五种常用系统聚类分析方法及其比较
五种常用系统聚类分析方法及其比较

五种常用系统聚类分析方法及其比较胡雷芳一、系统聚类分析概述聚类分析是研究如何将对象按照多个方面的特征进行综合分类的一种统计方法[1]。
然而在以往的分类学中,人们主要靠经验和专业知识作定性分类处理,许多分类不可避免地带有主观性和任意性,不能揭示客观事物内在的本质差别和联系;或者人们只根据事物单方面的特征进行分类,这些分类虽然可以反映事物某些方面的区别,但却往往难以反映各类事物之间的综合差异。
聚类分析方法有效地解决了科学研究中多因素、多指标的分类问题[2]。
在目前的实际应用中,系统聚类法和K均值聚类法是聚类分析中最常用的两种方法。
其中,K均值聚类法虽计算速度快,但需要事先根据样本空间分布指定分类的数目,而当样本的变量数超过3个时,该方法的可行性就较差。
而系统聚类法(Hierarchicalclusteringmethods,也称层次聚类法)由于类与类之间的距离计算方法灵活多样,使其适应不同的要求。
该方法是目前实践中使用最多的。
这该方法的基本思想是:先将n个样本各自看成一类,并规定样本与样本之间的距离和类与类之间的距离。
开始时,因每个样本自成一类,类与类之间的距离与样本之间的距离是相同的。
然后,在所有的类中,选择距离最小的两个类合并成一个新类,并计算出所得新类和其它各类的距离;接着再将距离最近的两类合并,这样每次合并两类,直至将所有的样本都合并成一类为止。
这样一种连续并类的过程可用一种类似于树状结构的图形即聚类谱系图(俗称树状图)来表示,由聚类谱系图可清楚地看出全部样本的聚集过程,从而可做出对全部样本的分类[3]。
二、五种常用系统聚类分析方法系统聚类法在进行聚类的过程中,需要计算类与类之间的距离。
根据类与类之间的距离计算方法的不同,我们可以将系统聚类法分为单连接法、完全连接法、平均连接法、组平均连接法与离差平方和法等。
1.单连接法(Singlelinkage)单连接法又称最短距离法。
该方法首先将距离最近的样本归入一类,即合并的前两个样本是它们之间有最小距离和最大相似性;然后计算新类和单个样本间的距离作为单个样本和类中的样本间的最小距离,尚未合并的样本间的距离并未改变。
聚类分析方法概述及应用

聚类分析方法概述及应用聚类分析是一种常用的数据分析方法,用于将相似的数据点聚集在一起,形成有意义的群组。
它可以帮助我们理解数据的内在结构和模式,揭示隐藏在数据背后的信息。
本文将对聚类分析方法进行概述,并探讨其在不同领域的应用。
一、聚类分析方法概述聚类分析方法有多种类型,其中最常用的是原型聚类、层次聚类和密度聚类。
1. 原型聚类原型聚类是一种利用原型向量(即代表一个簇的中心点)来表示和分类数据的方法。
最常见的原型聚类算法是K均值聚类,它通过迭代过程将数据分成K个簇。
2. 层次聚类层次聚类是一种基于树状结构的聚类方法,它将数据点逐步合并为越来越大的簇,直到所有数据点都合并为一个簇。
层次聚类可以分为凝聚型和分裂型两种。
3. 密度聚类密度聚类是一种基于数据点之间密度的聚类方法。
它通过计算每个数据点周围的密度,将密度较高的数据点归为一类,从而形成簇。
DBSCAN是最常用的密度聚类算法之一。
二、聚类分析的应用聚类分析方法在各个领域都有广泛的应用,以下是其中几个典型的应用示例:1. 市场细分聚类分析可帮助企业将潜在消费者细分为不同的市场群体,根据不同群体的需求进行针对性的市场推广。
例如,一家保险公司可以利用聚类分析将客户分为不同的风险类别,制定相应的保险套餐。
2. 医学研究在医学领域,聚类分析可用于帮助识别患者的疾病风险、预测疾病进展、选择最佳治疗方案等。
通过分析患者的基因数据、病历记录和临床表现等信息,医生可以将患者分为不同的疾病类型,为个体化治疗提供指导。
3. 社交网络分析社交网络中存在着庞大的用户群体和复杂的网络关系。
聚类分析可以帮助我们理解社交网络中的用户群体结构,发现潜在的兴趣群体和社区,并为个性化推荐、社交媒体营销等提供支持。
4. 图像分析聚类分析可以应用于图像分析领域,如图像压缩、图像分类等。
通过对图像中的像素点进行聚类,可以将相似的像素点合并为一个簇,从而实现图像的压缩和分类。
5. 网络安全对于网络安全领域来说,聚类分析可以帮助识别异常网络流量、发现潜在的攻击者并采取相应的安全防护措施。
聚类分析的类型与选择

聚类分析的类型与选择聚类分析是一种常用的数据分析方法,它可以将一组数据对象划分为若干个相似的子集,每个子集内的对象相似度较高,而不同子集之间的对象相似度较低。
聚类分析在各个领域都有广泛的应用,如市场细分、社交网络分析、图像处理等。
本文将介绍聚类分析的基本概念和常见的聚类算法,并讨论如何选择适合的聚类算法。
聚类分析的基本概念聚类分析是一种无监督学习方法,它不需要事先标记好的训练样本,而是通过计算数据对象之间的相似度来进行分类。
聚类分析的目标是找到合适的聚类数目和聚类中心,使得同一聚类内的对象相似度最高,而不同聚类之间的对象相似度最低。
聚类分析的类型根据聚类算法的不同原理和方法,聚类分析可以分为以下几种类型:基于距离的聚类基于距离的聚类是最常见和经典的聚类方法之一。
它通过计算数据对象之间的距离来确定聚类结果。
常用的基于距离的聚类算法有K-means、层次聚类和DBSCAN等。
K-meansK-means是一种迭代的、划分的聚类算法。
它首先随机选择K个初始聚类中心,然后将每个数据对象分配到与其最近的聚类中心,再根据新的聚类结果更新聚类中心,重复这个过程直到收敛。
K-means算法的优点是简单、高效,但对初始聚类中心的选择敏感。
层次聚类层次聚类是一种自底向上或自顶向下的聚类方法。
它通过计算数据对象之间的相似度或距离来构建一个层次结构,然后根据不同的划分准则将层次结构划分为若干个聚类。
层次聚类算法的优点是不需要事先指定聚类数目,但计算复杂度较高。
DBSCANDBSCAN是一种基于密度的聚类算法。
它通过定义一个邻域半径和一个最小密度阈值来确定核心对象和边界对象,并将核心对象连接起来形成一个聚类。
DBSCAN算法的优点是可以发现任意形状的聚类,但对参数的选择较为敏感。
基于概率模型的聚类基于概率模型的聚类是一种将数据对象看作随机变量的方法。
它假设数据对象服从某种概率分布,并通过最大似然估计或贝叶斯推断来确定聚类结果。
数据科学家需要了解的5种聚类算法

数据科学家需要了解的5种聚类算法编者按:聚类是一种涉及数据点分组的机器学习技术。
给定一组数据点,我们可以使用聚类算法将每个数据点到分类到图像中的特定组中。
理论上,同一组中的数据点应具有相似的属性和特征,而不同组中的数据点的属性和特征则应高度不同。
聚类是无监督学习的一种方法,是用于多领域统计数据分析的常用技术。
在数据科学中,我们可以通过聚类分析观察使用聚类算法后这些数据点分别落入了哪个组,并从中获得一些有价值的信息。
那么今天,我们就跟着机器学习工程师George Seif来看看数据科学家需要掌握的5种实用聚类算法以及它们的优缺点。
K-Means聚类K-Means(k-平均或k-均值)可以称的上是知名度最高的一种聚类算法,它常出现在许多有关数据科学和机器学习的课程中。
在代码中非常容易理解和实现!让我们来看下面这幅动图。
K-Means聚类1.首先,我们确定要几个的聚类(cluster,也称簇),并为它们随机初始化一个各自的聚类质心点(cluster centroids),它在上图中被表示为“X”。
要确定聚类的数量,我们可以先快速看一看已有的数据点,并从中分辨出一些独特的数据。
2.其次,我们计算每个数据点到质心的距离来进行分类,它跟哪个聚类的质心更近,它就被分类到该聚类。
3.需要注意的是,初始质心并不是真正的质心,质心应满足聚类里每个点到它的欧式距离平方和最小这个条件。
因此根据这些被初步分类完毕的数据点,我们再重新计算每一聚类中所有向量的平均值,并确定出新的质心。
4.最后,重复上述步骤,进行一定次数的迭代,直到质心的位置不再发生太大变化。
当然你也可以在第一步时多初始化几次,然后选取一个看起来更合理的点节约时间。
K-Means的优点是速度非常快,因为我们所做的只是计算数据点和质心点之间的距离,涉及到的计算量非常少!因此它的算法时间复杂度只有O(n)。
另一方面,K-Means有两个缺点。
一是你必须一开始就决定数据集中包含多少个聚类。
五种常用系统聚类分析方法及其比较

五种常用系统聚类分析方法及其比较胡雷芳一、系统聚类分析概述聚类分析是研究如何将对象按照多个方面的特征进行综合分类的一种统计方法[1]。
然而在以往的分类学中,人们主要靠经验和专业知识作定性分类处理,许多分类不可避免地带有主观性和任意性,不能揭示客观事物内在的本质差别和联系;或者人们只根据事物单方面的特征进行分类,这些分类虽然可以反映事物某些方面的区别,但却往往难以反映各类事物之间的综合差异。
聚类分析方法有效地解决了科学研究中多因素、多指标的分类问题[2]。
在目前的实际应用中,系统聚类法和K均值聚类法是聚类分析中最常用的两种方法。
其中,K均值聚类法虽计算速度快,但需要事先根据样本空间分布指定分类的数目,而当样本的变量数超过3个时,该方法的可行性就较差。
而系统聚类法(Hierarchicalclusteringmethods,也称层次聚类法)由于类与类之间的距离计算方法灵活多样,使其适应不同的要求。
该方法是目前实践中使用最多的。
这该方法的基本思想是:先将n个样本各自看成一类,并规定样本与样本之间的距离和类与类之间的距离。
开始时,因每个样本自成一类,类与类之间的距离与样本之间的距离是相同的。
然后,在所有的类中,选择距离最小的两个类合并成一个新类,并计算出所得新类和其它各类的距离;接着再将距离最近的两类合并,这样每次合并两类,直至将所有的样本都合并成一类为止。
这样一种连续并类的过程可用一种类似于树状结构的图形即聚类谱系图(俗称树状图)来表示,由聚类谱系图可清楚地看出全部样本的聚集过程,从而可做出对全部样本的分类[3]。
二、五种常用系统聚类分析方法系统聚类法在进行聚类的过程中,需要计算类与类之间的距离。
根据类与类之间的距离计算方法的不同,我们可以将系统聚类法分为单连接法、完全连接法、平均连接法、组平均连接法与离差平方和法等。
1.单连接法(Singlelinkage)单连接法又称最短距离法。
该方法首先将距离最近的样本归入一类,即合并的前两个样本是它们之间有最小距离和最大相似性;然后计算新类和单个样本间的距离作为单个样本和类中的样本间的最小距离,尚未合并的样本间的距离并未改变。
系统聚类分析方法

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载系统聚类分析方法地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容系统聚类分析方法聚类分析是研究多要素事物分类问题的数量方法。
基本原理是根据样本自身的属性,用数学方法按照某种相似性或差异性指标,定量地确定样本之间的亲疏关系,并按这种亲疏关系程度对样本进行聚类。
常见的聚类分析方法有系统聚类法、动态聚类法和模糊聚类法等。
1. 聚类要素的数据处理假设有m 个聚类的对象,每一个聚类对象都有个要素构成。
它们所对应的要素数据可用 HYPERLINK "javascript:show(Layer100);show(Layer10)" \o "点击控制显示" 表3.4.1给出。
(点击显示该表)在聚类分析中,常用的聚类要素的数据处理方法有如下几种。
① 总和标准化② 标准差标准化③ 极大值标准化经过这种标准化所得的新数据,各要素的极大值为1,其余各数值小于1。
④ 极差的标准化经过这种标准化所得的新数据,各要素的极大值为1,极小值为0,其余的数值均在0与1之间。
2. 距离的计算距离是事物之间差异性的测度,差异性越大,则相似性越小,所以距离是系统聚类分析的依据和基础。
① 绝对值距离选择不同的距离,聚类结果会有所差异。
在地理分区和分类研究中,往往采用几种距离进行计算、对比,选择一种较为合适的距离进行聚类。
例:表3.4.2给出了某地区九个农业区的七项指标,它们经过极差标准化处理后,如表3.4.3所示。
对于表3.4.3中的数据,用绝对值距离公式计算可得九个农业区之间的绝对值距离矩阵:3. 直接聚类法直接聚类法是根据距离矩阵的结构一次并类得到结果。
各种聚类算法的比较
各种聚类算法的比较聚类的目标是使同一类对象的相似度尽可能地小;不同类对象之间的相似度尽可能地大。
目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。
摘自数据挖掘中的聚类分析研究综述这篇论文。
1、层次聚类算法1.1聚合聚类1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离1.1.2最具代表性算法1)CURE算法特点:固定数目有代表性的点共同代表类优点:识别形状复杂,大小不一的聚类,过滤孤立点2)ROCK算法特点:对CURE算法的改进优点:同上,并适用于类别属性的数据3)CHAMELEON算法特点:利用了动态建模技术1.2分解聚类1.3优缺点优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力缺点:大大延长了算法的执行时间,不能回溯处理2、分割聚类算法2.1基于密度的聚类2.1.1特点将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类1)DBSCAN:不断生长足够高密度的区域2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进2.2基于网格的聚类2.2.1特点利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构;1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性2.2.2典型算法1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率2)STING+:改进STING,用于处理动态进化的空间数据3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据4)WaveCluster:以信号处理思想为基础2.3基于图论的聚类2.3.1特点转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边1)优点:不需要进行相似度的计算2.3.2两个主要的应用形式1)基于超图的划分2)基于光谱的图划分2.4基于平方误差的迭代重分配聚类2.4.1思想逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解1)概率聚类算法期望最大化、能够处理异构数据、能够处理具有复杂结构的记录、能够连续处理成批的数据、具有在线处理能力、产生的聚类结果易于解释2)最近邻聚类算法——共享最近邻算法SNN特点:结合基于密度方法和ROCK思想,保留K最近邻简化相似矩阵和个数不足:时间复杂度提高到了O(N^2)3)K-Medioids算法特点:用类中的某个点来代表该聚类优点:能处理任意类型的属性;对异常数据不敏感4)K-Means算法1》特点:聚类中心用各类别中所有数据的平均值表示2》原始K-Means算法的缺陷:结果好坏依赖于对初始聚类中心的选择、容易陷入局部最优解、对K值的选择没有准则可依循、对异常数据较为敏感、只能处理数值属性的数据、聚类结构可能不平衡3》K-Means的变体Bradley和Fayyad等:降低对中心的依赖,能适用于大规模数据集Dhillon等:调整迭代过程中重新计算中心方法,提高性能Zhang等:权值软分配调整迭代优化过程Sarafis:将遗传算法应用于目标函数构建中Berkh in等:应用扩展到了分布式聚类还有:采用图论的划分思想,平衡聚类结果,将原始算法中的目标函数对应于一个各向同性的高斯混合模型5)优缺点优点:应用最为广泛;收敛速度快;能扩展以用于大规模的数据集缺点:倾向于识别凸形分布、大小相近、密度相近的聚类;中心选择和噪声聚类对结果影响大3、基于约束的聚类算法3.1约束对个体对象的约束、对聚类参数的约束;均来自相关领域的经验知识3.2重要应用对存在障碍数据的二维空间按数据进行聚类,如COD(Clustering with Obstructed Distance):用两点之间的障碍距离取代了一般的欧式距离3.3不足通常只能处理特定应用领域中的特定需求4、用于高维数据的聚类算法4.1困难来源因素1)无关属性的出现使数据失去了聚类的趋势2)区分界限变得模糊4.2解决方法1)对原始数据降维2)子空间聚类CACTUS:对原始空间在二维平面上的投影CLIQUE:结合基于密度和网格的聚类思想,借鉴Apriori算法3)联合聚类技术特点:对数据点和属性同时进行聚类文本:基于双向划分图及其最小分割的代数学方法4.3不足:不可避免地带来了原始数据信息的损失和聚类准确性的降低5、机器学习中的聚类算法5.1两个方法1)人工神经网络方法自组织映射:向量化方法,递增逐一处理;映射至二维平面,实现可视化基于投影自适应谐振理论的人工神经网络聚类2)基于进化理论的方法缺陷:依赖于一些经验参数的选取,并具有较高的计算复杂度模拟退火:微扰因子;遗传算法(选择、交叉、变异)5.2优缺点优点:利用相应的启发式算法获得较高质量的聚类结果缺点:计算复杂度较高,结果依赖于对某些经验参数的选择。
经典聚类算法
经典聚类算法
经典聚类算法包括:
1. K-Means算法:一种常见的聚类算法,通过将样本分为K个簇,使得每个簇内部的数据相似度尽可能高,而不同簇之间的数据相似度尽可能低。
2. 层次聚类算法:通过将样本看作是层次结构中的节点,将相似度较高的节点合并成一个新的节点,不断迭代直到所有的节点都被聚类到一起。
3. DBSCAN算法:通过将样本分为核心点、边界点和噪声点,将核心点和边界点组成的区域聚类成一个簇。
4. 密度峰值算法:通过找到密度峰值来聚类样本,将密度峰值和其周围密度较高的点聚类成一个簇。
5. GMM算法:通过建立概率模型来聚类样本,通过求解最优的模型参数来对样本进行聚类。
各种聚类方法及举例
聚类,也被称为Clustering,是一种无监督学习方法,用于将数据集分割成不同的类或簇。
每个簇内的数据对象的相似性尽可能大,而不在同一个簇中的数据对象的差异性也尽可能地大。
以下是一些常见的聚类方法及其简要描述:1. K-Means: K-Means聚类算法是最常用的聚类方法之一,它将数据点分为K个簇,每个簇的中心点是其所有成员的平均值。
例如,可以使用K-Means对顾客按照购买行为进行分组。
2. Affinity Propagation: 这是一种基于图论的聚类算法,旨在识别数据中的"exemplars" (代表点)和"clusters" (簇)。
例如,可以使用Affinity Propagation来识别新闻文章中的主题。
3. Agglomerative Clustering (凝聚层次聚类): 这是一种自底向上的聚类算法,它将每个数据点视为一个初始簇,并将它们逐步合并成更大的簇,直到达到停止条件为止。
例如,可以使用Agglomerative Clustering来对基因进行分类。
4. Mean Shift Clustering: 此算法根据数据的密度来进行聚类。
例如,可以使用Mean Shift 对天气数据进行空间分区。
5. Bisecting K-Means: 它是K-Means的衍生算法,通过不断地将当前簇一分为二来找到更好的聚类效果。
例如,可以使用Bisecting K-Means对文档进行主题分类。
6. DBSCAN: DBSCAN是一个基于密度的聚类算法,它可以识别出任意形状的簇,并且可以处理噪声数据。
例如,可以使用DBSCAN对地理空间数据进行区域划分。
聚类分析的类型简介及应用
聚类分析的类型简介及应用聚类分析是一种无监督学习的方法,它将数据集中的对象按照其相似性分为若干个互不重叠的子集,每个子集被称为一个簇。
不同的聚类分析方法根据其内聚力和分离力的不同标准,可以分为层次聚类、划分聚类、密度聚类和模型聚类等类型。
下面将对这些聚类分析的类型进行详细介绍,并介绍它们的应用领域。
1. 层次聚类:层次聚类根据簇间的连续关系进行分类,可以形成一个层次性的聚类结果。
层次聚类分为凝聚式和分离式两种方法。
凝聚式聚类从每个数据点开始,逐渐合并相邻的数据点,直到所有的数据点都被合并成一个簇。
分离式聚类从所有的数据点开始,逐渐将它们分成更小的簇,直到每个数据点都成为一个簇。
层次聚类的优点是不需要事先指定簇的个数,缺点是时间复杂度较高,适用于数据较少、簇的个数未知的情况。
层次聚类的应用包括社交网络分析、生物信息学、图像分析等。
2. 划分聚类:划分聚类根据簇内的相似性和簇间的分离度将数据集划分成不同的簇。
常用的划分聚类方法有K-means聚类和K-medoids聚类。
K-means聚类将数据集分成K个簇,每个簇的中心是该簇中所有数据点的均值。
K-medoids 聚类是K-means聚类的扩展,每个簇的中心是该簇中离其他数据点最近的数据点。
划分聚类的优点是计算速度快,缺点是对初始簇中心的选择敏感,适用于大规模数据集和已知簇个数的情况。
划分聚类的应用包括市场细分、用户分类、图像压缩等。
3. 密度聚类:密度聚类根据数据点的密度将其划分成不同的簇。
常用的密度聚类方法有DBSCAN和OPTICS。
DBSCAN通过设置一个半径范围和一个最小邻居数目的阈值,标记样本点为核心点、边界点或噪声点,并将核心点连接成簇。
OPTICS根据样本点之间的密度和距离建立一个可达距离图,通过截取距离图的高度获得不同的簇。
密度聚类的优点是不需要指定簇的个数,对噪声和离群点鲁棒性较强,缺点是对参数的选择敏感,计算复杂度较高,适用于数据集具有不规则形状的情况。