各种聚类算法介绍及对比教学内容
聚类方法(Clustering)

因此衍生出一系列度量 K 相似性的算法
Q
J
大配对和小配对 Major and minor suits
聚类分析原理介绍
相似性Similar的度量(统计学角度) 距离Q型聚类(主要讨论)
主要用于对样本分类 常用的距离有(只适用于具有间隔尺度变量的聚类):
明考夫斯基距离(包括:绝对距离、欧式距离、切比雪夫距离) 兰氏距离 马氏距离 斜交空间距离 此不详述,有兴趣可参考《应用多元分析》(第二版)王学民
首先要明确聚类的目的,就是要使各个类之间的距离 尽可能远,类中的距离尽可能近,聚类算法可以根据 研究目的确定类的数目,但分类的结果要有令人信服 的解释。
在实际操作中,更多的是凭经验来确定类的数目,测 试不同类数的聚类效果,直到选择较理想的分类。
不稳定的聚类方法
算法的选择没有绝对
当聚类结果被用作描述或探查工具时,可以 对同样的数据尝试多种算法,以发现数据可 能揭示的结果。
该法利用了所有样本的信息,被认为是较好的 系统聚类法
广泛采用的类间距离:
重心法(centroid hierarchical method)
类的重心之间的距离 对异常值不敏感,结果更稳定
广泛采用的类间距离
离差平方和法(ward method)
D2=WM-WK-WL
即
研究目的:挖掘不同人群拨打电话的特征 下面用SAS/Enterprise Miner演示
Q&A
推荐参考书目
《应用多元分析》(第二版)王学民 上海财经大学出版社
《应用多元统计分析》即《Appied Mulhnson, Dean W. Wichern中国统计出版社
聚类分析方法

聚类分析方法聚类分析是一种常见的数据分析方法,它可以帮助我们将数据集中的对象按照它们的相似性分成不同的组,从而更好地理解数据的结构和特征。
在实际应用中,聚类分析方法被广泛应用于市场分割、社交网络分析、生物信息学、图像处理等领域。
本文将介绍几种常见的聚类分析方法,包括K均值聚类、层次聚类和密度聚类,并对它们的原理和应用进行简要阐述。
K均值聚类是一种基于距离的聚类方法,它将数据集分成K个簇,每个簇包含距离最近的K个中心点。
K均值聚类的原理是通过迭代计算每个样本点到中心点的距离,然后将样本点分配到距离最近的中心点所在的簇中。
这个过程一直迭代进行,直到簇的分配不再改变为止。
K均值聚类的优点是简单易懂,计算速度快,但是它对初始中心点的选择敏感,容易陷入局部最优解。
层次聚类是一种基于树形结构的聚类方法,它通过不断地将最相似的样本点或簇合并在一起,从而构建出一个层次化的聚类结构。
层次聚类可以分为凝聚型和分裂型两种方法。
凝聚型层次聚类是从下往上构建聚类结构,它首先将每个样本点看作一个独立的簇,然后根据它们的相似性逐步合并成更大的簇,直到所有样本点合并成一个簇为止。
分裂型层次聚类则是从上往下构建聚类结构,它首先将所有样本点看作一个簇,然后根据它们的差异逐步分裂成更小的簇,直到每个样本点都成为一个簇为止。
层次聚类的优点是不需要预先确定簇的个数,但是它的计算复杂度较高,不适合处理大规模数据集。
密度聚类是一种基于样本点密度的聚类方法,它将高密度的样本点划分为一个簇,并且可以发现任意形状的簇。
密度聚类的核心思想是通过计算每个样本点周围的密度来确定核心点,然后将核心点连接在一起形成簇。
密度聚类的优点是对噪声和离群点具有较好的鲁棒性,但是它对参数的选择比较敏感,需要合适的密度阈值来确定核心点。
总的来说,聚类分析方法是一种强大的数据分析工具,它可以帮助我们发现数据中的潜在结构和规律。
不同的聚类方法适用于不同类型的数据和应用场景,选择合适的聚类方法需要根据具体问题的特点来进行。
聚类分析方法概述及应用

聚类分析方法概述及应用聚类分析是一种常用的数据分析方法,用于将相似的数据点聚集在一起,形成有意义的群组。
它可以帮助我们理解数据的内在结构和模式,揭示隐藏在数据背后的信息。
本文将对聚类分析方法进行概述,并探讨其在不同领域的应用。
一、聚类分析方法概述聚类分析方法有多种类型,其中最常用的是原型聚类、层次聚类和密度聚类。
1. 原型聚类原型聚类是一种利用原型向量(即代表一个簇的中心点)来表示和分类数据的方法。
最常见的原型聚类算法是K均值聚类,它通过迭代过程将数据分成K个簇。
2. 层次聚类层次聚类是一种基于树状结构的聚类方法,它将数据点逐步合并为越来越大的簇,直到所有数据点都合并为一个簇。
层次聚类可以分为凝聚型和分裂型两种。
3. 密度聚类密度聚类是一种基于数据点之间密度的聚类方法。
它通过计算每个数据点周围的密度,将密度较高的数据点归为一类,从而形成簇。
DBSCAN是最常用的密度聚类算法之一。
二、聚类分析的应用聚类分析方法在各个领域都有广泛的应用,以下是其中几个典型的应用示例:1. 市场细分聚类分析可帮助企业将潜在消费者细分为不同的市场群体,根据不同群体的需求进行针对性的市场推广。
例如,一家保险公司可以利用聚类分析将客户分为不同的风险类别,制定相应的保险套餐。
2. 医学研究在医学领域,聚类分析可用于帮助识别患者的疾病风险、预测疾病进展、选择最佳治疗方案等。
通过分析患者的基因数据、病历记录和临床表现等信息,医生可以将患者分为不同的疾病类型,为个体化治疗提供指导。
3. 社交网络分析社交网络中存在着庞大的用户群体和复杂的网络关系。
聚类分析可以帮助我们理解社交网络中的用户群体结构,发现潜在的兴趣群体和社区,并为个性化推荐、社交媒体营销等提供支持。
4. 图像分析聚类分析可以应用于图像分析领域,如图像压缩、图像分类等。
通过对图像中的像素点进行聚类,可以将相似的像素点合并为一个簇,从而实现图像的压缩和分类。
5. 网络安全对于网络安全领域来说,聚类分析可以帮助识别异常网络流量、发现潜在的攻击者并采取相应的安全防护措施。
文本分类聚类算法

文本分类聚类算法
文本分类聚类算法是一种将文本数据根据其内容或特征进行分类和聚类的方法。
常见的文本分类聚类算法有以下几种:
1. K-means聚类算法:K-means是一种基于距离的聚类算法,
可以用于将文本数据划分为k个不同的类别。
该算法通过迭代地更新类别的均值来找到最佳的聚类结果。
2. 层次聚类算法:层次聚类算法通过计算文本数据之间的相似度或距离来将其分层次地组织成一个层次结构。
这样可以通过设置层次结构中的切割点来得到不同的聚类结果。
3. 朴素贝叶斯分类算法:朴素贝叶斯分类算法是一种基于统计学原理的文本分类算法,它通过计算文本数据在不同类别下的条件概率来进行分类。
4. 支持向量机分类算法:支持向量机分类算法是一种基于机器学习的文本分类算法,它通过在特征空间中构建一个最优的超平面来实现分类。
5. 基于深度学习的分类算法:近年来,随着深度学习的发展,深度学习在文本分类聚类领域也得到了广泛应用。
常见的深度学习模型包括卷积神经网络(CNN)和循环神经网络(RNN)等。
这些算法在不同场景下有不同的适用性和性能表现,具体选择哪种算法需要根据具体问题和数据特点来决定。
层次聚类算法总结

层次聚类算法总结层次聚类算法的总结一、引言层次聚类算法是一种常用的数据聚类方法,它通过逐步合并或分割数据来构建聚类层次结构。
本文将对层次聚类算法进行总结,包括算法原理、应用领域以及算法的优缺点。
二、算法原理层次聚类算法主要包括凝聚型层次聚类和分裂型层次聚类两种类型。
其中,凝聚型层次聚类是自底向上的合并过程,而分裂型层次聚类是自顶向下的分割过程。
1. 凝聚型层次聚类凝聚型层次聚类从每个数据点作为一个独立的类开始,然后逐步合并最相似的类,直到达到预设的聚类数目或者合并所有数据点为止。
常用的合并策略有单链接、完全链接和平均链接等。
- 单链接:将两个最相似的类合并,其中最相似的类定义为两个类中最近的两个数据点之间的距离。
- 完全链接:将两个最相似的类合并,其中最相似的类定义为两个类中最远的两个数据点之间的距离。
- 平均链接:将两个最相似的类合并,其中最相似的类定义为两个类中所有数据点之间距离的平均值。
2. 分裂型层次聚类分裂型层次聚类从所有数据点作为一个类开始,然后逐步将类分裂成更小的子类,直到达到预设的聚类数目或者每个类只包含一个数据点为止。
常用的分裂策略有K-means算法、二分K-means算法等。
三、应用领域层次聚类算法在许多领域都有广泛的应用,下面列举几个常见的应用领域。
1. 生物学层次聚类算法可以用于基因表达谱数据的聚类分析,帮助研究人员发现不同基因的表达模式,从而揭示基因之间的相互关系。
2. 图像处理层次聚类算法可以用于图像分割,将相似的像素点聚类到同一个区域,实现图像的分割和识别。
3. 社交网络层次聚类算法可以用于社交网络中的用户聚类,将具有相似兴趣和行为模式的用户聚集在一起,为推荐系统和个性化推送提供基础。
四、优缺点分析层次聚类算法具有以下优点:1. 不需要预先指定聚类数目,能够自动构建聚类层次结构。
2. 可以处理任意形状和大小的聚类。
3. 聚类结果具有层次结构,方便后续的分析和解释。
聚类分析算法概述及其适用性比较

聚类分析算法概述及其适用性比较作者:印晓天湛高峰来源:《科技资讯》2018年第33期摘要:聚类算法作为大数据与人工智能领域重要的分析工具,受到了学术界的高度关注与广泛研究。
本文从算法设计思想的角度对现今主要的聚类算法进行了归纳总结。
具体来讲,针对中心聚类法、层次聚类法、密度聚类法、谱聚类法以及一些其他聚类算法分析了各自算法及其思想的优缺点与适用性,对算法的实际应用建立指导性作用。
关键词:聚类分析算法适用性中图分类号:TP311 文献标识码:A 文章编号:1672-3791(2018)11(c)-0230-03聚类分析作为机器学习的重要分析手段,是当前大数据时代下的热点研究领域之一。
在过去数十年间,产生了大量的聚类分析算法。
本文对目前主流的聚类算法进行归纳总结,并对各自的优缺点和适用性进行比较分析。
通俗来讲,聚类算法的目标是将具有共性的样本归为同一类型,而将没有或者少有共性的样本归为不同类型。
数学上对于共性的度量常用样本之间的距离来衡量,而如何定义距离则需要根据实际情况具体分析。
因此,聚类算法的目标是得到一系列内部联系相对紧密、外部联系相对稀疏的样本集合(又称为类簇)。
聚类算法按实现方式,主要可以分为中心聚类、层次聚类、密度聚类、谱聚类等。
下面就以上各类型聚类算法逐一介绍。
由于本文着重分类介绍算法的思想,旨在分析各类算法的优缺点及其适用性,所以在介绍的时候不会拘泥于参数细节,而强调执行过程是如何体现算法思想的。
具体的算法实现过程可参考相应文献。
1 中心聚类法中心聚类法是一类极为常见聚类算法。
它以找各类簇的中心为基本任务,将离某中心最近那些点归为该中心所代表的类簇。
中心聚类的代表性算法是K-means[1-2]。
K-means算法的执行是一个迭代的过程,以正整数K作为超参数,在每轮次更新K个类簇的中心。
具体来说,给定空间中样本点集合作为输入,初始时算法以某种方式选定K个空间中的点作为K个类簇的初始中心点,这种选取方式可以是随机的,也可以是根据输入样本的特征先验选取。
常见的聚类方法

常见的聚类方法
聚类分析是一种数据分析方法,主要是为了将相似的对象归为同一群组,不同群组之间的对象则差异很大。
在聚类分析中,常见的聚类方法包括:
1. K均值聚类:是一种基于距离的聚类方法,其思想是先随机选取k个初始聚类中心,然后将每个样本点分配到最近的聚类中心中,接着重新计算每个聚类的中心,直到收敛为止。
2. 层次聚类:是一种基于距离和相似矩阵的聚类方法,其思想是将所有的样本点看作是一个大的聚类,然后根据相似度逐步的将聚类细分成小的聚类。
层次聚类分为一般层次聚类和凝聚层次聚类两种。
3. DBSCAN聚类:是一种基于密度的聚类方法,其思想是将某一点的密度低于设定阈值的数据点作为噪声,其它点的连通域形成簇。
4. 均层策略聚类:是一种基于分层策略的聚类方法,其思想是先将大量数据分为若干个均分的分片,然后对每个分片进行聚类,再作进一步的整合。
聚类方法的选择要基于数据的特点和要求,不同的方法会在结果和效率上有所差异。
7-第七章-聚类分析

(xi , yi 0, xi yi 0)
该距离能克服量纲的影响,
但不能克服分量间的相关性。
9
第9页,共94页。
距离测度(差值测度) (6)马氏(Mahalanobis)距离
d 2 (xi , x j ) (xi x j )T V 1(xi x j )
其中
V
1 m 1
m i 1
( xi
( xi x j )T AT ( AT )1Vx1A1A( xi x j )
( xi x j )TVx1( xi x j )
d
2 x
(
xi
,
x
j
)
12
第12页,共94页。
马氏距离的一般定义
设 x、 y是从期望矢量为 、协方差矩阵为的母体G中抽
取的两个样本,则它们间的马氏距离定义为
d 2 (x, y) (x y)T 1(x y) 当 x和 y是分别来自两个数据集中的样本时,设C是它们
递推公式
Dkl max[Dkp , Dkq ] p
k q
23
第23页,共94页。
(三)中间距离
递推公式
D2 1 D2 1 D2 1 D2
2 2 4 kl
kp
kq
pq
l
p
p
Dpq
q
q
Dkl
Dkp
Dkq
k
k
24
第24页,共94页。
(四)重心距离
递推公式
D2 np D2 nq D2 npnq D2 kl np nq kp np nq kq (np nq )2 pq
7
第7页,共94页。
距离测度(差值测度)
设 x (x1, x2 , , xn )T ,y ( y1, y2, , yn )T ⑴ 欧氏(Euclidean)距离
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各种聚类算法介绍及对比 精品文档
收集于网络,如有侵权请联系管理员删除 一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchical methods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。至于根据Linkage判断“类”的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。
2)Hierarchical methods中比较新的算法有BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes)主要用在categorical的数据类型上;Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling)里用到的linkage是kNN(k-nearest-neighbor)算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,O(n^2)。
2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。 这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。
精品文档 收集于网络,如有侵权请联系管理员删除 聚类的效果如下图,黑色是噪音点:
另外我们可以看出凝聚的层次聚类并没有类似基本K均值的全局目标函数,没有局部极小问题或是很难选择初始点的问题。合并的操作往往是最终的,一旦合并两个簇之后就不会撤销。当然其计算存储的代价是昂贵的。
3、层次聚类的优缺点 优点:1,距离和规则的相似度容易定义,限制少;2,不需要预先制定聚类数;3,可以发现类的层次关系;4,可以聚类成其它形状 缺点:1,计算复杂度太高;2,奇异值也能产生很大影响;3,算法很可能聚类成链状
r语言中使用hclust(d, method = "complete", members=NULL) :进行层次聚类。d为距离矩阵;method表示类的合并方法,single最短距离法,complete最长距离法,median中间距离法,mcquitty 相似法,average 类平均法,centroid重心法,ward离差平方和法;members为NULL或d长度的矢量。
二、划分聚类法k-means 基于划分的方法(Partition-based methods):其原理简单来说就是,想象你有一堆散点需要聚类,想要的聚类效果就是“类内的点都足够近,类间的点都足够远”。首先你要确定这堆散点最后聚成几类,然后挑选几个点作为初始中心点,再然后依据预先定好的启发式算法(heuristic algorithms)给数据点做迭代重置(iterative relocation),直到最后到达“类内的点都足够近,类间的点都足够远”的目标效果。 Partition-based methods聚类多适用于中等体量的数据集,但我们也不知道“中等”到底有多“中”,所以不妨理解成,数据集越大,越有可能陷入局部最小。
1、Kmeans算法的原理 k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心,即选择K个初始质心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。 这个过程不断重复,直到准则函数收敛,直到质心不发生明显的变化。通常,采用平方误差准则,误差的平方和精品文档 收集于网络,如有侵权请联系管理员删除 SSE作为全局的目标函数,即最小化每个点到最近质心的欧几里得距离的平方和。此时,簇的质心就是该簇内所有数据点的平均值。 选择K个点作为初始质心 repeat 将每个点指派到最近的质心,形成K个簇 重新计算每个簇的质心 until 簇不发生变化或达到最大迭代次数 时间复杂度:O(tKmn),其中,t为迭代次数,K为簇的数目,m为记录数,n为维数 空间复杂度:O((m+K)n),其中,K为簇的数目,m为记录数,n为维数
K-Means 算法的详细过程 从上图中,我们可以看到,A, B, C, D, E 是五个在图中点。而灰色的点是我们的种子点,也就是我们用来找点群的点。有两个种子点,所以K=2。 然后,K-Means的算法如下: ①随机在图中取K(这里K=2)个种子点。 ②然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群。(我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点) ③接下来,我们要移动种子点到属于他的“点群”的中心。(见图上的第三步) ④然后重复第2)和第3)步,直到,种子点没有移动(我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E)。
聚类的效果如下图,折线是历次循环时3个簇的质心的更新轨迹,黑点是初始质心:
我们查看基本K均值算法实现步骤及上面的聚类效果可以发现,该聚类算法将所有数据点都进行了指派,不识别噪音点。另外选择适当的初试质心是基本K均值过程的关键。
2、k均值的优缺点及分类 优点:1,简单,易于理解和实现;2,时间复杂度低 缺点: 精品文档 收集于网络,如有侵权请联系管理员删除 1)kmeans要手工输入类数目,对初始值的设置很敏感;所以有了k-means++、intelligent k-means、genetic k-means; 2)k-means对噪声和离群值非常敏感,所以有了k-medoids和k-medians; 3)k-means只用于numerical类型数据,不适用于categorical类型数据,所以k-modes; 4)k-means不能解决非凸(non-convex)数据,所以有了kernel k-means。 5)k-means主要发现圆形或者球形簇,不能识别非球形的簇。
3、k-means与DBSCAN的区别 k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定。k-means属于动态聚类,往往聚出来的类有点圆形或者椭圆形。kmeans对于圆形区域聚类效果较好,dbscan基于密度,对于集中区域效果较好。对于不规则形状,kmeans完全无法用,dbscan可以起到很好的效果。
4、k-means注意问题 1)K如何确定 kmenas算法首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数。这样做的前提是我们已经知道数据集中包含多少个簇,但很多情况下,我们并不知道数据的分布情况,实际上聚类就是我们发现数据分布的一种手段。如何有效的确定K值,这里大致提供几种方法: ①与层次聚类结合[2] 经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类。 ②稳定性方法[3] 稳定性方法对一个数据集进行2次重采样产生2个数据子集,再用相同的聚类算法对2个数据子集进行聚类,产生2个具有k个聚类的聚类结果,计算2个聚类结果的相似度的分布情况。2个聚类结果具有高的相似度说明k个聚类反映了稳定的聚类结构,其相似度可以用来估计聚类个数。采用次方法试探多个k,找到合适的k值。 ③系统演化方法[3] 系统演化方法将一个数据集视为伪热力学系统,当数据集被划分为K个聚类时称系统处于状态K。系统由初始状态K=1出发,经过分裂过程和合并过程,系统将演化到它的稳定平衡状态Ki,所对应的聚类结构决定了最优类数Ki。系统演化方法能提供关于所有聚类之间的相对边界距离或可分程度,适用于明显分离的聚类结构和轻微重叠的聚类结构。 ④使用canopy算法进行初始划分[4] 基于Canopy Method的聚类算法将聚类过程分为两个阶段 Stage1、聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy ,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处理; Stage2、在各个Canopy 内使用传统的聚类方法(如K-means),不属于同一Canopy 的对象之间不进行相似性计算。