 10x + 25因式分解。

答案:(x - 5)^213. 将x^2 + 4x - 5因式分解。

答案:(x + 5)(x - 1)14. 将x^2 - 6x - 7因式分解。

答案:(x - 7)(x + 1)15. 将x^2 + 7x - 8因式分解。

答案:(x - 1)(x + 8)16. 将x^2 - 3x - 10因式分解。

答案:(x - 5)(x + 2)17. 将x^2 - 11x + 28因式分解。

答案:(x - 4)(x - 7)18. 将x^2 + 8x + 15因式分解。

答案:(x + 3)(x + 5)19. 将x^2 - 13x + 40因式分解。

答案:(x - 5)(x - 8)20. 将x^2 + 9x + 20因式分解。

初中数学因式分解(含答案)竞赛题精选1

初中数学因式分解(含答案)竞赛题精选1

初中数学因式分解(一)因式分解是代数式恒等变形的基本形式,是解决数学问题的有力工具.是掌握因式分解对于培养学生解题技能,思维能力,有独特作用.1.运用公式法整式乘法公式,反向使用,即为因式分解(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.分解因式,根据多项式字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4; (2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.例2 分解因式:a3+b3+c3-3abc.例3 分解因式:x15+x14+x13+…+x2+x+1.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.例5 分解因式:(1)x9+x6+x3-3; (2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4; (4)a3b-ab3+a2+b2+1.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.例9分解因式:6x4+7x3-36x2-7x+6.例10 分解因式:(x2+xy+y2)-4xy(x2+y2).练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1; (2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.初中数学因式分解(一)答案多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.。

八年级数学北师版 第4章 因式分解4.1 因式分解习题课件

八年级数学北师版 第4章  因式分解4.1  因式分解习题课件
解:由题意得x2-4x+m=(x+a)(x-6)=x2+(a- 6)x-6a,
∴a-6=-4,m=-6a. ∴a=2,m=-12. ∴2a-m=2×2+12=16.
返回
即:几个整式相乘 整uuu式uuu乘uu法ur 一个多项式. suuuuuuuuu 因式分解
4.因式分解结果为(x-1)2的多项式是( A )
A.x2-2x+1
B.x2+2x+1
C.x2-1
D.x2+1
返回
5.(中考·邵阳)将多项式x-x3因式分解正确的是( D )
A.x(x2-1)
B.x(1-x2)
解:(1)因式分解是针对多项式来说的,故不是因式分解; (2)右边不是整式积的形式,故不是因式分解; (3)右边不是整式积的形式,故不是因式分解; (4)右边不是整式积的形式,故不是因式分解.
返回
题型 2 待定系数法在求含字母式子值中的应用
10.已知多项式x2-4x+m分解因式的结果为(x+a)(x -6),求2a-m的值.
____________,从右到左的变形是__________.
整式乘法
因式分解
8.甲、乙两个同学分解因式x2+ax+b时,甲看错了
b,分解结果为(x+2)(x+4);乙看错了a,分解
结果为(x+1)(x+9),则a+b=________.
15
返回
题型 1 因式分解的定义在识别因式分解中的应用
9.下列从左到右的变形中,是否属于因式分解?说明理由. (1)24x2y=4x·6xy; (2)(x+5)(x-5)=x2-25; (3)9x2-6x+1=3x(3x-2)+1; (4)x2+1=xx+x1.
C.x(x+1)(x-1) D.x(1+x)(1-x)

因式分解培优题(超全面、详细分类)资料讲解

因式分解培优题(超全面、详细分类)资料讲解

因式分解专题培优把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解. 因式分解的方法多种多样,现将初中阶段因式分解的常用方法总结如下:因式分解的一般方法及考虑顺序:1、基本方法:提公因式法、公式法、十字相乘法、分组分解法.2、常用方法与技巧:换元法、主元法、拆项法、添项法、配方法、待定系数法.3、考虑顺序:( 1)提公因式法;( 2)公式法;( 3)十字相乘法;( 4)分组分解法.一、运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1) a2-b2=(a+b)(a-b);(2) a2±2ab+b2=(a±b)2;(3) a3+b3=(a+b)(a2-ab+b2);(4) a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5) a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6) a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7) a n—b n=(a—b)(a n_ 1+a n_2b+a n「3b2+…+ab n—2+b n_ 1),其中n 为正整数;(8) a n—b n=(a+b)(a n—1—a n—2b+a n—3b2—…+ab n—2—b n—1),其中n 为偶数;(9) a n+b n=(a+b)(a n—1—a n—2b+a n—3b2—…一ab n—2+b n—1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例题 1 分解因式:(1) —2x5n—1y n+4x3n—1y n+2—2x n—1y n+4;(2) x3—8y3—z3—6xyz;(3) a2+b2+c2—2bc+2ca—2ab;(4) a7—a5b2+a2b5—b7.例题2 分解因式:a3+b3+c3—3abc.例题 3 分解因式:x15+x14+x13+…+x2+x+1.对应练习题分解因式:x 9y10 . 5(2) x +x —2(3) x4 2x2y2 4xy3 4x3y y2(4 x2 3 y2)4(4) (x5+x4+x3+x2+x+1)2—x5(5) 9(a- b)2+12(a2- b2)+4(a+b)2⑹(a- b)2- 4(a- b- 1)(7) (x+y)3+2xy(1 —x—y) —1二、分组分解法(一)分组后能直接提公因式例题 1 分解因式:am an bm bn分析:从“整体” 看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系. 此类型分组的关键:分组后,每组内可以提公因式,且各组分解后,组与组之间又有公因式可以提.例题 2 分解因式:2ax 10ay 5by bx对应练习题分解因式:1、a2ab ac bc2、xy x y 1(二)分组后能直接运用公式例题 3 分解因式:x2 y2 ax ay例题 4 分解因式:a2 2ab b22 c对应练习题分解因式:3、x2 x 9y2 3y4、22yz 2yz1) x 32 xy 2 xy 3y3) x 26xy 9y 2 16a 28a 1综合练习题 分解因式: 222) axbx bx ax a b224) a 26ab 12b 9b 2 4a5) a 4 2a 3 a 2 9 2 2 2 26) 4a x 4a y b x b y7) 2 x 2xy xz 2 yz y 9) y(y 2) (m 1)( m 1) 228) a 22a b 2 2b 2ab 110) (a c)(a c) b(b 2a)11)a 2(b c) b 2 (a c) c 2(a b) 2abc 4 3 2 2 3 412)a 2a b 3a b 2ab b .2213) ( ax by) ( ay bx)14) xyz(x 3 y 3 z 3) y 3z 3 z 3 x 3 x 3y 34 2 215) x 4 2ax 2x a 2a16) x 3 3x 2 (a 2) x 2a17) (x 1)3 (x 3)3 4(3x 5)三、十字相乘法1、十字相乘法(一)二次项系数为1的二次三项式2直接利用公式--- x (p q)x pq (x p)(x q)进行分解.特点:(1)二次项系数是1 ;(2)常数项是两个数的乘积;(3)—次项系数是常数项的两因数的和例题1 分解因式:x2 5x 6例题2分解因式:x2 7x 6对应练习题分解因式:(1) x214x 24 ⑵a215a 36 ⑶x24x 52⑷x x 2 ⑸y22y 15 ⑹x210x 24(二)二次项系数不为1的二次三项式-ax bx c条(1)a a〔a? a C1件:(2)c C1C2 a2- C2(3)b a〔C2 a2 G b a© a2&分解结果:ax2 bx c =(a1x G)(a2x c2)例题3分解因式:3x211x 10 对应练习题分解因式:(1)5x2 7x 6 (2)3x2 7x 2(3)10x217x 3 2(4) 6y 11y 10(三)二次项系数为1的齐次多项式 例题4 分解因式:a 2 8ab 128b 2分析:将b 看成常数,把原多项式看成关于 a 的二次三项式,利用十字相乘法进行分解8b+( — 16b)= — 8b对应练习题分解因式:2 2 (1) x 3xy 2y2 2(2) m 6mn 8n⑶a 3 ab 6b 2(四)二次项系数不为1的齐次多项式 例题5分解因式:2x 2 7xy 6y 2对应练习题分解因式:(1) 15x 2 7xy 4y 22 2(2) a x 6ax 8综合练习题分解因式:2 2(2) 12x 11xy 15y2(4) (a b) 4a 4b 33 (x y)2 3(x y) 10(5) x 2 y 2 5x 2y 6x 28b —16b例题6 分解因式:x 2y 2 3xy 2(1) 8x 6 7x 312 2(6) m 4mn 4n 3m 6n 2(7) x 2 4xy 4y 2 2x 4y 3 (8) 5(a b)2 23(a 2 b 2) 10(a b)2(9) 4x 2 4xy 6x 3y y 210 2 2 (10) 12(x y) 11(x 2 2 y ) 2(x y) 思考:分解因式: abcx 2 (a 2b 2 c 2)x abc 2、双十字相乘法定义:双十字相乘法用于对Ax 2 Bxy Cy 2 Dx Ey F 型多项式的分解因式 条件:(1) A a 1a 2, (2) a 1c 2 a 2c ! 即:C C 1C 2,B , c f 2C 1F ff c 2 f 1 E , a f2 a ? f. C 2 a 〔C 2 a 2c i B , c 2f 1 E ,a 1 f 2 a 2 f 1 D 则Ax 2 Bxy Cy 2 Dx Ey F (ax Gy gy f 2)例题7 分解因式: (1) 2 x 3xy 10y 2 x 9y 2(2) 2 x xy 6y 2 x 13y 6解: (1) 2 x 3xy 1 0y 2 x 9y 22 a 2应用双十字相乘法: x 2xy •••原式=(x 5yx 5xy 2)(x 5y 2y 3xy , 5y 4y 9y , x 2x x2y 1) 23xy 2xy xy , 4y 9y 13y , 2x 3x x •原式=(x 2y3)( x 3y 2)对应练习题分解因式:(1) x 2 xy 2y 2 x 7y 62 2 2(2) 6x 7xy 3y xz 7yz 2z3、十字相乘法进阶例题8 分解因式:y(y 1)(x2 1) x(2y2 2y 1)例题9 分解因式:ab(x222 y ) (a b2)(xy 1) (a2 b2)(x y)四、主元法例题分解因式:x2 3xy 10y2 x 9y 2对应练习题分解因式:22(1) x xy 6y x 13y 622(3)6x2 7xy 3y2 x 7y 222(4) a2 ab 6b2 5a 35b 3622(2) x xy 2y x 7y 6五、换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,代这个整体来运算,从而使运算过程简明清晰.例题 1 分解因式:(x2+x+1)(x2+x+2)-12.例题 2 分解因式:(x2 4x 8)2 3x(x2 4x 8) 2x2例题 3 分解因式:(x 1)(x 1)(x 3)(x 5) 9 分析:型如abcd e 的多项式,分解因式时可以把四个因式两两分组相乘例题 4 分解因式:(x2 7x 6)(x2 x 6) 56 .例题 5 分解因式:(x2+3x+2)(4x2+8x+3) -90.例题 6 分解因式:4(3x2x 1)(x22x 3) (4x2x 4)2提示: 可设3x2x 1 A,x22x 3 B ,则4x2x 4 A例题7 分解因式:x6 28x3 27例题8 分解因式:(a b)4 (a b)4 (a2 b2)2例题9 分解因式:(y 1) 4 (y 3)4 272并用一个新的字母替B.例题9 对应练习分解因式:a4 44 (a 4)4例题10 分解因式:(x2+xy+y2)2-4xy(x2+y2).分析:本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y, v=xy,用换元法分解因式.例题11 分解因式:2x4 x3 6x2 x 2分析:此多项式的特点一一是关于x的降幕排列,每一项的次数依次少1,并且系数成“轴对称” . 这种多项式属于“等距离多项式”.方法:提中间项的字母和它的次数,保留系数,然后再用换元法.例题11 对应练习分解因式:6x4+7x3-36x2-7x+6.例题11 对应练习分解因式:x4 4x3 x2 4x 1对应练习题分解因式:(1)X4+7X3+14/+7X+1(2)x4 2x3 x2 1 2(x x2)(3)2005x2(20052 1)x 2005(4)(x 1)(x 2)(x 3)( x 6) x2(5)(x 1)(x 3)(x 5)(x 7) 15(6)(a 1)(a 2)( a 3)(a 4) 24(7)(2 a 5)(a29)(2a 7) 91(8)(x+3)(x2—1)(x+5) —20(9)(a2 1)2 (a2 5)2 4(a2 3)2(10) (2x2—3x+1)2—22X2+33X— 1(11) (a 2b c)3(a b)3(b c)31 2(12) xy(xy 1)(xy3) 2(x y (x y 1)(13) (a b 2ab)(a b 2) (1 ab)六、添项、拆项、配方法因式分解是多项式乘法的逆运算. 在多项式乘法运算时, 整理、 化简常将几个同类项合 并为一项, 或将两个仅符号相反的同类项相互抵消为零. 在对某些多项式分解因式时, 需要 恢复那些被合并或相互抵消的项, 即把多项式中的某一项拆成两项或多项, 或者在多项式中 添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、 添项的目的是使多项式能 用分组分解法进行因式分解.说明 用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的 是要依靠对题目特点的观察, 灵活变换, 因此拆项、 添项法是因式分解诸方法中技巧性最强 的一种.例题 1 分解因式: x 3- 9x+8.例题 2 分解因式:(1)x 9+x 6+x 3-3;(2)(m 2-1)(n 2-1)+4mn ; (3)(x+1)4+(x 2-1)2+(x -1)4; (4)a 3b -ab 3+a 2+b 2+1.2 2 22) x 2 2(a b)x 3a 2 10ab 3b 24 2 24) x 4 x 2 2ax 1 a 222 2 2 22 4 4 4( 6) 2a b 2a c 2b c a b c8)x 4-11x 2y 2+y 2 10)x 4-12x+323(12) x 3-11x + 20;(14) x 2 y 2 4x 6y 5(15) (1 a 2)(1 b 2) 4ab对应练习题 分解因式:(1) x 3 3x 2 4 (3) x 4 7x 2 1 (5) x 4 y 4 (x y )4(7)x 3+3x 2-4 (9)x 3+9x 2+26x+24 (11)x 4+x 2+1;(13)a 5+a +1七、待定系数法例题 1 分解因式: x 2 xy 6y 2 x 13y 6分析:原式的前3项x 2 xy 6y 2可以分为(x 3y)(x 2y),则原多项式必定可分为(x 3y m)(x 2y n)对应练习题 分解因式:(1)6x 2 7xy 3y 2 x7y 2(2)2x 2+3xy -9y 2+14x -3y +20(3) x 2 3xy 10y 2 x9y 2(4) x 2 3xy 2y 2 5x 7y 61) 当 m 为何值时,多项式 x 2 y 2 mx322) 如果 x 3 ax 2 bx 8 有两个因式为 x3y 2 6x 14y p 能分解成两个一次因式之积, 求常数 p 并且分解因22xy ky 2 3x 5y 2 能分解成两个一次因式的乘积,并分解此多项例题 25y 6 能分解因式,并分解此多项式1和x 2,求a b 的值•(3) 已知: x 2 2xy 式• (4) k 为何值时, x 2式•八、余式定理(试根法)1、f x的意义:已知多项式f X,若把x用c带入所得到的值,即称为f x在x = c的多项式值,用f c表示.2、被除式、除式、商式、余式之间的关系:设多项式 f x除以g x所得的商式为q x ,余式为r x,则:f x = g x x q x + r xb3、余式定理:多项式f (x)除以x b之余式为f (b);多项式f (x)除以ax b之余式f(—).a 例如:当f(x)=x2+x+2 除以(x -1)时,则余数=f(1)=1 2+1+2=4.2 1 1 2 1当f(x) 9x 6x 7 除以(3x 1)时,则余数=f( —)9(—) 6(-)7 8.3 3 34、因式定理:设a,b R , a 0, f (x)为关于x的多项式,则x b为f(x)的因式bf (b) 0 ; ax b 为f (x)的因式f(—) 0.a整系数一次因式检验法:设f(x) = C n X n C n 1X n 1c^ c°为整系数多项式,若ax七为f(x)之因式(其中a , b为整数,a 0 ,且a , b互质),则(1)ac n, be。

高中因式分解练习题及讲解精选

高中因式分解练习题及讲解精选

高中因式分解练习题及讲解精选### 高中因式分解练习题及讲解精选在数学学习中,因式分解是解决代数问题的重要工具之一。

它不仅能帮助我们简化复杂的表达式,还能在解决方程和不等式问题中发挥关键作用。

以下是一些精选的高中因式分解练习题及相应讲解,供同学们练习和参考。

#### 练习题一题目:将表达式 \(3x^2 - 12x + 9\) 进行因式分解。

解答:首先,我们寻找 \(3x^2 - 12x + 9\) 中的公因数,可以看到每一项都可以被3整除。

提取公因数3,我们得到:\[3(x^2 - 4x + 3)\]接下来,我们观察括号内的二次三项式 \(x^2 - 4x + 3\)。

这是一个完全平方三项式,因为它可以表示为 \((x - a)^2\) 的形式。

我们找到使 \(x^2 - 4x + 3\) 成为完全平方的 \(a\) 值,即 \(a = 2\)。

因此,原表达式可以分解为:\[3(x - 2)^2\]#### 练习题二题目:因式分解 \(x^3 - 1\)。

解答:\(x^3 - 1\) 可以看作是两个立方数的差,即 \(x^3\) 和 \(1^3\)。

根据立方差公式 \(a^3 - b^3 = (a - b)(a^2 + ab + b^2)\),我们有:\[x^3 - 1 = (x - 1)(x^2 + x + 1)\]这里,\(x^2 + x + 1\) 是一个二次三项式,它没有实数根,因此不能进一步分解。

#### 练习题三题目:将 \(x^4 - y^4\) 进行因式分解。

解答:\(x^4 - y^4\) 是两个四次方的差,这是一个特殊的差平方形式,可以利用差平方公式 \(a^2 - b^2 = (a + b)(a - b)\) 来分解。

首先,我们将其分解为:\[(x^2)^2 - (y^2)^2 = (x^2 + y^2)(x^2 - y^2)\]然后,我们注意到 \(x^2 - y^2\) 又是一个差平方形式,可以继续分解:\[(x^2 + y^2)(x + y)(x - y)\]这样,我们就完成了 \(x^4 - y^4\) 的因式分解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生辅导讲义
时间:_________ 学生:_________ 教师:__________ 课题因式分解之简答题—讲义
教学目标了解因式分解的概念了解因式分解的方法
重点因式分解的方法的应用因式分解的简单应用
难点因式分解方法的混合应用因式分解在简答题中的应用
1、定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。

2、因式分解注意三原则
1 分解要彻底
2 最后结果只有小括号
3 最后结果中多项式首项系数为正/
3、基本方法
(1)提公因式法(2)公式法(3)十字相乘法(4)分组分解法
4、因式分解的简单应用
(1)可用来作单项式的除法(2)解简单的方程
强化练习
1.已知│x+y+1│+│xy+3│=0,求代数式xy3+x3y的值.
2.先化简,再求值:
(1)6x3(x-2)-9x2(x-2),其中x=11
2

(2)3x(y-2)+2x(2-y),其中x=1
2
,y=4.
3.如图在长为a-1的长方形纸片中,剪去一个边长为1的正方形,•余下的面积为ab+a-b-2,求这个长方形的宽.
4.解方程:(3x-1)2= (2-5x)2
5.已知x 2+x+1=0,求x 8+x 4+1的值.
6.△ABC 三边a 、b 、c 有如下关系:-c 2+a 2+2ab-2bc=0,
求证:这个三角形是等腰三角形(6分)
7.已知(x -x 2) (x 2-y)=1,求代数式221
()2x y xy +-的值
8.计算(8分)
(1)222211111111234100⎛⎫⎛⎫⎛



---- ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; (2)1-22+32-42+52-62+…+992-1002
9.已知a 2-5a+1=0 (a ≠0),求221
a a +的值(8分)
10.化简,求值()()()()22222a b a b a ab b a b -÷++-+÷-,其中1
2a =,b =—2.
11.若()()()22005123456789,20151995N N N +=++求的值.
12.计算:2222111111112342005⎛⎫⎛⎫⎛⎫

⎫⎛

---- ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭211-2004
13.若二次多项式2232k kx x -+能被 x -1整除,试求k 的值。

14.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状。

15.已知22==+ab b a ,,求322321
21ab b a b a ++的值。

16、利用分解因式证明:127525- 能被120整除。

17.已知a -b =2005,ab =20082005 ,求a 2b -ab 2的值。

18.设4b =a +2c ,求a 2-16b 2+4c 2+4ac 的值.
20.矩形的周长是28cm ,两边长为x ,y ,若x 3+x 2y -xy 2-y 3=0,求矩形的面积.
21.已知(a 2+b 2)(a 2+b 2-1)=12。

求a 2+b 2的值.
22.已知a ,b ,c 为△ABC 的三条边的长.
(1)当b 2+2ab =c 2+2ac 时,试判断△ABC 属于哪一类三角形;
(2)判断a 2-b 2+c 2-2ac 的值的符号,并说明理由.
23.若a +b =10,ab =6,求:
(1)a 2+b 2的值;
(2)a 3b -2a 2b 2+ab 3的值.
24.若a =kx +1,b =kx -3,c =4-2kx ,求a 2+b 2+c 2+2ab +2bc +2ca 的值。

25.当y -x =5时,求x 2-y 2+5x +5y +2006的值。

26.已知x +y =2,xy =a +4,2633=+y x ,求a 的值.
28. 已知x、y都是正整数,且,求x、y。

30. 化简:,且当时,求原式的值。

31.在中,三边a,b,c满足
求证:
32. 已知:__________
33. 已知:的值。

34. 矩形的周长是28cm,两边x,y使,求矩形的面积。

35. 已知:a、b、c是非零实数,且,求a+b+c的值。

36. 已知:a 、b 、c 为三角形的三边,比较的大小。

37.已知x(x -1)-(x 2-y)=-2.求xy y x -+22
2的值.
38、设321
,221,121
+=+=+=m c m b m a ,求代数式222222c bc ac b ab a +--++的值.
39.解答题
(1)已知108,1==+ab b a ,求22ab b a +的值
(2)已知3,5==+ab b a ,则代数式=++32232ab b a b a
(3)若一个长方形的面积是x x x ++232(x >0),且一边长为x+1,求另一边长为多少。

相关文档
最新文档