基于H桥驱动直流电机调速系统电路的设计

基于H桥驱动直流电机调速系统电路的设计
基于H桥驱动直流电机调速系统电路的设计

毕业设计(论文)

题目:基于H桥控制的直流电机调速系统电路的设计(英文):Based on the H-bridge driver circuit of DC motor speed control system design

院别:自动化学院

专业:电气工程及其自动化(师范)

姓名:李玲弟

学号:2009105444028

指导教师:杨宁

日期:2013年5月

基于H桥控制的直流电机调速系统电路的设计

摘要

本文介绍了基于H桥驱动的直流电机调速系统,系统采用芯片LN298搭建H桥驱动电路,PWM调速信号由单片机AT89AC52提供,电机的驱动运转控制由单片机控制H桥,H桥再驱动直流电机。文章中采用了专门的芯片组成了PWM信号的发生系统,并且对PWM 信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。此外,本文中还采用了芯片LN298作为直流电机正转调速功率放大电路的驱动模块。另外,本系统中使用了测速发电机对直流电机的转速进行测量,经过滤波电路后,将测量值送到A/D转换器,并且最终作为反馈值输入到单片机进行PI运算,从而实现了对直流电机速度的控制。

关键词:PWM调速;H桥驱动;直流电机测速;数码管显示

Based on the H-bridge driver circuit of DC motor speed control system design

ABSTRACT

This article describes the DC motor speed control system based on the H-bridge driver, the system uses the chip LN298 build H-bridge driver circuit, PWM speed control signal is provided by the microcontroller AT89AC52 control H-bridge motor drive operation is controlled by a microcontroller, H-bridge DC motor drive. Articles using a specialized chip composed of a PWM signal generating system, and on the principle of the PWM signal generating method, and how to adjust the duty cycle of the PWM signal by software programming, thereby controlling the input signal waveform are made. elaboration. In addition, this paper also uses a chip LN298 as a forward speed of a DC motor power amplifier circuit driver module. In addition, the present system uses a tachogenerator to measure the rotational speed of the DC motor, after the filtering circuit, the measured value to the A / D converter, and, ultimately, as a feedback value PI operator input to the microcontroller, thus realizing the DC motor speed control.

Key words:PWM speed control; H bridge driver; DC Motor Speed; digital display

目录

1绪论 (1)

1.1基于H桥控制的直流电机调速系统设计目的和意义 (1)

1.1.1选题的目的和意义: (1)

1.1.2国内外研究现状简述: (1)

1.1.3毕业设计(论文)所采用的研究方法和手段: (1)

1.2利用H桥控制直流电机转速系统的设计项目发展 (1)

1.3利用H桥控制的直流电机转速系统的设计原理 (2)

2直流电机调速控制概述 (3)

2.1直流电机的工作原理 (3)

2.2直流电机的调速特性 (4)

2.3直流电机的几种调速方法 (4)

2.3.1 静止可控整流器(简称V-M系统) (6)

2.3.2 PWM调速系统的优点 (7)

2.4直流电机调速PWM信号形成原理 (7)

2.4.1 直流电机电枢的PWM调压调速原理 (8)

2.4.2 脉宽调制占空比调节 (8)

2.4.3 PWM控制信号产生的方法 (10)

3系统元器件介绍 (11)

3.1单片机的选型: (11)

3.1.1主要特性: (11)

3.1.2管脚说明 (12)

3.2 电机驱动H桥选型 (14)

3.3红外对管 (15)

3.4 晶振 (18)

3.5 四位数码管 (20)

3.5.1 4位数码管的驱动方式 (21)

3.5.2 4位数码管的引脚图 (21)

3.5.3 4位数码管的参数 (22)

3.5.4 4位数码管区分共阴阳极的方法 (22)

4直流电机调速系统电路设计 (24)

4.1 稳压电源电路设计 (24)

4.2 系统PWM调速的设计 (26)

4.3 电机测速电路 (27)

4.3.1红外线发射管 (27)

4.3.2红外线接收管 (27)

4.3.3红外计数电路 (28)

4.4 直流电机H桥驱动的设计 (29)

4.4.1、H桥驱动电路 (29)

4.4.2 使能控制和方向逻辑 (30)

4.4.3 基于LN298驱动的硬件设计 (31)

4.5 直流电机转速显示 (32)

5直流电机驱动控制系统软件设计 (33)

5.1直流电机正反转、加速、减速、启动与停止软件设计 (33)

5.2 LED速度显示软件设计 (35)

参考文献 (37)

致谢 (38)

附件A1基于H桥驱动直流电机调速系统电路的设计的硬件图 (39)

附件A2基于H桥驱动直流电机调速系统电路的设计的实物图 (40)

基于H桥驱动直流电机的调速系统的电路设计

1绪论

1.1基于H桥控制的直流电机调速系统设计目的和意义

1.1.1选题的目的和意义:

在电气时代的今天,电动机一直在现代化的生产和生活中起着十分重要的作用。无论是在工农业生产、交通运输、国防、航空航天、医疗卫生、商务与办公设备中,还是在日常生活中的家用电器中,都大量地使用着各种各样的电动机。以前电动机大多使用继电器实现双向转动以及由模拟电路组成的控制柜进行控制,现在普遍使用单片机控制H桥驱动电路实现电机正反转取代模拟电路作为电机控制器。当前电机控制器的发展方向越来越趋于多样化和复杂化,现有的专用集成电路未必能满足苛刻的新产品开发要求,为此可考虑开发电机的新型单片机控制器。

1.1.2国内外研究现状简述:

电动机的控制技术的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、电动控制技术、微机应用技术的最新发展成果。正是这些技术的进步使电机控制技术在近20多年内发生了翻天覆地的变化,其中电动机的控制部分已由模拟控制逐渐让位于以单片机和H桥驱动模块为主的微处理器控制,形成数字和模拟的混合控制系统和纯数字控制的应用,并曾向全数字化控制方向快速发展。而国外交直流系统数字化已经达到实用阶段。

1.1.3毕业设计(论文)所采用的研究方法和手段:

根据市场需求和发展趋势,本设计将介绍一种基于H桥驱动作为基础、单片机内部时钟产生PWM调速的直流电机转速控制系统。首先对直流调速控制电路进行设计来实现对速度的控制、检测、显示;再对直流调速控制主回路进行设计,其采用了三相桥式全控整流电路;然后进行系统的软件设计。

1.2利用H桥控制直流电机转速系统的设计项目发展

目前使用的电机模拟控制电路都比较复杂,测量范围与精度不能兼顾,且采样时间

广东技术师范学院本科毕业设计(论文)

较长,难以测得瞬时转速。本文介绍的电机控制系统利用PWM控制原理,同时结合霍尔传感器来采集电机转速,并经单片机检测后在显示器上显示出转速值,而单片机则根据传感器输出的脉冲信号来分析转速的过程量本系统同时设置有按键操作仪表,可用于调节电机的转速。

直流电机控制系统主要是以AT80C52单片机为核心组成的控制系统,本系统中的电机转速与电机两端的电压成比例,而电机两端的电压与控制波形的占空比成正比,因此,由MCU内部的可编程计数器阵列输出PWM波,以调整电机两端电压与控制波形的占空比,从而实现调速。本系统通过红外传感器来实现对直流电机转速的实时监测。系统的设计任务包括硬件和软件两大部分,其中硬件设计包括方案选定、电路原理图设计、PCB绘制;软件设计包括内存空间的分配,直流电机控制应用程序模块的设计,程序调试等。

1.3利用H桥控制的直流电机转速系统的设计原理

本系统先由单片机发出控制信号给H桥再驱动电机,同时通过传感器检测电机的转速信号并传送给单片机,单片机再通过软件将测速信号与给定转速进行比较,从而决定电机转速,将当前电机转速值送LED显示。此外,也可以通过设置键盘来设定电机转速。系统中的转速检测装置由红外传感器组成,并通过反相器将高、低电压互相转换,再以脉冲形式传给单片机。这种设计方法具有频率响应高(响应频率达20 kHz以上)、输出幅值不变、抗电磁干扰能力强等特点。其中霍尔传感器输入为脉冲信号,十分容易与微处理器相连接,也便于实现信号的分析处理。单片机的T0口可对该脉冲信号进行计数。,本系统的脉冲宽度调制(Pulse Width Modulation)原理是:脉冲宽度调制波由一列占空比不同的矩形脉冲构成其占空比与信号的瞬时采样值成比例。

基于H桥驱动直流电机的调速系统的电路设计

2直流电机调速控制概述

直流电机调速方法通常有机械的、电气的、液压的、气动的几种,仅就机械与电气调速方法而言,也可采用电气与机械配合的方法来实现速度的调节。电气调速有许多优点,如可简化机械变速机构,提高传动效率,操作简单,易于获得无极调速,便于实现远距离控制和自动控制,因此在生产机械中广泛采用电气方法调速。

由于直流电动机具有极好的运动性能和控制特性,尽管它不如交流电动机那样结构简单、价格便宜、制造方便、维护容易,但是长期以来,直流调速系统一直占据垄断地位。所以,直流调速系统仍然是自动调速系统的主要形式。在我国许多工业部门,如轧钢、矿山采掘、海洋钻探、金属加工、纺织、造纸以及高层建筑等需要高性能可控电力拖动的场合,仍然广泛采用直流调速系统。而且,直流调速系统在理论上和实践上都比较成熟,从控制技术的角度来看,它又是交流调速系统的基础。

2.1直流电机的工作原理

根据电磁学基本知识可知,载流导体在磁场中要受到电磁力的作用。如果导体在磁场中的长度l,其中流过的电流为i,导体所在处的磁通密度为B,那末导体受到的电磁力的值为式(2-1)

F (2-1)

Bli

如图2-1中N、S极下各根导体所受电磁力的方向,如图中箭头所示。电磁力对转轴形成顺时针方向的转矩,驱动转子而使其旋转。由于每个磁极下元件中电流方向不变,故此转矩方向恒定,称为直流电动机的电磁转矩。如果直流电动机轴上带有负载,它便输出机械能,可见直流电动机是一种将电能够转化成机械能的电气装置。

直流电动机是可逆的,他根据不同的外界条件而处于不同的运行状态。当外力作用使其旋转,驶入机械能时,电机处于发电机状态,输出电能;当在电刷两端施加电压输入电能时,电机处于电动机状态,带动负载旋转输出机械能。

广东技术师范学院本科毕业设计(论文)

N

S

F

F

图1 直流电动机工作原理图

2.2直流电机的调速特性

根据直流电机的结构分析可得到等效的模型,包括电枢绕组及其等效的电阻等。直流电动机的转速n 和其它参数的关系可用下式来表示:

Φ-=C R I U n e

a N N (2-2) (2-2)式中:UN 是电枢电压,IN 是电枢电流,Ra 是电枢回路总电阻,Ce 是电势常数,Φ是励磁磁通。

a

PN C e 60= (2-3)

(2-3)式中:p-磁极对数,N 是导体数,a 是电枢支路数。

K C e =Φ (2-4)

(2-4)式中:当电机型号确定后,Ce Φ为常数,故式式(2-1)改为

K

R a I U n N N -= (2-5) 在中小功率直流电机中,电枢回路电阻非常小,式(2-5)中INRa 项可省略不计,由此可见,当改变电枢电压时,转速n 随之改变,达到直流电机的调速的目的。改变直流电机电枢电压,可通过PWM 控制的降压斩波器进行斩波调压。

2.3直流电机的几种调速方法

根据直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直流电动机的调速方法有三种:

基于H桥驱动直流电机的调速系统的电路设计

(1)调节电枢供电电压U。改变电枢电压主要是从额定电压往下降低电枢电压,从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调速的系统来说,这种方法最好。变化遇到的时间常数较小,能快速响应,但是需要大容量可调直流电源。

(2)改变电动机主磁通。改变磁通可以实现无级平滑调速,但只能减弱磁通进行调速(简称弱磁调速),从电机额定转速向上调速,属恒功率调速方法。变化时间遇到的时间常数同变化遇到的相比要大得多,响应速度较慢,但所需电源容量小。

(3)改变电枢回路电阻。在电动机电枢回路外串电阻进行调速的方法,设备简单,操作方便。但是只能进行有级调速,调速平滑性差,机械特性较软;空载时几乎没什么调速作用;还会在调速电阻上消耗大量电能。

改变电阻调速缺点很多,目前很少采用,仅在有些起重机、卷扬机及电车等调速性能要求不高或低速运转时间不长的传动系统中采用。弱磁调速范围不大,往往是和调压调速配合使用,在额定转速以上作小范围的升速。因此,自动控制的直流调速系统往往以调压调速为主,必要时把调压调速和弱磁调速两种方法配合起来使用。

调节电枢供电电压或者改变励磁磁通,都需要有专门的可控直流电源,常用的可控直流电源有以下三种:

(1)旋转变流机组。用交流电动机和直流发电机组成机组,以获得可调的直流电压。

(2)静止可控整流器(简称V-M系统)。用静止的可控整流器,如汞弧整流器和晶闸管整流装置,产生可调的直流电压。

(3)直流斩波器(脉宽调制变换器)。用恒定直流电源或不可控整流电源供电,利用直流斩波或脉宽调制的方法产生可调的直流平均电压。

旋转变流系统由交流发电机拖动直流电动机实现变流,由发电机给需要调速的直流电动机供电,调节发电机的励磁电流即可改变其输出电压,从而调节电动机的转速。改变励磁电流的方向则输出电压的极性和电动机的转向都随着改变,所以G-M系统的可逆运行是很容易实现的。该系统需要旋转变流机组,至少包含两台与调速电动机容量相当的旋转电机,还要一台励磁发电机,设备多、体积大、费用高、效率低、维护不方便等缺点。且技术落后,因此搁置不用。

广东技术师范学院本科毕业设计(论文)

2.3.1 静止可控整流器(简称V-M系统)

V-M系统是当今直流调速系统的主要形式。它可以是单相、三相或更多相数,半波、全波、半控、全控等类型,可实现平滑调速。V-M系统的缺点是晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难。它的另一个缺点是运行条件要求高,维护运行麻烦。最后,当系统处于低速运行时,系统的功率因数很低,并产生较大的谐波电流危害附近的用电设备。

图2 晶闸管-电动机调速系统原理框图(V-M系统)

直流斩波器又称直流调压器,是利用开关器件来实现通断控制,将直流电源电压断续加到负载上,通过通、断时间的变化来改变负载上的直流电压平均值,将固定电压的直流电源变成平均值可调的直流电源,亦称直流-直流变换器。它具有效率高、体积小、重量轻、成本低等优点,现广泛应用于地铁、电力机车、城市无轨电车以及电瓶搬运车等电力牵引设备的变速拖动中。

图3为直流斩波器的原理电路和输出电压波型,图中VT代表开关器件。当开关VT 接通时,电源电压U。加到电动机上;当VT断开时,直流电源与电动机断开,电动机电枢端电压为零。如此反复,得电枢端电压波形如图2-3(b)所示。

(a)原理图(b)电压波型

图3 直流斩波器原理电路及输出电压波型

采用晶闸管的直流斩波器基本原理与整流电路不同的是,在这里晶闸管不受相位控制,而是工作在开关状态。当晶闸管被触发导通时,电源电压加到电动机上,当晶闸管关断时,直流电源与电动机断开,电动机经二极管续流,两端电压接近于零。脉冲宽度

基于H桥驱动直流电机的调速系统的电路设计

调制(Pulse Width Modulation),简称PWM。脉冲周期不变,只改变晶闸管的导通时间,即通过改变脉冲宽度来进行直流调速。

2.3.2 PWM调速系统的优点

与V-M系统相比,PWM调速系统有下列优点:

(1)由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就可以获得脉动很小的直流电流,电枢电流容易连续,系统的低速运行平稳,调速范围较宽,可达1:10000左右。由于电流波形比V-M系统好,在相同的平均电流下,电动机的损耗和发热都比较小。

(2)同样由于开关频率高,若与快速响应的电机相配合,系统可以获得很宽的频带,因此快速响应性能好,动态抗扰能力强。

(3)由于电力电子器件只工作在开关状态,主电路损耗较小,装置效率较高。

脉宽调速系统的主电路采用脉宽调制式变换器,简称PWM变换器。脉宽调速也可通过单片机控制继电器的闭合来实现,但是驱动能力有限。目前,受到器件容量的限制,PWM 直流调速系统只用于中、小功率的系统。

2.4直流电机调速PWM信号形成原理

PWM信号是由脉宽调制器(一个电压——脉冲变换装置)生成的,常用的脉宽调制器有以下几种:用锯齿波或三角波作调制信号的脉宽调制器;用多谐振荡器和单稳态触发器组成的脉宽调制器;数字式脉宽调制器。这里简要介绍一下用三角波作调制信号的脉宽调制器生成PWM波的方法。脉宽调制器由恒频率波形发生器和脉冲宽度调制电路组成。恒频率波形发生器的作用就是产生频率恒定的振荡源作为比较的基准,如三角波。脉冲宽度调制电路,实际上就是电压/脉宽转换电路(简称V/W电路),是PWM信号的形成电路。调制产生PWM信号的工作原理如图4(a)所示。

广东技术师范学院本科毕业设计(论文)

图4 调制产生PWM 信号的工作原理

图4(a)是电压比较器,输入信号为图4(b)中的Ui 。在电压比较器的两个输入端输入控制信号和三角波信号,则比较器的输出将按以下规律变化:Ui >Ud 时,输出正的电压Ucc +;Ui Ud <时,输出负的电压Udd -。由此即可产生PWM 脉冲信号。

2.4.1 直流电机电枢的PWM 调压调速原理

直流电机转速n 的表达式为式(2-6):

Φ

-=K IR U n (2-6) 式中:U ——电枢端电压;

I ——电枢电流;

R ——电枢电路总电阻;

Φ——每极磁通量;

K ——电动机结构参数。

本设计采用电枢控制方法。对电动机的驱动离不开半导体功率器件。在对直流电动机电枢电压的控制和驱动中,对半导体功率器件的使用可分为两种方式:线形放大驱动方式和开关驱动方式。实际生活中,绝大多数直流电动机采用开关驱动方式/开关驱动方式是使半导体功率器件工作在开关状态,通过脉宽调制PWM 来控制电动机电枢电压,实现调速。

2.4.2 脉宽调制占空比调节

脉宽调制即PWM 控制就是对脉冲宽度进行调制的技术,即通过对一系列的脉冲宽度进行调制,来等效地获得所需波形。图2-5是利用开关管对直流电动机进行PWM 调速控制原理图和输入输出电压波形。在图2-5(a)中,当开关管MOSFET 的栅极输入高电平时,开关管导通,直流电动机电枢绕组两端有电压Us 。1t 秒后,栅极变为低电平,开关管截止,电动机电枢两端电压为0。2t 秒后,栅极输入重新变为高电平,开关管的动作重复前面的过程。这样,对应者输入的电平高低,直流电动机电枢绕组两端的电压波形如图2-5(b)所示。电动机的电枢绕组两端的电压平均值0U 为式(2-7):

基于H 桥驱动直流电机的调速系统的电路设计

S S S U U T

t t t U t U α==++=121100 (2-7) 式中:α——占空比,T

t 1=α。

图5 PWM 调速控制原理和电压波形图

占空比表示了在一个周期T 里,开关管导通的时间与周期的比值。的变化范围为。可知,当电源电压8279不变的情况下,电枢的端电压的平均值8279取决于占

空比的大小,改变的值就可以改变电枢两端电压的平均值,从而达到调速的目的,这就是PWM 调速原理。

在PWM 调速时,占空比是一个重要的参数,以下三种方法都可以改变占空比的值。 (1)定宽调频法。这种方法是保持8279不变,只改变8279,这样使周期T(或频率)也随之改变。

(2)调宽调频法。这种方法是保持8279不变,而改变8279,这样使周期T(或频率)也随之改变。

(3)定频调宽法。这种方法是使周期T(或频率)保持不变,而同时改变8279和8279

。 前两种方法由于在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此这两种方法很少用。目前,在直流电动机控制中,主要使用定频调宽法。

广东技术师范学院本科毕业设计(论文)

2.4.3 PWM控制信号产生的方法

(1)分立电子元件组成的PWM信号电路。它是最早期的方法,现在已被淘汰了。

(2)软件模拟法。利用单片机的一个I/O引脚,通过软件对该引脚不断地输出高低电平来实现PWM波输出。这种方法要占用CPU大量时间,使单片机无法进行其它工作,因此也逐渐被淘汰。

(3)专用PWM集成电路。从PWM控制技术出现之日起,就有芯片制造商生产专用的PWM集成电路芯片,现在市场上已有许多中。这些芯片除了有PWM信号发生功能外,还有“死区”调节功能、保护功能等。在单片机控制直流电动机中,使用专用的 PWM集成电路可以减轻单片机的负担,工作可靠。

(4)单片机的PWM。新一代单片机增加了许多功能,其中包括PWM功能。单片机通过初始化设置,使其能自动地发出PWM脉冲波,只有在改变占空比是CPU才进行干预。

根据直流电动机的转矩(电流)与转速的关系,可以做一个图来表示电动机运行状态,如图6所示。从图中可以看出,第一象限是电动机正转运行状态;第三象限是电动机反转运行状态;第二和第四象限分别是电动机反转和正转时再生制动运行状态。电动机能在几个象限内工作与控制方式和电路结构有关。如果电动机在4个象限上都能运行,说明电动机的控制功能比较强。

图6 电动机4个运行象限

基于H桥驱动直流电机的调速系统的电路设计

3系统元器件介绍

3.1单片机的选型:

AT89C52是51系列单片机的一个型号,它是ATMEL公司生产的。

AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,功能强大的AT89C52单片机可为您提供许多较复杂系统控制应用场合。

3.1.1主要特性:

1、兼容MCS51指令系统

2、8kB可反复擦写(大于1000次)Flash ROM;

3、32个双向I/O口;

4、256x8bit内部RAM;

5、3个16位可编程定时/计数器中断;

6、时钟频率0-24MHz;

7、2个串行中断,可编程UART串行通道;

8、2个外部中断源,共8个中断源;

9、2个读写中断口线,3级加密位;

10、低功耗空闲和掉电模式,软件设置睡眠和唤醒功能;

11、有PDIP、PQFP、TQFP及PLCC等几种封装形式,以适应不同产品的需求

广东技术师范学院本科毕业设计(论文)

3.1.2管脚说明

图7 AT89C52引脚

如图7所示AT89C52P为40 脚双列直插封装的8 位通用微处理器如图所示,采用工业标准的C51内核,在内部功能及管脚排布上与通用的8xc52 相同,其主要用于会聚调整时的功能控制。功能包括对会聚主IC 内部寄存器、数据RAM及外部接口等功能部件的初始化,会聚调整控制,会聚测试图控制,红外遥控信号IR 的接收解码及与主板CPU通信等。主要管脚有:XTAL1(19 脚)和XTAL2(18 脚)为振荡器输入输出端口,外接12MHz 晶振。RST/Vpd(9 脚)为复位输入端口,外接电阻电容组成的复位电路。VCC(40 脚)和VSS(20 脚)为供电端口,分别接+ 5V电源的正负端。P0~P3 为可编程通用I/O 脚,其功能用途由软件定义,在本设计中,P0 端口(32~39 脚)被定义为N1 功能控制端口,分别与N1的相应功能管脚相连接,13 脚定义为IR输入端,10 脚和11脚定义为I2C总线控制端口,分别连接N1的SDAS(18脚)和SCLS(19脚)端口,12 脚、27 脚及28 脚定义为握手信号功能端口,连接主板CPU 的相应功能端,用于当前制式的检测及会聚调整状态进入的控制功能。

P0口是一组8 位漏极开路型双向I/O 口,也即地址/数据总线复用口。作为输出口用时,每位能吸收电流的方式驱动8 个TTL逻辑门电路,对端口P0 写“1”时,可作为高阻抗输入端用。在访问外部数据存储器或程序存储器时,这组口线分时转换地址(低8 位)和数据总线复用,在访问期间激活内部上拉电阻。在Flash 编程时,P0 口接收指令字节,而在程序校验时,输出指令字节,校验时,要求外接上拉电阻。

基于H桥驱动直流电机的调速系统的电路设计

P1是一个带内部上拉电阻的8 位双向I/O 口,P1 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对端口写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口。作输入口使用时,因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。

与AT89C51 不同之处是,P1.0 和P1.1 还可分别作为定时/计数器2 的外部计数输入(P1.0/T2)和输入(P1.1/T2EX),

参见表1。

Flash 编程和程序校验期间,P1 接收低8 位地址。

表1 P1.0和P1.1的第二功能

引脚号功能特性

P1.0 T2,时钟输出

P1.1 T2EX(定时/计数器2)

P2是一个带有内部上拉电阻的8 位双向I/O 口,P2 的输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对端口P2 写“1”,通过内部的上拉电阻把端口拉到高电平,此时可作输入口,作输入口使用时因为内部存在上拉电阻,某个引脚被外部信号拉低时会输出一个电流(IIL)。在访问外部程序存储器或16 位地址的外部数据存储器(例如执行MOVX @DPTR 指令)时,P2 口送出高8 位地址数据。在访问8 位地址的外部数据存储器(如执行MOVX @RI 指令)时,P2 口输出P2 锁存器的内容。

Flash 编程或校验时,P2亦接收高位地址和一些控制信号。

P3口是一组带有内部上拉电阻的8 位双向I/O 口。P3 口输出缓冲级可驱动(吸收或输出电流)4 个TTL 逻辑门电路。对P3 口写入“1”时,它们被内部上拉电阻拉高并可作为输入端口。此时,被外部拉低的P3 口将用上拉电阻输出电流(IIL)。

P3口除了作为一般的I/O 口线外,更重要的用途是它的第二功能

P3 口还接收一些用于Flash 闪速存储器编程和程序校验的控制信号。

广东技术师范学院本科毕业设计(论文)

RST复位输入。当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。

ALE/PROG当访问外部程序存储器或数据存储器时,ALE(地址锁存允许)输出脉冲用于锁存地址的低8 位字节。一般情况下,ALE 仍以时钟振荡频率的1/6 输出固定的脉冲信号,因此它可对外输出时钟或用于定时目的。要注意的是:每当访问外部数据存储器时将跳过一个ALE 脉冲。对Flash 存储器编程期间,该引脚还用于输入编程脉冲(PROG)。如有必要,可通过对特殊功能寄存器(SFR)区中的8EH 单元的D0 位置位,可禁止ALE 操作。该位置位后,只有一条MOVX 和MO VC指令才能将ALE 激活。此外,该引脚会被微弱拉高,单片机执行外部程序时,应设置ALE 禁止位无效。

PSEN程序储存允许(PSEN)输出是外部程序存储器的读选通信号,当AT89C5 2 由外部程序存储器取指令(或数据)时,每个机器周期两次PSEN 有效,即输出两个脉冲。在此期间,当访问外部数据存储器,将跳过两次PSEN信号。

EA/VPP外部访问允许。欲使CPU 仅访问外部程序存储器(地址为0000H—FF FFH),EA 端必须保持低电平(接地)。需注意的是:如果加密位LB1 被编程,复位时内部会锁存EA端状态。如EA端为高电平(接Vcc端),CPU 则执行内部程序存储器中的指令。Flash 存储器编程时,该引脚加上+12V 的编程允许电源V pp,当然这必须是该器件是使用12V 编程电压Vpp。

XTAL1振荡器反相放大器的及内部时钟发生器的输入端。

XTAL2振荡器反相放大器的输出端。

3.2 电机驱动H桥选型

该驱动电路采用了LN298芯片,LN298是双全桥步进电机专用驱动芯片。

L298N 为SGS-THOMSON Microelectronics 所出产的双全桥步进电机专用驱动芯片( Dual Full-Bridge Driver ) ,内部包含4信道逻辑驱动电路,是一种二相和四相步进电机的专用驱动器,可同时驱动2个二相或1个四相步进电机,内含二个H-Bridge 的高电压、大电流双全桥式驱动器,接收标准TTL逻辑准位信号,可驱动46V、2A以下的步进电机,且可以直接透过电源来调节输出电压;此芯片可直接由单片机的IO端口来提供模拟时序信号,但在本驱动电路中用L297 来提供时序信号,节省了单片机IO 端口的使用。L298N 之接脚如图8 所示,Pin1 和Pin15 可与电流侦测用电阻连接来控

直流电机驱动H桥

直流电机驱动H桥 直流电机驱动(H桥)原理研究与设计 学生姓名王俊岭周磊周雪瑞秦淦阿不都.沙拉木 指导教师杨焱青 系(部)创新实验室 论文写作日期 2011 年 12 月 20 日

第1章序论 1.1课题研究的目的 1.2本课题研究的意义 1.3方案论证 第2章基本原理 2.1声光节能灯基本原理 2.2555电路基本原理 2.3声控电路基本原理 2.4光控电路基本原理 第3章电路设计与分析 3.1电源电路 3.2声电转换机放大电路 3.3延时处理电路单稳态电路 3.4光控电路 第4章故障分析 第5章心得体会 第6章致谢 第一章序论 1.1 课题研究的目的 随着社会不断进步,科技发展,声光双控节电灯逐步走进社会各个公共角落,声光双控节电灯不仅适用于住宅区的楼道,而且也适用于工厂、办公楼、教学楼等公共场所,它具有体积小、外形美观、制作容易、工作可靠等优点,适合于各种楼房走廊

的照明设备。用声光控延时开关代替住宅小区的楼道上的开关,在天黑以后,当有人走过楼梯通道,发出脚步声或其它声音时,楼道灯会自动点亮,提供照明,当人们进入家门或走出公寓,楼道灯延时几分钟后会自动熄灭。在白天,即使有声音,楼道灯也不会亮,它解决了“长明灯”浪费电能的问题,延长灯泡的使用寿命,安全性好,可靠性高。该装置省去了能耗大、笨重、极易产生热量的电源变压器,具有结构简单、自耗电轻微、性能稳定、灵敏度高、通用性强,降低能耗、节约能源的目的。 1.2课题研究的意义 通过本课题的研究,加强了自己的动手能力,增强了团队意识,巩固了对所学知识的认知。通过本次试验我们设计了一种简易的直流电机驱动H桥转动的,不仅使自己学习到了知识,而且也为社会做出了贡献。 1.3 方案论证 方案1 主要包含四部分电路,分别为;电源电路,光控电路,声控延时电路,晶体管开 并电路,. 电源电路主要由微控制电路提供工作电压,本设计采用传统的电源电路设计方法, 即降压,整流,滤波,稳压,使电路输出电压6V直流电压供给控制电路. 光控制电路是根据光线强弱来优先决定电灯的亮灭,该电路可以对声控延 时电路进行控制,在白天光线强时,光控制电路输出低电平将声控电路封锁;在晚 上光线较弱时,光控制电路输出高电平,声控功能打开.本设计采用光敏电阻和其 他电阻组成的分压电路来控制555定时器的触发器输入端2脚,并将555定时器 的2脚和6脚连接在一起,通过电容接地,555定时器的输出去控制电路中的定时 器的复位端. 声控延时电路,该电路主要在光线较弱时起作用.这主要是通过光控电路的 输出来控制的.在晚上,光控电路将该电路的功能打开,使用该电路能根据外界声 音信号做出相应的响应.经放大处理后的声音信号控制处于单稳工作模式的555 定时器来实现声控延时功能. 晶体管开关电路,该电路受声控电路555定时器输出端的的控制.当其输 出高电平时,晶体管导通,照明灯点亮.

H桥驱动直流电机分析

H 桥驱动直流电机分析 1. H桥PWM变换器驱动电机运行过程 如图1所示,电动机M 两端电压U AB 的极性随开关器件驱动电压的变化而变化,这里分析双极式控制的可逆PWM 变换器。四个驱动电压波形如图2所示,它们的关系是 1423g g g g U U U U ==-=-.在 一个开关周期内,当0on t t ≤<时,1VT 和4VT 导通,2VT 和3 VT 关断,AB s U U =,电枢电流d i 沿 回路1流动;当on t t T ≤<时,1 VT 和4VT 关断, 2VT 和3VT 由于2VD 和3VD 的钳制作用不能马上导通,d i 沿回路2流经二极管续流, AB s U U =-. 当电机需要降速制动 时,先改变控制脉冲的占空比,使驱动电压的平均值d U 减小,但是由于机械惯性,转速和反电势还来不及变化,因而造成d E U >,很快使电流反向,在0on t t ≤<时,反向电流沿回路4向电源充电, 实现再生制动,而1VT 和4VT 被钳制不能导通;在on t t T ≤<时,2VT 和3VT 被打开,负向 电流通过2VT 和3VT ,实现能耗制动。当电机反向转动时,各器件的导通情况与上述情形相反。图3绘出了双极式控制时电机 图1 H 桥可逆PWM 变换器 图2 驱动电压

正转时的输出电压和电流波形。电动机的正反转则体现在驱动电压正负脉冲的宽窄上。当正脉冲较宽时, 2 on T t > ,则AB U 的平均值为正,电动机正转,反之则反转;如果正负脉冲相等,2 on T t = ,平均电压为零,则电动机停止。但电动机停止时电枢电压并不等于零,而是正负脉宽相等的交变脉冲电压,因而电流也是交变的,平均值为零,不产 生转矩,电动机损耗陡然增大,但是此时消除了正反向时的静摩擦死区,起“动态润滑”的作用。另外,图3所示的2d i 为轻载状态下的输出电流变化情况。2. 直流电机启动和降速过程 电动机在未启动之前,转速0n =,反电势0E =,而电枢电阻a R 很小,所以将电动 机加上额定电压时,启动电流/st n a I U R =将很大,可能烧坏整流子。所以在电机启动时 都采用限制电流的方法,下面讨论常用的电枢回路串接电阻的方法。图3 输出电压和电流

H桥电路驱动原理(经典)

H桥电路驱动原理 2009年04月08日 星期三 上午 08:43 H桥电路驱动原理 一、H桥驱动电路 图4.12中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图4.12 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向 转动(电机周围的箭头指示为顺时针方向)。

图4.13 H桥电路驱动电机顺时针转动 图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图4.14 H桥驱动电机逆时针转动 二、使能控制和方向逻辑 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电 路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常 要用硬件电路方便地控制三极管的开关。 图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制 整个电路的开关。而2个非门通过

Arduino 双H桥直流电机驱动板

从机器人基地淘宝店铺邮寄的Arduino 双H桥直流电机驱动板今天终于到了。 蓝色的板子,金色的印字,做工真的很精美,物有所值,吼吼~刚拿到的驱动板就来编写一个小程序测试一下吧,当务之急就是要了解一下这款驱动板接口说明和参数指南,这里我就“盗用”一下机器人基地的功能图解,敬请见谅啦!

可以看到板子左、右下角分别有两个直流电机控制信号输入接口,我这里准备了一个从玩具小车上拆下来的电机,我就选择左边的接口,将直流电机接入绿色端子,左下角的信号输入接口三个插针分别是EA、I1、I2,EA是区别于右边的EB,是用来接入PWM接口给电机调速的,I1、I2分别接入数字接口就OK了,是用来控制电机转向的。我就将EA接入Arduino的pin11PWM接口,I1、I2分别接8、9数字接口,至于逻辑供电部分,我就直接接入Arduino 板子上的5V输出接口了,这里也可以不接线,因为这款驱动板子是可以板内取电的,如需要板外取电需将控制板内取电的跳线帽取下(这里我只是为了给网友们演示外部取电的使用方法,我并没有取下板内取电的跳线帽,如图接

线实际上仍是板内取电。这里希望没有造成误导),端子左边的VMS接口是驱动部分取电,我接入四节5号电池,按下图连接好电路。

连接好电路就剩编程的工作了,我就让电机先顺时针转两秒,再逆时针转两秒,再让电机停止转动,这样循环进行。

程序如下: int pinI1=8;//定义I1接口 int pinI2=9;//定义I2接口 int speedpin=11;//定义EA(PWM调速)接口 void setup() { pinMode(pinI1,OUTPUT);//定义该接口为输出接口pinMode(pinI2,OUTPUT); pinMode(speedpin,OUTPUT); } void loop() { analogWrite(speedpin,100);//输入模拟值进行设定速度 delay(2000); digitalWrite(pinI1,LOW);//使直流电机顺时针转digitalWrite(pinI2,HIGH); analogWrite(speedpin,100); delay(2000); digitalWrite(pinI1,HIGH);//使直流电机逆时针转digitalWrite(pinI2,LOW);

直流电机H桥驱动方式

直流电机H桥驱动2013年08月01日

直流电机H 桥驱动方案 H桥原理简述 所谓H 桥驱动电路是为了直流电机而设计的一种常见电路,它主要实现直流电机的正反向驱动,其典型电路形式如下: 从图中可以看出,其形状类似于字母“H”,而作为负载的直流电机是像“桥”一样架在上面的,所以称之为“H 桥驱动”。4个开关所在位置就称为“桥臂”。

从电路中不难看出,假设开关A、D接通,电机为正向转动,则开关B、C接通时,直流电机将反向转动。从而实现了电机的正反向驱动。 借助这4 个开关还可以产生电机的另外2 个工作状态: A)刹车——将B 、D开关(或A、C)接通,则电机惯性转动产生的电势将被短路,形成阻碍运动的反电势,形成“刹车”作用。 B)惰行——4个开关全部断开,则电机惯性所产生的电势将无法形成电路,从而也就不会产生阻碍运动的反电势,电机将惯性转动较长时间。 以上只是从原理上描述了H 桥驱动,而实际应用中很少用开关构成桥臂,通常使用晶体管,因为控制更为方便,速度寿命都长于有接点的开关(继电器)。 细分下来,晶体管有双极性和MOS管之分,而集成电路只是将它们集成而已,其实质还是这两种晶体管,只是为了设计、使用方便、可靠而做成了一块电路。 双极性晶体管构成的H 桥:

MOS管构成的H 桥: 以下就分析一下这些电路的性能差异。

典型H 桥驱动电路分析 分析之前,首先要确定H 桥要关注那些性能: A)效率——所谓驱动效率高,就是要将输入的能量尽量多的输出给负载,而驱动电路本身最好不消耗或少消耗能量,具体到H 桥上,也就是4个桥臂在导通时最好没有压降,越小越好。 B)安全性——不能同侧桥臂同时导通; C)电压——能够承受的驱动电压; D)电流——能够通过的驱动电流。 大致如此,仔细考量,指标B)似乎不是H桥本身的问题,而是控制部分要考虑的。 而后两个指标通过选择合适参数的器件就可以达到,只要不是那些特别大的负载需求,每种器件通常都能选择到。而且,小车应用中所能遇到的电流、电压更是有限。 只有指标A)是由不同器件的性能所决定的,而且是运行中最应该关注的指标,因为它直接影响了电机驱动的效率。 所以,经分析的重点放在效率上,也就是桥臂的压降上。 为了使分析简单,便于比较,将H 桥的驱动电流定位在2A 水平上,而电压在5 - 12V 之间。 选择三个我所涉及到的器件: A)双极性晶体管—— D772、D882 B)MOS管—— 2301、2302 C)集成电路H桥—— L298

基于H桥控制直流电机驱动电路设计

基于H桥控制直流电机驱动电路设计 林海滨※张镐 (厦门蒙发利电子有限公司,福建厦门361100) 摘要:基于H桥控制技术设计了1款用于直流电机的驱动电路,该电路自带开路和短路保护功能。系统由MCU信号生成电路、光电隔离电路、电机逻辑驱动电路、H桥功率驱动电路、电流采样电路、滤波检波电路、线性放大隔离电路等五部分组成。电机逻辑驱动电路是核心部分,其主要由单片机时序控制、信号缓冲处理、光电隔离电路、滤波电路等组成;H桥功率驱动电路,由4个MOS管组成,上下桥臂分别用2个P沟道功率MOS管和2个N沟道功率MOS管。通过对逻辑电路时序的巧妙控制,遏制了H桥驱动的直通现象,无需增加死区的控制电路。系统最大的特点是结构简单,可靠性强,且输出功率优于IC驱动,易形成性价比高的方案。 关键词:H桥;,PWM;直流电机;驱动;逻辑控制 DC Motor Driver Design Base on the H-bridge Controlled LIN Haibin ZHANGHao (XIAMEN COMFORT SCIENCE & TECHNOLOGY GROUP) Abstract:Based on the h-bridge control technology, a driver circuit for dc motor is designed. The circuit has the function of open circuit and short circuit protection. System consists of MCU signal generated logic circuit, photoelectric isolation circuit, motor drive circuit, H bridge power drive circuit, current sampling circuit, filter detection circuit, linear amplification of isolating circuit and so on five parts. The motor logic drive circuit is the core part, which consists of single chip computer time series control, signal buffer processing, optoelectronic isolation circuit and filter circuit. H bridge power drive circuit consists of four MOS tubes, with two P channel power MOS tubes and two n-channel power MOS tubes respectively. By controlling the sequence of logic circuits, the direct current of h-bridge is restrained, and the control circuit of the dead zone is not required. The system is characterized by simple structure, strong reliability and better output power than IC drive. Key words: H bridge; PWM; Dc motor; Drive; Logic control 0 引言 直流电机具有良好的线性特性、优异的控制性能等特点,成为大多数变速运动控制和闭环位置伺服控制系统的最佳选择。为适应小型直流电机的使用需求,各半导体厂商推出了直流电机控制专用集成电路,构成基于微处理器控制的直流电机伺服系统。但是,专用集成电路构成的直流电机驱动器的输出功率有限,不适合大功率直流电机驱动需求。因此采用分立元件构建H桥,实现大功率直流电机驱动控制。该驱动电路能够满足各种类型直流电机需求,并具有快速、精确、高效、低功耗等特点,可直接与微处理器接口,应用于PWM技术实现直流电机调速控制[1]。 1 电路工作原理分析 1.1电路原理设计框图 电路总体设计框图如图1所示,包括MCU信号生成电路、光电隔离电路、电机逻辑驱动 ※作者简介:林海滨(1986—),男,福建泉州人,研究方向:电力电子技术、电源技术、马达驱动,Email:linhaibin896@https://www.360docs.net/doc/f32200428.html,

直流电机(H桥)驱动电路

直流电机(H桥)驱动电路 图4.12中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母 H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。 根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图4.12 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经 Q4回到电源负极。按图中电流箭头所示,该流向的电 流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

图4.13 H桥电路驱动电机顺时针转动 图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图4.14 H桥驱动电机逆时针转动 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路

上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电 路中通常要用硬件电路方便地控制三极管的开关。 图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。(与本节前面的示意图一样,图4.15所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。) 图4.15 具有使能控制和方向逻辑的H桥电路 采用以上方法,电机的运转就只需要用三个信号控制:两个方向信号和一个使能信号。如果DIR-L信号为0,DIR-R信号为1,并且使能信号是1,那么三极管Q1和Q4导通,电流从左至右流经电机(如图4.16所示);如果DIR-L信号变为1,而DIR-R信号变为0,那么Q2和Q3将导通,电流则反向流过电机。 图4.16 使能信号与方向信号的使用

24V直流电机H桥驱动电路及51单片机C程序

24V直流电机H桥驱动电路及51单片机C程序

24V直流电机H桥驱动电路及51单片机C程序 一、原理图 特别说明:CCP0、CCP1 = 00时,电机停止;为01时,电机正转,为10时,电机反转;11是绝对不允许的,为防止H桥共态导通,调试时需要特别注意!!! 二、程序代码 #include //头文件 #include #define uint unsigned int #define uchar unsigned char sbit key1 = P2^3; //启动停止

status_initial(); PWM_initial(); while(1) { key_scan(); M_run(); } } void status_initial(void) { /* CCAP0H = 0XFF; CCAP0L = 0XFF;//占空比为0% CCAP1H = 0XFF; CCAP1L = 0XFF;//占空比为0% */ run_flag = 0; direction_flag = 0; count = 0;//----------------给定一个初始值,设定电机开机的初始转速???或者按下启动,up启动加速

P1 = 0x00;//灯灭 } void PWM_initial(void) { CCON = 0X00; CMOD = 0X02; //空闲模式下PCA计数器继续工作,使用系统时钟,禁止CCON的CF位中断CCAPM0 = 0X42; //0100 0010 允许比较器功能,允许CCP0脚用作脉宽调节输出 CCAPM1 = 0X42; // 同上,8位PWM,无中断 CCAP0H = 0XFF; //PCA捕捉/比较寄存器--低八位和高八位------频率f = SYSclk/256 CCAP0L = 0XFF; //工作于PWM模式,用于控制输出的占空比 CCAP1H = 0XFF; //当寄存器CL的值小于[EPCnL,CCAPnL]时,输出为低;当寄存器CL的值等于或大于【EPCnL,CCAPnL】时,输出为高; CCAP1L = 0XFF; //当CL的值有FF变为00溢出时,[EPCnH,CCAPnH]的内容装载到[EPCnL,

H桥驱动选择

一、背景 此问题一直想留给做小车的同学去研讨,期望他们在制作过程中能够悟出其中的道理。可无奈等至今日也未见一文半字 : ( 却接到了无数的质询:你为何要用分立元件构建 H 桥驱动?为何不选择 L298 集成电路桥?为何要使用 MOS 管?等等……,逐个回复太累了,只好整理一下,汇总于此,供参考,有不妥之处望指正,更望能有人提出进一步的分析。 二、分析内容界定 本文只涉及有刷直流电机 H 桥驱动部分的电路,不讨论如何控制 H 桥?如何实现 PWM?以及如何实现过流保护等;而且主要讨论构成 H 桥 4 个桥臂对性能的影响。 三、H桥原理简述 所谓 H 桥驱动电路是为了直流电机而设计的一种常见电路,它主要实现直流电机的正反向驱动,其典型电路形式如下:

从图中可以看出,其形状类似于字母“H”,而作为负载的直流电机是像“桥”一样架在上面的,所以称之为“ H 桥驱动”。4个开关所在位置就称为“桥臂”。 从电路中不难看出,假设开关 A、D接通,电机为正向转动,则开关B、C接通时,直流电机将反向转动。从而实现了电机的正反向驱动。 借助这 4 个开关还可以产生电机的另外 2 个工作状态: A)刹车——将B 、D开关(或A、C)接通,则电机惯性转动产生的电势将被短路,形成阻碍运动的反电势,形成“刹车”作用。 B)惰行—— 4个开关全部断开,则电机惯性所产生的电势将无法形成电路,从而也就不会产生阻碍运动的反电势,电机将惯性转动较长时间。 以上只是从原理上描述了H 桥驱动,而实际应用中很少用开关构成桥臂,通常使用晶体管,因为控制更为方便,速度寿命都长于有接点的开关(继电器)。 细分下来,晶体管有双极性和MOS管之分,而集成电路只是将它们集成而已,其实质还是这两种晶体管,只是为了设计、使用方便、可靠而做成了一块电路。

关于直流电机H桥驱动方案的选择

关于直流电机H 桥驱动方案的选择 一、背景 此问题一直想留给做小车的同学去研讨,期望他们在制作过程中能够悟出其中的道理。可无奈等至今日也未见一文半字,却接到了无数的质询:你为何要用分立元件构建H 桥驱动?为何不选择L298 集成电路桥?为何要使用MOS 管?等等……逐个回复太累了,只好整理一下,汇总于此,供参考,有不妥之处望指正,更望能有人提出进一步的分析。 二、分析内容界定 本文只涉及有刷直流电机H 桥驱动部分的电路,不讨论如何控制H 桥?如何实现PWM?以及如何实现过流保护等;而且主要讨论构成H 桥 4 个桥臂对性能的影响。 三、H桥原理简述 所谓H 桥驱动电路是为了直流电机而设计的一种常见电路,它主要实现直流电机的正反向驱动,其典型电路形式如下: 从图中可以看出,其形状类似于字母“H”,而作为负载的直流电机是像“桥”一样架在上面的,所以称之为“ H 桥驱动”。4个开关所在位置就称为“桥臂”。 从电路中不难看出,假设开关A、D接通,电机为正向转动,则开关B、C接通时,直流电机将反向转动。从而实现了电机的正反向驱动。 借助这 4 个开关还可以产生电机的另外2 个工作状态: A)刹车——将B 、D开关(或A、C)接通,则电机惯性转动产生的电势将被短路,形成阻碍运动的反电势,形成“刹车”作用。

B)惰行——4个开关全部断开,则电机惯性所产生的电势将无法形成电路,从而也就不会产生阻碍运动的反电势,电机将惯性转动较长时间。 以上只是从原理上描述了H 桥驱动,而实际应用中很少用开关构成桥臂,通常使用晶体管,因为控制更为方便,速度寿命都长于有接点的开关(继电器)。 细分下来,晶体管有双极性和MOS管之分,而集成电路只是将它们集成而已,其实质还是这两种晶体管,只是为了设计、使用方便、可靠而做成了一块电路。 双极性晶体管构成的H 桥: MOS管构成的H 桥:

直流电机H桥驱动方式

睡神耗子文档直流电机H桥驱动 2013年08月01日

基本信息 修改历史

目录 资料来源 (1) 详细资料.......................................................... 错误!未定义书签。附录 (15)

资料来源

直流电机H 桥驱动方案 背景 此问题一直想留给做小车的同学去研讨,期望他们在制作过程中能够悟出其中的道理。可无奈等至今日也未见一文半字: ( 却接到了无数的质询:你为何要用分立元件构建H 桥驱动?为何不选择L298 集成电路桥?为何要使用MOS 管?等等……,逐个回复太累了,只好整理一下,汇总于此,供参考,有不妥之处望指正,更望能有人提出进一步的分析。 分析内容界定 本文只涉及有刷直流电机H 桥驱动部分的电路,不讨论如何控制H 桥?如何实现PWM?以及如何实现过流保护等;而且主要讨论构成H 桥4 个桥臂对性能的影响。 H桥原理简述 所谓H 桥驱动电路是为了直流电机而设计的一种常见电路,它主要实现直流电机的正反向驱动,其典型电路形式如下:

从图中可以看出,其形状类似于字母“H”,而作为负载的直流电机是像“桥”一样架在上面的,所以称之为“H 桥驱动”。4个开关所在位置就称为“桥臂”。 从电路中不难看出,假设开关A、D接通,电机为正向转动,则开关B、C接通时,直流电机将反向转动。从而实现了电机的正反向驱动。 借助这4 个开关还可以产生电机的另外2 个工作状态: A)刹车——将B 、D开关(或A、C)接通,则电机惯性转动产生的电势将被短路,形成阻碍运动的反电势,形成“刹车”作用。

H桥电路原理图

H 桥电路原理及直流电机驱动编程 标签: h 桥电路原理 分类: MCS-51单片机 上图中所示为一个典型的直流电机控制电路。电路得名于“H 桥驱动电路”是因为它的形状酷似字母H 。4个三极管组成H 的4条垂直腿,而电机就是H 中的横杠(注意:图只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。

H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 要使电机运转,必须使对角线上的一对三极管导通。例如,如下图所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。 上图所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。

典型的H桥驱动电路如下: PWM1为1,PWM2为1时,Q1和Q2导通,节点1和2都是低电平,Q15和Q16导通,电机不工作 PWM1为0,PWM2为0时,Q1和Q2不导通,节点1和2都是高电平,Q13和Q14导通,电机不工作 PWM1为1,PWM2为0时,Q1导通而Q2不导通,节点1是低电平而2是高电平,Q14和Q15导通,电机逆时针旋转 PWM1为0,PWM2为1时,Q1不导通而Q2导通,节点1是高电平而2是低电平,Q13和Q16导通,电机顺时针旋转

直流电机H桥驱动电路

直流电机H桥驱动电路 H桥功率驱动电路可应用于步进电机、交流电机及直流电机等的驱动。一、H桥驱动电路 所谓H 桥驱动电路是为直流电机而设计的一种常见电路,它主要实现直流电机的正反向驱动,其典型电路形式如下: 从图中可以看出,其形状类似于字母“H”,而作为负载的直流电机是像“桥”一样架在上面的,所以称之为“H 桥驱动”。4个开关所在位置就称为“桥臂”。 从电路中不难看出,假设开关A、D接通,电机为正向转动,则开关B、C 接通时,直流电机将反向转动。从而实现了电机的正反向驱动。借助这4个开关还可以产生电机的另外2个工作状态: A)刹车——将B 、D开关(或A、C)接通,则电机惯性转动产生的电势将被短路,形成阻碍运动的反电势,形成“刹车”作用。 B)惰行—— 4个开关全部断开,则电机惯性所产生的电势将无法形成电路,从而也就不会产生阻碍运动的反电势,电机将惯性转动较长时间。 以上只是从原理上描述了H桥驱动,而实际应用中很少用开关构成桥臂,通常使用晶体管,因为控制更为方便,速度寿命都长于有接点的开关(继电器)。 细分下来,晶体管有双极性和MOS管之分,而集成电路(例如L298)只是将它们集成而已,其实质还是这两种晶体管,只是为了设计、使用方便、可靠而做成了一块电路。 双极性晶体管构成的H 桥:

MOS管构成的H 桥: 二、使能控制和方向逻辑 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果 三极管TA和TB同时导通,那么电流就会从正极穿过两个三极管直接回到负极。

此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。 图4.15所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。(图4.15所示不是一个完整的电路图。) 图4.15 具有使能控制和方向逻辑的H桥电路 采用以上方法,电机的运转就只需要用三个信号控制:两个方向信号和一个使能信号。如果DIR-L信号为0,DIR-R信号为1,并且使能信号是1,那么三极管Q1和Q4导通,电流从左至右流经电机(如图4.16所示);如果DIR-L 信号变为1,而DIR-R信号变为0,那么Q2和Q3将导通,电流则反向流过电机。 图4.16 使能信号与方向信号的使用 实际使用的时候,用分立元件制作H桥是很麻烦的,现在市面上有很多封装好的H桥集成电路,接上电源、电机和控制信号就可以使用了,在额定的电压和电流内使用非常方便可靠。比如常用的L293D、L298N、TA7257P、SN754410等。

H桥驱动电路

一、直流电机的结构和控制原理 1、直流电机的工作原理概述: 在电力拖动领域,随着变频器的出现形成交流调速技术的日渐成熟和低成本化,在不断侵蚀着直流调速的“地盘”,但直到今天,直流调速仍固守着日渐缩小的“阵地”。 直流电机具有调速性能好、调速方便平滑,调速装置简单、调范围广等特点,能承受频繁冲击负载、过载能力强(由变频器和交流电机构成的交流调速系统,还有一定差距),能实现频繁速启、制动及逆向旋转,能满足各种机械负载的特性要求。直流电机的最大缺点,是因碳刷换向器的滑动电接触方式和整体结构交流电动机更为复杂等原因造成的维护工作量较大,需定期更换碳刷等。 直流电机的结构比交流电动机复杂得多,主要由: 1)主磁极。由主磁极铁芯及套装在铁芯上的励磁线圈构成,作用是建立主磁场; 2)机座。为主磁路的一部分,同时构成电机的结构框架,由厚钢板或铸钢件构成; 3)电枢铁芯。为电枢绕组的支撑部件,也为主磁路的一部分,由硅钢片叠压而成; 4)电枢绕组。直流电机的电路部分,由绝缘的圆形或矩形截面的导线绕成;

5)换向器。由许多鸽形尾的换向片排列成一个圆筒、片间用V形云母绝缘,两端再用两个形环夹紧而构成。用作直流发电机时,称整流子,起整流作用;用于直流电动机时,用于(逆变)换向; 6)电刷装置。由电刷、刷盒、刷杆和连线等构成,是电枢电路的引出(或引入)装置。 7)换向极。由铁芯和绕组构成,起改善换向,气隙磁场匀称等作用。 直流电机是将电源电能转变为轴上输出的机械能的电磁转换装置。由定子绕组通入直流励磁电流,产生励磁磁场,主电路引入直流电源,经碳刷(电刷)传给换向器,再经换向器将此直流电转化为交流电,引入电枢绕组,产生电枢电流(电枢磁场),电枢磁场与励磁磁场合成气隙磁场,电枢绕组切割合成气隙磁场,产生电磁转矩。这是直流电机的基本工作原理。 上图为简单的两极直流电机模型,由主磁极(励磁线圈)、电枢(电枢线圈)、电刷和换向片等组成。固定部分(定子)上,装设了一对直流励磁的静止的主磁级N、S,主磁级由励磁线圈的磁场产生;旋转部分(转子)上,装调电枢铁芯与电枢绕组。电枢电流由外供直流电源所产生。定子和转子之间有一气隙。电枢线圈的首、末端分别连接于两个圆弧型的换向片上,换向片之间互相绝缘,由换向片构成的整体称为换向器。换向片固定在转轴上,与转轴也是绝缘的。在换向片上放置着一对固定不动的电刷B1、B2,当电枢旋转时,电枢线圈通过换向片和电刷与外电路接触(引入外供直流电源)。 因为主磁极的磁场方向是固定不变的(由接入励磁电源极性所决定),要使电枢受到一个方向不变的电磁转矩,关键在于:当线圈边在不同极性的磁极下,如何将流过线圈中的电流方向极时地加以变换,即进行所谓“换向”,线圈中的电流所随所处磁极极性的改变同时改变其方向,以确保线圈在不同磁极下的电流保持一个方向,从而使电磁转矩的方向始终保持不变。 一台直流电机原则上既可以作为电动机运行,也可以作为发电机运行。这种原理在电机理论中被称为可逆原理。当转轴为原动机所拖动,电机绕组中产生交流电势,经电刷输出至外部负载电路,此时的换向器(换向器另一名称又叫整流子),

直流电机H桥驱动原理和驱动电路选择L9110 L298N LMD18200

直流电机H桥驱动原理和驱动电路选择 L9110 L298N LMD18200 2011-09-15 8:44 在直流电机驱动电路的设计中,主要考虑一下几点: 1.功能:电机是单向还是双向转动?需不需要调速?对于单向的电机驱动,只要用一个大功率三极管或场效应管或继电器直接带动电机 即可,当电机需要双向转动时,可以使用由4 个功率元件组成的H 桥电路或者使用一个双刀双掷的继电器。如果不需要调速,只要使 用继电器即可;但如果需要调速,可以使用三极管,场效应管等开关元件实现PWM(脉冲宽度调制)调速。 2.性能:对于PWM 调速的电机驱动电路,主要有以下性能指标。 1)输出电流和电压范围,它决定着电路能驱动多大功率的电机。 2)效率,高的效率不仅意味着节省电源,也会减少驱动电路的发热。要提高电路的效率,可以从保证功率器件的开关工作状态和防 止共态导通(H 桥或推挽电路可能出现的一个问题,即两个功率器件同时导通使电源短路)入手。 3)对控制输入端的影响。功率电路对其输入端应有良好的信号隔离,防止有高电压大电流进入主控电路,这可以用高的输入阻抗或 光电耦合器实现隔离。 4)对电源的影响。共态导通可以引起电源电压的瞬间下降造成高频电源污染;大的电流可能导致地线电位浮动。 5)可靠性。电机驱动电路应该尽可能做到,无论加上何种控制信号,何种无源负载,电路都是安全的。 H桥驱动电路: H桥式电机驱动电路包括4个三极管和一个电机,因其外形酷似字母'H',所以称作H桥驱动电路。

要使电机M运转,必须使对角线上的一对三极管导通。例如当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。电机顺时针转动。当三极管Q2和Q3导通时,电流将从右至左流过电机,驱动电机逆时针方向转动。 完整的晶体管H桥驱动电路,PWM1,PWM2,为电机方向控制输入端,PWM1=1,PWM2=0时正转,PWM=0,PWM2=1时电机反转。 PWM1,PWM2同时也是电机调速的脉宽输入端。

直流电机驱动h桥

一、H桥驱动电路 图4.12中所示为一个典型的直流电机控制电路。电路得名于“H桥驱动电路”是因为它的形状酷似字母H。4个三极管组成H的4条垂直腿,而电机就是H中的横杠(注意:图4.12及随后的两个图都只是示意图,而不是完整的电路图,其中三极管的驱动电路没有画出来)。 如图所示,H桥式电机驱动电路包括4个三极管和一个电机。要使电机运转,必须导通对角线上的一对三极管。根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。 图4.12 H桥驱动电路 要使电机运转,必须使对角线上的一对三极管导通。例如,如图4.13所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。 图4.13 H桥电路驱动电机顺时针转动

图4.14所示为另一对三极管Q2和Q3导通的情况,电流将从右至左流过电机。当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。 图4.14 H桥驱动电机逆时针转动 二、使能控制和方向逻辑 驱动电机时,保证H桥上两个同侧的三极管不会同时导通非常重要。如果三极管Q1和Q2同时导通,那么电流就会从正极穿过两个三极管直接回到负极。此时,电路中除了三极管外没有其他任何负载,因此电路上的电流就可能达到最大值(该电流仅受电源性能限制),甚至烧坏三极管。基于上述原因,在实际驱动电路中通常要用硬件电路方便地控制三极管的开关。 图4.155 所示就是基于这种考虑的改进电路,它在基本H桥电路的基础上增加了4个与门和2个非门。4个与门同一个“使能”导通信号相接,这样,用这一个信号就能控制整个电路的开关。而2个非门通过提供一种方向输人,可以保证任何时候在H桥的同侧腿上都只有一个三极管能导通。(与本节前面的示意图一样,图4.15所示也不是一个完整的电路图,特别是图中与门和三极管直接连接是不能正常工作的。) 图4.15 具有使能控制和方向逻辑的H桥电路

H桥功率驱动电路

H桥功率驱动电路可应用于步进电机、交流电机及直流电机等的驱动.永磁步进电机或混合式步进电机的励磁绕组都必须用双极性电源供电,也就是说绕组有时需正向电流,有时需反向电流,这样绕组电源需用H桥驱动.本文以两相混合式步进电机驱动器为例来设计H桥驱动电路. 1 电路原理 图1给出了H桥驱动电路与步进电机AB相绕组连接的电路框图. 4个开关K1和K4,K2和K3分别受控制信号a,b的控制,当控制信号使开关K1,K4合上,K2,K3断开时,电流在线圈中的流向如图1(a),当控制信号使开关K2,K3合上,K1,K4断开时,电流在线圈中的流向如图1(b)所示.4个二极管VD1,VD2,VD3,VD4为续流二极管,它们所起的作用是:以图1(a)为例,当K1,K4开关受控制由闭合转向断开时,由于此时线圈绕组AB上的电流不能突变,仍需按原电流方向流动(即A→B),此时由VD3,VD2来提供回路.因此,电流在K1,K4关断的瞬间由地→VD3→线圈绕组AB→VD2→电源+Vs形成续流回路.同理, 在图1(b)中,当开关K2,K3关断的瞬间,由二极管VD4,VD1提供线圈绕组的续流,电流回路为地→VD4→线圈绕组BA→VD1→电源+Vs.步进电机驱动器中,实现上述开关功能的元件在实际电路中常采用功率MOSFET管. 由步进电机H桥驱动电路原理可知,电流在绕组中流动是两个完全相反的方向.推动级的信号逻辑应使对角线晶体管不能同时导通,以免造成高低压管的直通. 另外,步进电机的绕组是感性负载,在通电时,随着电机运行频率的升高,而过渡的时间常不变,使得绕组电流还没来得及达到稳态值又被切断,平均电流变小,输出力矩下降,当驱动频率高到一定的时候将产生堵转或失步现象.因此,步进电机的驱动除了电机的设计尽量地减少绕组电感量外,还要对驱动电源采取措施,也就是提高导通相电流的前后沿陡度以提高电机运行的性能. 步进电机的缺陷是高频出力不足,低频振荡,步进电机的性能除电机自身固有的性能外,驱动器的驱动电源也直接影响电机的特性.要想改善步进电机的频率特性,就必须提高电源电压. 2 电路设计 图2给出了驱动器AB相线圈功率驱动部分原理图.

293直流电机驱动模块

直流电机驱动模块 使用说明书 尊敬的客户: 您好!感谢您选用本店的电机驱动模块,为了更快更好的使用本产品, 请您仔细的阅读本使用说明书。 特点:加入多级驱动,超高输入阻抗,对输入信号没有驱动要求,适合各类I/O口,可驱动本店所有电机。

一.电机驱动模块简介 中小电流直流电机专用驱动器,所用芯片l293属于H桥集成电路,其输出电流为1000mA,最高电流2A,最高工作电压36V,可以驱动感性负载,比如:小型直流电机,继电器、步进电机和开关电源晶体管,特别是其输入端可以与单片机直接相联,从而很方便地受单片机控制。当驱动小型直流电机时,可以直接控制两路电机,并可以实现电机正转与反转,实现此功能只需改变输入端的逻辑电平。 本模块具有体积小,控制方便的特点。采用此模块定会使您的电机控制自如,应对小车题目轻松自如。 二.驱动模块指示图 1、电源指示灯:上电后灯亮表示供电正常。 2、电机电源的大功率输入端子:电机电源的输入端子,靠近LED的一端为GND,另一端为VCC,此端子和下面的端子电气上是连接的,但该电源端子能够承受大电流,当工作电流较大时选用,并方便裸线接入; 3、电机电压输入:当工作电流较小时选用,标准插针,可配合杜邦线使用(此种接口可长时间安全通过2A以下电流);

4、5V逻辑电源:+5V电源输入,给板内逻辑系统供电,本驱动器不含稳压IC,此处一定要接5V电源,电压过大可能会损坏板子或误动作,逻辑电源可和电机电源共用一组5伏电源,此为单电源供电方式,用于控制5伏左右的电机或其他设备。 5、地:电源负极; 6、M2方向控制:接单片机的一个I/O口,接1时正转,接0时反转(所谓的正反是相对的,不是绝对的); 汇编指令示例:SETB P1.0CLR P1.0 7、M2速度控制:接PWM脉冲信号,最高频率≥100K,支持100% PWM信号(可直接用高低电平控制); 8、M1方向控制:接单片机的一个I/O口,接1时正转,接0时反转; 9、M1速度控制:接单片机的PWM脉冲信号,最高频率≥100K; 10、M1的输出插针:第一路电机小功率输出(适合小电流输出,标准插针,可配合杜邦线); 11、M1的输出端子:大功率的第一路电机的输出; 12、M2的输出插针:简易的第二路电机的输出(适合小电流输出,标准插针,可配合杜邦线); 13、M2的输出端子:功率的第二路电机的输出。

相关主题
相关文档
最新文档