一元线性回归方程模型

合集下载

一元线性回归模型检验

一元线性回归模型检验

§2.3 一元线性回归模型的统计检验回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线代替总体回归线。

尽管从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值)就等于其总体的参数真值,但在一次抽样中,估计值不一定就等于该真值。

那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验。

主要包括拟合优度检验、变量的显著性检验及参数的区间估计。

一、拟合优度检验拟合优度检验,顾名思义,是检验模型对样本观测值的拟合程度。

检验的方法,是构造一个可以表征拟合程度的指标,在这里称为统计量,统计量是样本的函数。

从检验对象中计算出该统计量的数值,然后与某一标准进行比较,得出检验结论。

有人也许会问,采用普通最小二乘估计方法,已经保证了模型最好地拟合了样本观测值,为什么还要检验拟合程度?问题在于,在一个特定的条件下做得最好的并不一定就是高质量的。

普通最小二乘法所保证的最好拟合,是同一个问题内部的比较,拟合优度检验结果所表示优劣是不同问题之间的比较。

例如图2.3.1和图2.3.2中的直线方程都是由散点表示的样本观测值的最小二乘估计结果,对于每个问题它们都满足残差的平方和最小,但是二者对样本观测值的拟合程度显然是不同的。

图2.3.1 图2.3.21、总离差平方和的分解已知由一组样本观测值),(i i Y X ,i =1,2…,n 得到如下样本回归直线ii X Y 10ˆˆˆββ+= 而Y 的第i 个观测值与样本均值的离差)(Y Y y i i -=可分解为两部分之和:i ii i i i i y e Y Y Y Y Y Y y ˆ)ˆ()ˆ(+=-+-=-= (2.3.1) 图2.3.3示出了这种分解,其中,)ˆ(ˆY Y y ii -=是样本回归直线理论值(回归拟合值)与观测值i Y 的平均值之差,可认为是由回归直线解释的部分;)ˆ(ii i Y Y e -=是实际观测值与回归拟合值之差,是回归直线不能解释的部分。

一元线性回归模型(计量经济学)

一元线性回归模型(计量经济学)

总体回归函数说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的 规律。至于具体的函数形式,则由所考 察的总体的特征和经济理论来决定。
在例2.1中,将居民消费支出看成是其可 支配收入的线性函数时,该总体回归函
数为: E (Y |X i)01 X i
它是一个线性函数。其中,0,1是未知
第二章 经典单方程计量经济学模型: 一元线性回归模型
§2.1 回归分析概述 §2.2 一元线性回归模型的基本假设 §2.3 一元线性回归模型的参数估计 §2.4 一元线性回归模型的统计检验 §2.5 一元线性回归模型的预测 §2.6 一元线性回归建模实例
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、总体回归函数 三、随机扰动项 四、样本回归函数
1430 1650 1870 2112
1485 1716 1947 2200
2002
2420 4950 11495 16445 19305 23870 25025 21450 21285 15510
一个抽样
由于调查的完备性,给定收入水平X的消费 支出Y的分布是确定的。即以X的给定值为条 件的Y的分布是已知的,如 P(Y=561 | X = 800) =1/4。 进而,给定某收入Xi,可得消费支出Y的条 件均值,如 E(Y | X = 800) =605。 这样,可依次求出所有不同可支配收入水平 下相应家庭消费支出的条件概率和条件均值 ,见表2.1.2.
相关分析主要研究随机变量间的相关形式 及相关程度。变量间的相关程度可通过计 算相关系数来考察。
具有相关关系的变量有时存在因果关系,
这时,我们可以通过回归分析来研究它们
之间的具体依存关系。
课堂思考题

计量经济学:一元线性回归模型和多元线性回顾模型习题以及解析

计量经济学:一元线性回归模型和多元线性回顾模型习题以及解析

第二章经典单方程计量经济学模型:一元线性回归模型一、内容提要本章介绍了回归分析的基本思想与基本方法。

首先,本章从总体回归模型与总体回归函数、样本回归模型与样本回归函数这两组概念开始,建立了回归分析的基本思想。

总体回归函数是对总体变量间关系的定量表述,由总体回归模型在若干基本假设下得到,但它只是建立在理论之上,在现实中只能先从总体中抽取一个样本,获得样本回归函数,并用它对总体回归函数做出统计推断。

本章的一个重点是如何获取线性的样本回归函数,主要涉及到普通最小二乘法(OLS)的学习与掌握。

同时,也介绍了极大似然估计法(ML)以及矩估计法(MM)。

本章的另一个重点是对样本回归函数能否代表总体回归函数进行统计推断,即进行所谓的统计检验。

统计检验包括两个方面,一是先检验样本回归函数与样本点的“拟合优度”,第二是检验样本回归函数与总体回归函数的“接近”程度。

后者又包括两个层次:第一,检验解释变量对被解释变量是否存在着显著的线性影响关系,通过变量的t检验完成;第二,检验回归函数与总体回归函数的“接近”程度,通过参数估计值的“区间检验”完成。

本章还有三方面的内容不容忽视。

其一,若干基本假设。

样本回归函数参数的估计以及对参数估计量的统计性质的分析以及所进行的统计推断都是建立在这些基本假设之上的。

其二,参数估计量统计性质的分析,包括小样本性质与大样本性质,尤其是无偏性、有效性与一致性构成了对样本估计量优劣的最主要的衡量准则。

Goss-markov定理表明OLS估计量是最佳线性无偏估计量。

其三,运用样本回归函数进行预测,包括被解释变量条件均值与个值的预测,以及预测置信区间的计算及其变化特征。

二、典型例题分析例1、令kids表示一名妇女生育孩子的数目,educ表示该妇女接受过教育的年数。

生育率对教育年数的简单回归模型为β+μβkids=educ+1(1)随机扰动项μ包含什么样的因素?它们可能与教育水平相关吗?(2)上述简单回归分析能够揭示教育对生育率在其他条件不变下的影响吗?请解释。

计量经济学讲义——线性回归模型的异方差问题1

计量经济学讲义——线性回归模型的异方差问题1
ndiv = 248 .8055 + 0 .206553 * Atprofits se = ( 31 .89255 )( 0 .049390 ) t = ( 7 .801368 )( 4 .182100 ) p = ( 0 . 00000 )( 0 .00060 ), R 2 = 0 .507103
Gleiser检验与Park检验存在同样的弱点。
(9.3) (9.4) (9.5)
9.4 异方差的诊断-方法4:怀特(White)检验法
Yi = B1 + B 2 X 2 i + B3 X 3 i + u i
2、做如下辅助回归: (9.6) (9.7)
1、首先用普通最小二乘法估计方程(9.6),获得残差ei
E(Y|X)=α+β*X Y
+u +u -u -u -u +u
0
同方差(homoscedasticity)
X 0
E(Y|X)=α+β*X
异方差(heteroscedasticity)
X
一元线性回归分析-回归的假定条件
假定5 无自相关假定,即两个误差项之间不相关。 Cov(ui,uj) = 0。
ui
9.2 异方差的性质
例9.1 美国创新研究:销售对研究与开发的影响 ^ R&D = 266.2575 + 0.030878*Sales se=(1002.963) (0.008347) t =(0.265471) (3.699508) p =(0.7940) R2 = 0.461032 从回归结果可以看出: (1)随着销售额的增加,R&D也逐渐增加,即销售 额每增加一百万美元,研发相应的增加3.1 万美元。 (2)随着销售额的增加,R&D支出围绕样本回归线 的波动也逐渐变大,表现出异方差性。 (0.0019)

一元线性回归模型与多元线性回归模型对比

一元线性回归模型与多元线性回归模型对比
拟合优度检验
总离差平方和的分解
TSS=ESS+RSS
, 越接近于1,拟合优度越高。
总离差平方和的分解
TSS=ESS+RSS
,(即总平方和中回归平方和的比例)
对于同一个模型, 越接近于1,拟合优度越高。
(调整的思路是残差平方和RSS和总平方和TSS各自除以它们的自由度)
为什么要对 进行调整?解释变量个数越多,它们对Y所能解释的部分越大(即回归平方和部分越大),残差平方和部分越小, 越高,由增加解释变量引起的 的增大与拟合好坏无关,因此在多元回归模型之间比较拟合优度, 就不是一个合适的指标,必须加以调整。
变量的显著性检验目Fra bibliotek:对模型中被解释变量对每一个解释变量之间的线性关系是否成立作出判断,或者说考察所选择的解释变量对被解释变量是否有显著的线性影响。针对某解释变量 ,
原假设: 备择假设:
最常用的检验方法: t检验
构造统计量:
判断步骤:①计算t统计量的值
②给定显著性水平 ,查t分布的临界值表获得
)
③比较t值与 的值,
(普通最小二乘估计的离差形式)
随机干扰项的方差
最大似然估计(ML)
矩估计(MM)
参数估计值估计结果与OLS方法一致,但随机干扰项的方差的估计量与OLS不同
参数估计值估计结果与OLS方法一致,但随机干扰项的方差的估计量
参数估计量的性质
线性性、无偏性、有效性
线性性、无偏性、有效性
参数估计量的概率分布
---
随机误差项与解释变量不相关。
假设:6:
正态性假设。随机项服从正态分布。
正态性假设。随机项服从正态分布。
参数估计
一元线性回归模型

一元线性回归方程概述

一元线性回归方程概述

我们可以通过建立一个如下的关于Y和X的方程来解决上述三个问 题
总体回归模型
Y= 0 + 1 X+ u
其中: Y——被解释变量; X——解释变量; u——随机误差项;表示除X之外其他影响Y的因素,一元回 归分析 将除X之外的其他所有影响Y的因素都看成了无法观测 的因素
0,1—回归系数(待定系数或待估参数) 1是斜率系数,是主要的研究对象 0 是常数项,也被称作截距参数,很少被当做分析的核心
根据上面的假定对原模型取期望得: E(Y|X)=E[(0+1X+u)|X] =0+1X+E(u|X)= 0+1X
总体回归函数 (直线)
E(Y|Xi) = 0+1X
总体回归函数E(Y|X)是X的
一个线性函数,它表示Y中可以 由X解释的部分,线性意味着X 变化一个单位,Y的期望改变β1 个单位。对于任意给定的X值, Y的分布都是以E(Y|X)为中心的。
(估计的)样本回归函数:
ˆ ˆX ˆ Y i 0 1 i
(估计的)样本回归模型:
ˆ ˆ X e Yi 0 1 i i
其中ei是第i次观测的残差
Y1
u2 e1
e2
ˆ ˆX ˆ Y i 0 1 i
u3
Y3
e3
u1
Xi
三、参数估计——最小二乘法
对于所研究的经济问题,通常总体回归直线 E(Yi|Xi) = 0 + 1Xi 是 观测不到的。可以通过收集样本来对总体(真实的)回归直线做出估计。
通常总体回归函数E(Y) = 0+ 1X是观测不到的,利用样本得到的是
对它的估计,即对0和1的估计。令{(Xi,Yi):i=1,…,n}表示从总体中抽取 的一个样本容量为n的随机样本,对于每个i,可以写出:

李子奈《计量经济学》课后习题详解(经典单方程计量经济学模型:一元线性回归模型)【圣才出品】

李子奈《计量经济学》课后习题详解(经典单方程计量经济学模型:一元线性回归模型)【圣才出品】

2.下列计量经济学方程哪些是正确的?哪些是错误的?为什么?
(1)Yi=α+βXi,i=1,2,…,n;
(2)Yi=α+βXi+μi,i=1,2,…,n;
∧∧
(3)Yi=α+βXi+μi,i=1,2,…,n;

∧∧
(4)Yi=α+βXi+μi,i=1,2,…,n;
∧∧
(5)Yi=α+βXi,i=1,2,…,n;
2 / 22
圣才电子书 十万种考研考证电子书、题库视频学习平台
www.10Leabharlann
假定随机扰动项满足条件零均值、条件同方差、条件序列丌相关性以及服从正态分布。 (2)违背基本假设的计量经济学仍然可以估计。虽然 OLS 估计值丌再满足有效性,但 仍然可以通过最大似然法等估计方法或修正 OLS 估计量来得到具有良好性质的估计值。

4.线性回归模型 Yi=α+βXi+μi,i=1,2,…,n 的零均值假设是否可以表示为
1
n
n i 1
i

0 ?为什么?
n
1 0 答:线性回归模型 Yi=α+βXi+μi 的零均值假设丌可以表示为
i

n i1
原因:零均值假设 E(μi)=0 实际上表示的是 E(μi∣Xi)=0,即当 X 取特定值 Xi 时,
3.一元线性回归模型的基本假设主要有哪些?违背基本假设的计量经济学模型是否就 丌可以估计?
答:(1)针对普通最小二乘法,一元线性回归模型的基本假设主要有以下三大类: ①关于模型设定的基本假设: 假定回归模型的设定是正确的,即模型的变量和函数形式均为正确的。 ②关于自变量的基本假设: 假定自变量具有样本变异性,且在无限样本中的方差趋于一个非零的有限常数。 ③关于随机干扰项的基本假设:

人教A版高中数学选择性必修第三册8-2一元线性回归模型及其应用课件

人教A版高中数学选择性必修第三册8-2一元线性回归模型及其应用课件

n
验回归方程无关,残差平方和 (yi-^yi)2 与经验回归方程有关.因此 R2 越大,
i=1
表示残差平方和 越小,即模型的拟合效果 越好;R2 越小,表示残差平方和越大, 即模型的拟合效果 越差 ,R2 越接近 1,拟合效果越好.
(二)基本知能小试
1.判断正误
(1)在一元线性回归模型中,e 是 bx+a 预报真实值 y 的随机误差,它是一
[方法技巧]
解决非线性经验回归问题的方法及步骤
[对点练清]
x 6 8 10 12 y23 5 6 (1)请画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出 y 关于 x 的经验回归方程 ^y
=^bx+^a; (3)试根据求出的经验回归方程,预测记忆力为 7 的同学的判断力.
[解] (1)作出散点图如图所示.
(2) x =6+8+410+12=9, y =2+3+4 5+6=4,
yi-^yi2
i=1
所以 R21=1-
5
=1-1105050=0.845.
yi- y 2
i=1
由(2)得 yi-^yi 与 yi- y 的关系如表所示.
yi-^y i
-1
-5
8
yi- y
-20
-10
10
-9
-3
0
20
5
所以 (yi-^yi)2=(-1)2+(-5)2+82+(-9)2+(-3)2=180.
n
u2i -n u 2
i=1
[解] (1)^y=cxd.
(2)根据散点图,呈现非线性的变化趋势,故^y=cxd 更适合作为 y 关于 x 的经验回归方程类型.
对^y=cxd 两边取对数,得 ln y=ln c+dln x,即 z=ln c+dt, 由表中数据得 z = t =1.5,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元线性回归方程模型
一元线性回归是一种简单的线性回归模型,用于预测一个连续变量(也称为被解释变量)与一个单独的解释变量(也称为自变量)之间的关系。

它的方程模型可以表示为:
y = β0 + β1 * x
其中,y是预测值,x是解释变量,β0和β1是参数。

回归方程的目的是估计参数β0和β1,使得回归方程尽可能地拟合给定的数据。

这通常是通过最小化回归平方和来实现的。

一元线性回归方程通常用于预测或预测值,并常用于分析社会、经济学、医学、自然科学等领域的数据。

相关文档
最新文档