桥梁抗震复习题

桥梁抗震复习题
桥梁抗震复习题

复习题

1.地震动的三要素?

答:地震动强度(振幅、峰值),频谱特性,强震持续时间。

2. 什么是基本地震烈度?基本地震烈度和E1地震E2地震是什么关系?

答:基本地震烈度是指该地区今后一个时期内,在一般场地条件下可能遭遇到

的最大地震烈度,即《中国地震烈度区划图》规定的烈度。

3.地震按照成因、震源的深浅、震中距的远近等的分类;一些有关地震的术语含义。

答:按照成因可分为:火山地震、陷落地震、构造地震、诱发地震

按照震源的深浅可分为:浅源地震、中源地震、深源地震

按照震中距的远近可分为:地方震、近震、远震

4. 地震波包含了哪几种波?它们的传播特点是什么?各种波的速度对比?

分为体波和面波。

体波

纵波:在传播过程中,其介质质点的震动方向与波的前进方向一致。

纵波的周期较短,振幅较小,波速较快,在地壳内的速度一般为200-1400m/s。

横波:在传播过程中,其介质质点的振动方向与波的前进方向垂直。

横波的周期较长,振幅较大,波速较慢,在地壳内的速度一般为100-800m/s。

面波

瑞利波:传播时,质点在与地面垂直的平面内沿波前进方向做椭圆反时针方向运动。

振幅大,在地表以竖向运动为主。

乐浦波:传播时,类似蛇形运动,质点在地平面内做与波前进方向相垂直的运动。

5. 地震动、地震波的概念。

地震动:也称地面运动,是指由震源释放出来的地震波引起的地表附近土层的震动。

地震波:当震源岩层发生断裂、错动时,岩层所积聚的变形能突然释放,引起剧烈的振动,振动以弹性波的形式从震源向各个方向传播并释放能量,这种波就称为地震波。

6. 地震震级、地震烈度的概念,两者之间的区别与关联,地震震级和地震释放

的能量之间的关系。

地震震级:衡量一次地震大小的等级,用符号M表示。

比较通用的是里氏震级(用Ml表示),定义为:

在离震中100Km处用伍德-安德生式标准地震仪所记录到的最大水平

动位移(以微米计)的常用对数值,即Ml=lgA

地震烈度:用来衡量地震破坏作用大小的一个指标。

联系与区别:对于一次地震而言,震级只有一个,烈度则随着地点的变化而有若干个。一般来说,震中的烈度最高,离震中越

远,地震影响越小,烈度越低。

关系:Ml=1.5+0.58I0(震中烈度)

7. 影响地震动特性的因素。

答:包括震源、传播介质与途径、局部场地条件这三类。

8.地震烈度是按什么标准进行区分的?

答:按地震烈度表的标准进行区分

主要依据是建筑物的破坏程度、地貌变化特征、地震时人的感觉、家具器物的反应等。

9.地震造成的地表破坏有哪些现象?

答:地裂缝、滑坡、砂土液化软土震陷。

10. 引起桥梁震害的原因。

答:所发生的地震强度超过了抗震设防标准,这是无法预料的。

桥梁场地对抗震不利,地震引起地基失效或地基变形。

桥梁结构设计、施工错误。

桥梁结构本身抗震能力不足。

11.桥梁震害现象及对应的预防措施。

答:1、支撑连接部位失效(主要是落梁):1、规定支承连接部位的支承面最小宽度

2、在相邻梁之间以及梁、墩之间安装约束装置

2、碰撞引起的破坏:可通过设置较大的间距来避免。

3、桥墩、桥台破坏:1、控制损伤部位发生在桥墩上,且控制损伤发生的程度

2、提高墩柱的横向钢筋配置。

3、合理的节点配筋,足够的纵筋锚固长度。

4、合理的台身构造设计,确保台后填土的质量。

4、基础破坏:1、采用能力保护设计方法,给桩基础提供足够的强度。

2、加强桩顶与承台联结构造措施,延

长桩基深入稳定土层的长度等

12. 地震动参数区划图的技术指标。

答:峰值加速度、反映普特征周期。

13. 桥梁工程抗震设防标准考虑哪三方面因素?

答:1、桥梁的重要性、抢修和修复的难易程度

2、地震破坏后,桥梁结构功能丧失可能引起的破坏

3、建设单位所能承担抗震防灾的最大经济能力

14. 《公路桥梁抗震设计细则》划分的A、B类桥梁标准是什么?城市桥梁抗震设计的A、B、C类设计方法有什么不同?

答:《公路》的A类桥梁标准是单跨跨径超过150m的特大桥,B 类是除A

类以外的高速公路和一级公路上的桥梁,以及二级公路上的大桥、特大桥等。

《城市》的

15. 桥梁合理的结构设计方案包括哪些方面?

答:桥梁结构合理抗震选型:1、选择桥位时,应

尽量避开抗震危险地段,充分利用抗震有利地段

2、避免或减轻在

地震作用下,因地基变形或地基失效造成的破坏

3、合理确定结构

设计方案

桥梁结构抗震体系选择:应合理选用延性抗

震体系、减隔震体系。

16. 抗震规范规定在什么情况下应考虑竖向地震作用?

答:抗震设防烈度为8度和9度时的拱式结构、长悬臂桥梁结构和大跨度结构,

以及竖向作用引起的地震效应很重要时,应考虑竖向地震的作用。

17. 什么是桥梁抗震三水准设防目标和两阶段设计方法?

答:小震不坏,中震可修,大震不到。

第一阶段设计取第一水准的地震动参数计算结构的弹性地震作用标准值和

相应的地震作用效应,进行构件截面的承载力验算。

第二阶段设计取第三水准的地震动参数进行结构薄弱部位的弹塑性

层间变形验算,并采取相应的构造措施。

18.加速度反应谱的概念,熟悉《抗震规范》的加速度反应谱的形状、几个转折点处自振周期值,反应谱法的适用范围,与静力法的区别。

答:加速度反应谱:对不同周期和阻尼比的单自由度体系,在选定的地震加速度g δ??输

入下,可以获得一系列的相对位移δ、相对速度?

δ、绝对加速度

????+δδg 的反应时程曲线,以不同单自由度体系的周期T i 为横坐标,

以不同阻尼比ξ为参数,就能绘出最大绝对加速度的谱曲线。

反应谱法的适用范围:只适用于弹性范围分析。

与静力法的区别:静力法只考虑地面运动,而反应谱法同时考虑了地面运动和结构

的动力特性。

19.结构自振周期与何因素有关?单自由度体系的自振周期计算公式。

答:与等效振形刚度和等效振形质量有关。

计算公式:k

m T π

2= 20.水平地震力的大小与哪些因素有关?

21.反应谱法、振型分解法、时程分析法的相关概念,适用条件;时程分析法的稳定条件。

反应谱法:通过反应谱概念巧妙地将动力问题静力化,概念简单,计算方便,可以使用

较少的计算量获得结构的最大反应值。

适用条件:只适用于弹性阶段分析。

振形分解法:是针对每一时刻各方向、各振形的反应进行叠加。

适用条件:只适用于线弹性且采用比例阻尼矩阵结构的时程反应分析。

时程分析法:是从选择合适的地震动输入出发,采用多节点多自由度的结构有限元动力计

算模型建立地振动方程,然后采用积分方法对方程进行分解,计算地震过程

中每一瞬时结构的位移、速度、加速度反应,从而分析出结构在弹性和非弹

性阶段内力变化以及构建逐步开裂、损坏直至倒塌的全过程。 适用条件:适用于各种单自由度和多自由度体系的线性和非线性地震反应分析。

时程反应分析法的稳定条件:在β=1/4时为等加速度法,β=1/6时为线加速度法; 法β-Newmark 在41≥β时是无条件稳定的,在410<<β时是有条 件稳定的,。等加速度法是无条件稳定的,线加速度法是有条件稳定的,

wilson-θ在37.1≥θ时是无条件稳定的。

22.什么是抗震概念设计?

答:是根据地震灾害和工程经验等获得的基本设计原则和设计思想,正确地解决结构

总体方案、材料使用、细部构造,以达到合理抗震设计的目的。

23.延性的概念、延性系数的定义;延性与延性系数的关系;钢筋混凝土桥墩

延性的影响因

素。

延性的概念:在初始强度没有明显退化的情况下的非弹性变形能力。

延性系数的定义:分为曲率延性系数、位移延性系数。

曲率延性系数定义为极限曲率与屈服曲率之比,

位移延性系数定义为最大位移与屈服位移之比。

延性与延性系数的关系:延性是指非弹性变形的能力,位移延性系数是指最大位移与屈

服位移之比,都与变形有关,一个结构可以有较大的变形能力,但实

际可利用的延性却可能较低,原因是收到容许变形值的限制,柔性高

柱墩即为此例。

钢筋混凝土桥墩延性的影响因素:截面箍筋配置水平。

24.桥墩结构延性系数与截面曲率延性系数的关系,桥墩高度以及基础刚度对桥墩结构延性系数的影响。

25. 能力设计方法的概念,桥梁结构抗震设计中什么构件适宜选作延性构件。

能力设计方法的概念:在结构的延性构件和能力保护构件之间建立强度安全等级差异,

以确保结构不会发生脆性的破坏。

例如长宽比大于2.5的悬臂墩以及长宽比大于5的双柱墩,适宜作为延性构件。

26.结构延性大小与地震力大小的关系。

F F y E =?μ,即强震动激起的单自由度弹性系统的最大地震惯性力F E 与相应系统

屈服

力F y 之比。

27. 延性结构根据延性性能的发挥程度,可分为哪三种情况?

完全延性结构(普通的公路桥梁)、有限延性结构(重要性桥梁)、完全弹性结构(关

键桥性梁)。

28.什么是延性构件的抗弯超强现象?产生原因是什么?

延性构件的抗弯超强现象:钢筋混凝土墩柱的实际抗弯承载能力大于其设计承载能力。

产生的原因:(1)钢筋实际屈服强度大于设计强度;

(2)钢筋硬化引起极限强度大于屈服强度;

(3)混凝于实际抗压强度大于设计强度,而约束混凝土的极限压应变显著大

于屈服压应变。

29. 在钢筋混凝土桥墩延性抗震设计中,横向箍筋的三个重要作用是什么?

答:(1)提供斜截面的抗剪承载力;

(2)提高塑性铰区的截面转动能力,以提高受压区混凝土的极限压应变;

(3)阻止纵向钢筋过早屈曲。

30.延性构件屈服后位移计算的准则有哪几条?各适用于什么情况?

桥梁抗震设计规范

桥梁抗震设计规范--基础设计方法 一、引言 近十年来,世界相继发生了多次重大地震,1989年美国 Loma Prieta地震()、1994年美国Northridge地震(、1995年日本阪神地震()、1999年土耳其伊比米特地震()、1999年台湾集集地震()等等。因此,专家们预测全球已进入一个新的地震活跃期。随着现代化城市人口的大量聚集和经济的高速发展,地震造成的损失越来越大。地震灾害不仅是大量地面构筑物和各种设施的破坏和倒塌,而且次生灾害中因交通及其他设施的毁坏造成的间接经济损失也十分巨大。以1995年日本版神地震为例,地震造成大量高速公路及高速铁路桥隧的毁坏,经济总损失高达1000亿美元。 近几次大地震造成的大量桥梁的破坏给了全世界桥梁抗震工作者惨痛的经验教训。各国研究机构纷纷重新对本国桥梁抗震规范进行反思,并进行了一系列的修订工作。日本1995年阪神地震后,对结构抗震的基本问题重新进行了大量的研究,并十分重视减振、耗能技术在结构抗震设计中的应用。桥梁、道路方面的抗震设计规范已经重新编写,并于1996年颁布实施。美国也相继在联邦公路局(FHWA)和加州交通部(CALTRANS)等的资助下开展了一系列的与桥梁抗震设计规范修订有关的研究工作,已经完成了ATC-18,ATC-32T和ATC-40等研究报告和技术指南。与旧规范相比,新规范或指南无论在设计思想,设计手法、设计程序和构造细节上都有很大的变化和深入。 大河的大跨桥梁、大型立交工程以及城市中大量高架桥的兴建,规范已大大不能适应。但是目前所有国内的桥梁设计,对抗震设计均在设计书上标明的参照规范即是《公路工程抗震设计规范》和《铁道工程抗震设计规范》。与国外如日本、美国的同类规范相比,中国现行《公路工程抗震设计规范》水准远落后于国外同类规范。若不进行改进,则必将给中国不少桥梁工程留下地震隐患。 本文主要介绍了各国桥梁抗震设计规范中基础部分的抗震设计。基础部分对全桥的地震响应以及墩柱力的分布均有非常重要的影响。基础设计不当会导致桥梁墩柱在地震中发生剪断、变形过大不能使用等等,有时甚至是桩在根部直接剪断破坏。基础设计需要考虑的方面除了基础形式的选择以外还包括抗弯强度、抗剪强度桩基础连接部分的细部构造、锚固构造等方面。本文首先对中、美、日、欧洲、新西兰五国或地区抗震设计规范中有关基础的部分进行了一般性的比较。笔者认为,相对而言中国的规范在基础抗震设计方面较为粗糙、可操作性不强。而日本规范在这方面作的最为细致,技术也较为先进。因此,在随后的部分中详细介绍了日本抗震规范的基础设计方法。 二、主要国家桥梁抗震规范基础抗震设计的概况 本文将中国桥梁抗震规范与世界上的几种主要抗震规范(美国的AASHTO规范、Cal-tans规范、ATC32美国应用技术协会建议规范,新西兰规范NZ,欧洲规范EC8,日本规范JAPAN)进行基础抗震设计方面的比较。 中国桥梁抗震设计规范有关基础设计的部分十分笼统,只以若干定性的条款,从工程选址方面加以考虑,而对基础本身的抗震设计,特别是对于桩基础等轻型基础抗震设计重视不够。这方面,日本的桥梁抗震设计规范和准则规定得比较详细,是我们应当学乱之处。基于

公路桥梁抗震设计

公路桥梁抗震设计 一、基本要求 1、地震作用:作用在结构上的地震动,包括水平地震作用和竖向地震作用。 E1地震作用:工程场地重现期较短的地震作用,对应于第一级设防水准。 E2地震作用:工程场地重现期较长的地震作用,对应于第二级设防水准。 2、各抗震设防类别桥梁的抗震设防目标符合下表 3、一般情况下,桥梁抗震设防分类应根据各桥梁抗震设防类别的适用范围按下表的规定确定。但对抗震救灾以及在经济、国防上具有重要意义的桥梁或破坏后修复(抢修)困难的桥梁,可按国家批准权限,报请批准后,提高设防类别。 4、A类、B类和C类桥梁必须进行E1地震作用和E2地震作用下的抗震设计。D类桥梁只须进行E1地震作用下的抗震设计。抗震设防烈度为6度区的B类、C类、D类桥梁,可只进行抗震措施设计。 5、各类桥梁的抗震设防标准,应符合下列规定: (1)各类桥梁在不同抗震设防烈度下的抗震设防措施等级按下表

表3 各类公路桥梁抗震设防措施等级 注:g—重力加速度 (2)立体交叉的跨线桥梁,抗震设计不应低于下线桥梁的要求。 6、公路桥梁抗震设防烈度和设计基本地震动加速度取值的对应关系见下表 表4 各类公路桥梁抗震设防措施等级 注:g—重力加速度 二、抗震措施 1、各类桥梁抗震措施等级的选择,按照表3确定。 2、6度区 简支梁梁端至墩、台帽或盖梁边缘应有一定的距离。其最小值a(厘米) 按下式计算:a≥70+0.5L 式中:L—梁的计算跨径(米)。 3、7度区 (1)7度区的抗震措施,除应符合6度区的规定外,尚应符合本节的规定。 (2)拱桥基础宜置于地质条件一致、两岸地形相似的坚硬土层或岩石上。实腹式拱桥宜减小拱上填料厚度,并宜采用轻质填料,填料必须逐层夯实。 (3)桥台胸墙应适当加强,并在梁与梁之间和桥台胸墙之间加装橡胶垫或其他弹性衬垫,以缓和冲击作用和限制梁的位移。 (4)桥面不连续的简支梁(板)桥,宜采用挡块、螺栓连接和钢夹板连接等防止纵横向落梁的措施。连续梁桥和桥面连续的简支梁(板)桥,应采取防止横向产生较大位移的措施。 (5)在软弱黏性土层、液化土层和不稳定的河岸处建桥时,对于大、中桥,可适当增加桥长,合理布置桥孔,使墩、台避开地震时可能发生滑动的岸坡或地形突变的不稳定地段。否则,应采取措施增强基础抗侧移的刚度和加大基础埋置深度;对于小桥可在两桥台基础之间设置支撑梁或采用浆砌片(块)石满铺河床。

桥梁抗震设计讲解

SPCP课题研究论文 课题名称:桥梁震害研究 学生姓名:陈哲许江伟张盼盼李文娟 指导老师:郭青伟郑文豫 所在院系:土木建筑工程学院 年纪专业:14级土木工程 10班

目录 1前言 (4) 2地震对桥梁结构的影响 (4) 2.1引言 (4) 2.2场地运动引起的结构震动(第一种) (4) 2.3场地相对位移引起的结构的变形(第二种影响) (5) 3桥梁的震害原因 (5) 4桥梁的震害现象 (6) 4.1地表断裂 (6) 4.2滑坡 (7) 4.3沙土液化 (7) 4.4软土震陷 (7) 5桥梁震害破坏形式 (7) 6桥梁震害分析 (8) 7桥梁的抗震措施 (8) 7.1桥的选址 (8) 7.2桥位选择 (8) 7.3桥型选择 (8) 7.4桥孔布置 (8) 7.5基础处理 (9) 7.6桥墩处理 (9)

7.7基础抗震措施 (10) 7.8桥台抗震措施 (10) 7.9桥墩抗震措施 (11) 7.10结点抗震措施 (11) 7.11桥梁抗震设计及措施 (11) 8桥梁抗震设计的几点建议 (12) 8.1设计建议 (12) 8.2大型建筑工程强制安装强震仪 (13) 8.3健全工程质量评估装置 (13) 8.4广泛采用减震、隔震技术 (13) 8.5提高国家的抗震标准 (14) 9结论 (14)

1前言 桥梁作为城市的主要交通动脉和重要的社会基础设施,不仅仅具有投资大、公共性强等特点,而且维护管理也显得特别困难。因此,在抗震防灾、危机管理系统中,桥梁成立一种重要的组成部分。因为对于提高其抗震能力是加强区域安全。减轻地震损失的一项重要举措。特别是近年来,我国交通建设事业发展较为迅速,桥梁不管是在数量方面还是延伸长度方面都增长较快,可以说城市高架桥在大中城市已经成为了主要的交通动脉。给居民日常生活活动带来了很多的方便,为国民经济中起到了重要的作用。但是在地震的强烈影响下,桥梁设施会遭到巨大的破坏,甚至倒塌,其所带来的影响常常超过了桥梁因改建或维修所需要的巨额财政支出,由此可见,在我过公路交通建设中,必须加强桥梁的抗震能力,以减少一些损失。 2地震对桥梁结构的影响 2.1引言 地震对桥梁结构的破坏,其主要有以下两种方式:其一种是场地相对位移从而引起的强制变形,第二种就是场地运动发生的结构物震动。前者是由于支点强制变形引起的过大的相对变形或超静定内力致使结构的安全性受到影响,而后者则是以惯性力的方式把地震荷载施加在结构物上,从而导致安全性收到影响。 2.2场地运动引起的结构震动(第一种) 地震时,桥梁结构物遭受到的地震运动主要是因为震源产生的地震波先通过地壳逐渐传入至地下的深层基岩,然后由深层基岩传到地表面土层的场地,因此建筑物在地基上的桥梁结构物在场地运动的影响下而产生震动进而产生变形。对于柔性结构的地震影响来说,不仅仅取决于同场地的震动外,而且还取决于相对于地基的震动但是刚性结构的地震影响应则主要由场地的运动决定。 所以,桥梁结构物受地震惯性力的影响程度不仅仅取决于场地运动的特性,同

第二章桥梁抗震设计基本要求.

第二章桥梁抗震设计基本要求 主要内容:桥梁抗震设计基本原则、桥梁抗震设计流程,桥梁抗震设防标准、地震动输入的选择、桥梁抗震概念设计。 基本要求:掌握桥梁抗震设计基本原则、理解和掌握桥梁抗震设防标准、掌握地震动输入的选择要求、掌握桥梁抗震概念设计基本原则。 重点:桥梁抗震设防标准的确定、地震动输入的选择和桥梁抗震概念设计。难点:桥梁抗震设防标准的确定。 最近二三十年来,全球发生的对此破坏性地震造成了非常惨重的生命财产损失。一个很重要的原因是,桥梁工程在地震中遭到了严重破坏,切断了震区交通生命线,造成救灾工作的巨大困难,使次生灾害加重,从而导致了巨大的经济损失。 多次破坏性地震一再显示了桥梁工程遭到破坏的严重后果,也一再显示了桥梁工程进行正确抗震设计的重要性。自从1976年唐山地震以后,我国的桥梁抗震工作也日益受到重视。最近几年来,我国的《铁路工程抗震设计规范》、《公路桥梁抗震设计细则》以及《城市桥梁抗震设计规范》先后得到了修订或编制完成。这些规范引入了新的桥梁抗震设计理念,完善了相应的抗震设计方法,是我国桥梁设计的依据。 2.1 抗震设防标准及设防目标(课件) 2.1.1 抗震设防标准 工程抗震设防标准是指根据地震动背景,为保证工程结构在寿命期内的地震损失(经济损失及人员损失)不超过规定的水平或社会可接受的水平,规定工程结构必须具备的抗震能力。因此,抗震设防标准是工程项目进行抗震设计的准则,也是工程抗震设计中需要解决的首要问题。 通常情况下,建设工程从选址到使用寿期内的防震措施可分为三个阶段:抗震设计、保证施工质量与合理的维护保养。其中,抗震设计要遵从一定的标准,这就是抗震设防标准。它包括抗震设防目标、工程设防类别、设防地震和场地选

浅谈市政桥梁的抗震结构设计

浅谈市政桥梁的抗震结构设计 发表时间:2018-08-07T11:42:23.553Z 来源:《建筑学研究前沿》2018年第8期作者:余辉[导读] 对于市政桥梁而言,其抗震性能的好坏势必会对人民生命财产造成重大影响。 36042919920120xxxx 516200 摘要:对于市政桥梁而言,其抗震性能的好坏势必会对人民生命财产造成重大影响。基于此,本文从市政桥梁抗震结构设计原则出发,分析了市政桥梁抗震设计的要点,最后提出了详细的市政桥梁抗震设计措施。 关键词:市政桥梁;抗震结构;设计引言:市政桥梁结构设计应坚持安全、坚固原则,积极引进先进技术,如新结构、新型设备以及新材料与新的施工工艺,严格按照施工设计总则、荷载以及每种材料技术条件要求等各项施工设计部规范及其技术标准。 1、市政桥梁抗震结构设计原则 1.1安全性原则 在桥梁设计中应重视桥梁的安全性。以抗震设计为例,桥位应选择在对抗震有利的地段,尽可能避免选择在软弱粘性土层、可液化土层和地层严重不均匀的地段,特别是发震断层地段。如必须设置在可液化或松软土层的河岸地段时,桥长应适当增长,将桥台置于稳定的河岸上,而桥墩基础要加强。桥型要选择抗震性能好、整体性强的结构体系,如连续梁,无铰拱等。 1.2耐久性原则 随着城乡建设的不断发展,城市桥梁和公路桥梁的负荷越来越重,造成混凝土结构桥梁的不同程度的损坏;在设计和施工过程中不注重细部结构的设计也是造成桥梁耐久性的一个很重要的因素,这些问题的存在严重影响了桥梁的使用寿命,因而从多方面对混凝土结构的耐久性设计的分析和研究是非常必要的。 2、市政桥梁抗震结构设计要点 2.1主梁设计要点 在进行市政桥梁结构设计的过程中,首先需要做好主梁设计工作。主梁结构是整个市政桥梁结构的重中之重,因此,科学的进行主梁结构的设计是非常有必要的。主梁结构一般选用的造型有T形和箱型两类,箱型仅在混凝土结构主梁中被使用,该类主梁在设计时要注意保持一定的间距和片数,间距和片数呈反函数关系。梁高以及细部尺寸的确定需要进行一定的荷载计算,如主梁分布呈对称形式,则荷载分布也呈对称形式,选用杠杆法计算主梁的荷载量,反之则选用偏心受压法来计算。另外,在进行主梁结构设计的过程中,需要充分的考虑主梁结构的适用性问题,不同的主梁结构应采用不同的结构类型,具体需要结合市政桥梁的实际情况以及日后的交通量进行科学的选择。 2.2桥梁上部结构的设计要点 在进行市政桥梁结构设计的过程中,还应该做好桥梁上部结构的设计工作,具体包括如下几个方面的环节。桥体表面的结构设计工作。在桥体表面的结构设计中,应充分的考虑汽车的冲击和碾压,因此,需要考虑到稳定性的问题,需要做好结构的稳定性设计。做好桥面的二道防水层的设计工作。二道防水层的主要作用就是进行防水,避免由于水的腐蚀作用而导致桥面的腐蚀,影响到市政桥梁的使用质量。 3、市政桥梁抗震设计措施 3.1市政桥梁抗震设计总体原则 从抗震角度出发,合理的结构体系应符合下列各项要求。具有明确的计算简图和合理的地震作用传递途径;具有合理的刚度和承载力分布,避免因局部削弱或突变而成为薄弱部位;具备必要的承载力、良好的变形能力和耗能能力。从以上概念出发,理想的桥梁结构体系布置应是:从几何线形上看,桥梁是直的,各墩高度相差不大。因为弯桥或斜桥使地震反应复杂化,而墩高不等则导致桥墩刚度变化,使抗侧力桥墩中刚度较大的最先破坏。从结构布局上看,桥梁尽量保持小跨径,使桥墩承受的轴压水平较低,从而获得更好的延性;弹性支座布置在多个桥墩上,把地震力分散到更多的桥墩;各个桥墩的强度和刚度在各个方向都相同;基础是建造在坚硬的场地上。虽然由于各种限制条件,理想的抗震体系实践中很难达到,但在设计之初,仍应考虑使桥梁结构尽可能地满足上述要求。 3.2节点抗震设计 节点是连接桥墩和盖梁的传力构件,是保证整个结构良好工作的关键部位,属于能力保护构件。因此,对其强度和刚度要求都较高。在桥梁结构中,如果桥墩和盖梁刚度比较接近,则在地震作用下,结构受到侧向赓性力作用,节点核心区箍筋受力很大,容易出现节点刚度退化。一方面会导致节点核心区混凝土剪切破坏;另一方面又会导致桥墩内力重分布,墩底截面弯矩加大,更快达到屈服状态,降低桥梁结构横桥向整体的抗震能力。而在盖梁和桥墩抗弯刚度相差较大时,在地震横桥向作用下,墩底和墩顶部位的塑性铰更容易形成,节点部位相对更加安全,符合能力抗震设计思想。当节点部位出现刚度软化以后,对墩顶截面的约束减弱,从而导致墩顶截面弯矩减小。在桥梁结构中,节点构造形式与房屋框架结构中的节点相差较大,而且桥梁结构在横向地震作用下主要依靠墩柱的延性发生变形,而不是依靠盖梁的延性,因而不能套用房屋框架结构节点抗震设计。 3.3整体优化设计 从结构上来说,要清楚哪些结构有利于抗震,哪些结构抗震不利,其中包括桥型、上部结构、下部结构、墩台、基础的处理等等。构造细节措施则包括一些基本的抗震措施,比如支座的选择、挡块的设置等等,还包括构件细节的构造措施、比如墩的箍筋配置、节点配筋构造。在确定路线的总体走向和主要控制点时,应尽量避开基本烈度较高的地区和震害危险性较大的地段。对于地震区的桥型选择,尽量减轻结构的自重和降低其重心,以减小结构物的地震作用和内力,提高稳定性;力求使结构物的质量中心与刚度中心重合,以减小在地震中因扭转引起的附加地震力,应协调结构物的长度和高度,以减少各部分不同性质的振动所造成的危害作用,适当降低结构刚度,使用延性材料提高其变形能力,从而减少地震作用,加强地基的调整和处理,以减小地基变形和防止地基失效。 3.4减隔震设计

桥梁抗震设计需注意的几个问题

桥梁抗震设计需注意的几个问题 摘要:随着城市现代化进程不断加快,城市人口的大量聚集,交通网络在整个城市生命线抗震防灾系统中的重要性不断提高,对桥梁的依赖性越发增强。文章就桥梁抗震设计需注意的有关问题进行探讨。 关键词:桥梁;抗震设计;抗震结构 近几十年全球发生的多次破坏性大地震表明,作为抗震防灾、危机管理系统重要组成部分的桥梁工程在地震中受到破坏,将严重阻断震区的交通生命线,使地震产生的次生灾害进一步加重,给救灾和灾后重建工作带来极大困难。同时,桥梁作为重要的社会基础设施,投资大、公共性强、维护管理困难。提高桥梁的抗震性能是减轻地震损失、加强区域安全的基本措施之一。 一、地震对桥梁的破坏作用 地震对地面构筑物的破坏作用,从破坏的性质和工程对策的角度大体可分为场地和地基的破坏作用、场地的震动作用。 (一)场地和地基的破坏作用 当地震发生时,首先是场地和地基破坏,从而产生桥梁破损并引起其他灾害。场地和地基的破坏作用,大致有地面破裂、滑坡和坍塌,地基失效等几种类型。这种破坏作用,对位于斜坡地貌及软弱土质地基上的桥梁工程影响较大。 地震发生后,桥梁的破坏形式一般表现为以下几种:(1)桥台锥体、墩周铺护开裂,甚至滑移;(2)墩台身位移,支座锚栓剪断,严重时产生落梁现象;(3)砂土液化,桥墩下沉;(4)墩台身开裂,严重时桥梁倒塌。 (二)场地的震动作用 场地的震动作用,是指由于强烈的地面运动引起桥梁的振动而产生的破坏作用。强烈的地面震动是引起桥梁破坏的最普遍和最主要的原因。同时也是引发其他地震破坏如地基失效、滑坡和坍塌等的外部条件。 2008年发生的汶川大地震所造成道路、桥梁和其他城市基础设施的损失巨大,位于震中的汶川县附近道路基础设施受到严重破坏,桥梁震害最为典型和严重,其影响范围大、波及范围广历史罕见,而桥梁结构作为生命线工程的重要组成部分,在抗震中显得意义非常重大。 二、桥梁抗震设计思想 建于高烈度地震区的桥梁,可能遭受地震破坏,因此,必须考虑抗震设防。

桥梁抗震设计要点

桥梁抗震设计基本要求 最近二三十年来,全球发生的对此破坏性地震造成了非常惨重的生命财产损失。一个很重要的原因是,桥梁工程在地震中遭到了严重破坏,切断了震区交通生命线,造成救灾工作的巨大困难,使次生灾害加重,从而导致了巨大的经济损失。 多次破坏性地震一再显示了桥梁工程遭到破坏的严重后果,也一再显示了桥梁工程进行正确抗震设计的重要性。自从1976年唐山地震以后,我国的桥梁抗震工作也日益受到重视。最近几年来,我国的《铁路工程抗震设计规范》、《公路桥梁抗震设计细则》以及《城市桥梁抗震设计规范》先后得到了修订或编制完成。这些规范引入了新的桥梁抗震设计理念,完善了相应的抗震设计方法,是我国桥梁设计的依据。 2.1 抗震设防标准及设防目标 2.1.1 抗震设防标准 工程抗震设防标准是指根据地震动背景,为保证工程结构在寿命期内的地震损失(经济损失及人员损失)不超过规定的水平或社会可接受的水平,规定工程结构必须具备的抗震能力。因此,抗震设防标准是工程项目进行抗震设计的准则,也是工程抗震设计中需要解决的首要问题。 通常情况下,建设工程从选址到使用寿期内的防震措施可分为三个阶段:抗震设计、保证施工质量与合理的维护保养。其中,抗震设计要遵从一定的标准,这就是抗震设防标准。它包括抗震设防目标、工程设防类别、设防地震和场地选择等内容。 抗震设防标准是科学性和政策性(或社会性)的结合。科学性就是要严格按照现行的有关规范要求进行工程场地地震安全性评价工作,是的评价结果较好地符合实际,具有较好的可重复性。政策性则要考虑到工程类型、重要程度、投资强度风险程度等。我国还属于发展中国家,财力物力有限。国家总的防灾政策决定了抗震设防标准不宜过高。随着科学技术的进步和国民经济地发展,以及人们放在意识的加强,抗震设防标准也在逐渐提高。

桥梁抗震设计

桥梁抗震设计 【摘要】介绍了桥梁抗震设计中的分析方法和结构控制技术,阐述消能减震结构抗震设计要点和桥梁抗震措施,以促进桥梁抗震技术的发展,为消能减震体系在桥梁结构中的应用提供参考。 【关键词】桥梁抗震;结构控制;消能减震 我国是一个多地震国家,地震中,桥梁的破坏将导致交通中断,这不但会影响人们的正常生活和经济运行,造成严重的经济损失,而且将严重影响震后救灾工作,使人员不能安全顺利疏散,并阻碍向灾区紧急输送救援人员和救灾物资,从而加剧地震灾害。为了保障公路桥梁设施的完好,就需要在桥梁设计中对桥梁抗震设计有充分的重视。 1 桥梁抗震分析方法 人类对地震的研究也不断地获得进步,特别是近半个多世纪以来,人们对地震的破坏机理已有了深入的认识,并发展了各种抗震分析方法。桥梁结构地震响应分析方法可以分为确定性方法和概率性方法两大类。确定性方法是以确定性的荷载作用于结构,求解该确定性荷载作用下结构动力反应的方法。概率性方法将地震作用视为随机过程,以此随机地震作用于结构,求出结构动力响应统计量。 1.1 确定性抗震分析方法 1.1.1 静力分析法 静力分析是国际上最早形成的抗震分析理论。20 世纪初,日本

学者提出水平最大加速度是造成地震破坏的重要因素,并提出按等效静力分析求地震效应的方法。将结构看作刚体,不考虑变形对结构的影响,也不考虑地震作用随时间的变化及其与结构动力特性的关系,结构各质点的水平地震作用最大值为该质点与地面运动加速度的乘积。 在20世纪60年代末又提出了非线形静力pushover分析方法——推倒分析方法,最近几年来,pushover法得到了较大的发展,并得到了广泛的应用,分析过程一般需要借助计算机程序完成。其基本假定为:(1)多自由度结构体系的响应与一等效单自由度体系相关,即结构响应主要由第一振型控制。(2)结构物沿高度变形的形状向量,在整个地震反应过程中保持不变。pushover法是通过对结构施加单调递增荷载来进行分析的一种非线性静力分析方法,它研究结构在地震激励下进入塑性倒塌状态时的非线性性能。该方法通常把相邻伸缩缝之间的结构当作是空间的独立框架考虑,并且假定上部结构在水平面内是相对刚性的。分析的初始阶段是对单独的排架墩在所考虑的方向上(顺桥向或横桥向)进行独立的倒塌分析和整个框架的分析,将桥墩刚度模拟为非线性弹簧,计算出整个框架的初始刚度中心,以及横向刚度、转动刚度和质心处的刚度。在框架质心处,通常是上部结构的质心,施加单调递增的水平力,并且,随着框架非线性发展的程度不断地调整桥墩的刚度和结构刚度,直至结构达到最终极限状态为止。

相关主题
相关文档
最新文档