量子力学中的自旋与角动量
量子力学(第八章自旋)

乌仑贝克(Uhlenbeck)和哥德斯密脱
(Goudsmit)为了解释这些现象,于1925年 左右提出了电子自旋的假设:
(1)每个电子都具有一个自旋角动量 sr ,它
在空间任何方向上的投影只能取两个数值:
r (2S)z 每个h2 (电若子将具空有间自任旋意磁方矩向r 取s 它为与z方自向旋)角动 量 s 的关系是
因而
ˆ x
0
b*
b
0
(31)
而
ˆ
2 x
0
b*
b 0
0
b*
b
0
b2 0
0 1 (32)
b 2
所以 b 2 1,因而可以令 b ei ( 为实)
于是
ˆ x
0
ei
ei
0
(33)
再利用 y i z x ,可得
ˆ y
0
i
ei
ei 0
0
e i (
2)
ei( 2)
系,即
^^
^ ^^
^ ^^
^
[S x , S y ] ih S z ,[S y , S z ] ih S x ,[S z , S x ] ih S y
(11)
或
^r ^r
^r
S S ih S
由于Srˆ 在任意空间方向上投影只能取 h 2这
两 的个 本函征数值值都,是故hSˆ2x ,Sˆy而Sˆz分量这平三方个算分符量的算本符征
1
ir
[(
pr
e
r A)
(
pr
e
r A)]
2 c
2
c
c
其中利用了公式
(r
Ar )(r
轨道角动量和自旋角动量的对易关系

轨道角动量和自旋角动量的对易关系轨道角动量和自旋角动量是量子力学中两个重要的角动量概念。
轨道角动量是由粒子运动轨道的几何性质定义的,而自旋角动量则是粒子本身固有的性质。
在量子力学中,这两个角动量具有不同的本征值和本征函数,它们之间的对易关系也不同。
我们先简要介绍一下轨道角动量和自旋角动量的基本概念。
轨道角动量(Orbital angular momentum)是由粒子在运动过程中轨道的几何形状引起的量子态的性质。
在量子力学中,轨道角动量是由运动过程中的位置变量r和动量变量p确定的。
它的基本算符是:L = r × p其中,r为位置变量,p为动量变量,L为轨道角动量算符。
自旋角动量(Spin angular momentum)则是粒子本身固有的性质所带来的角动量概念。
粒子本身可以看做是一个量子旋转,在量子力学中,它的角度是已知的,但方向随机。
自旋角动量的值和粒子的物种有关,可以是1/2、1、3/2等。
它的基本算符是:S其中,S为自旋角动量算符。
在量子力学中,由于轨道角动量和自旋角动量的定义方式不同,它们具有不同的对易关系。
对于轨道角动量算符L,它的三个分量Lx、Ly、Lz都满足下列的对易关系:[Lx, Ly] = iℏLz[Ly, Lz] = iℏLx[Lz, Lx] = iℏLy其中,[A,B]表示算符A和B的对易子,i为单位虚数,ℏ为约化普朗克常数。
这样的对易关系可以通过量子力学的数学公式进行推导,但这里我们不做详细的讲解。
从对易关系可以看出,轨道角动量和自旋角动量的对易关系不同,这意味着它们在同一体系中不会同时测量到确定的值。
这种现象称为不确定性原理,它是量子力学中一个基本的概念。
不确定性原理表明,对于某个量子态,一次测量只能获得这个态的某个角动量的一个固定值,同时对于另一个角动量的测量将会对前一个角动量测量的结果造成干扰,导致统计学上的测量不确定性。
总结在本文中,我们介绍了轨道角动量和自旋角动量的基本概念,包括它们的定义方式和算符。
第六章自旋和角动量

第六章⾃旋和⾓动量第六章⾃旋和⾓动量⾮相对论量⼦⼒学在解释许多实验现象上获得了成功。
⽤薛定谔⽅程算出的谱线频率,谱线强度也和实验结果相符。
但是,更进⼀步的实验事实发现,还有许多现象,如光谱线在磁场中的分裂,光谱线的精细给构等,⽤前⾯⼏章的理论⽆法解择,根本原因在于,以前的理论只涉及轨道⾓动量。
新的实验事实表明,电⼦还具有⾃旋⾓动量。
在⾮相对论量⼦⼒学中,⾃旋是作为⼀个新的附加的量⼦数引⼊的。
本章只是根据电⼦具有⾃旋的实验事实,在定薛谔⽅程中硬加⼊⾃旋。
本章的理论也只是局限在这样的框架内。
以后在相对论量⼦⼒学中,将证明,电⼦的⾃旋将⾃然地包含在相对论的波动⽅程—狄拉克⽅程中。
电⼦轨道⾓动量在狄拉克⽅程中不再守恒,只有轨道⾓动量与⾃旋⾓动量之和,总⾓动量才是守恒量。
本章将先从实验上引⼊⾃旋,分析⾃旋⾓动童的性质,建⽴包含⾃旋在内的⾮相对论量⼦⼒学⽅程—泡利⽅程。
然后讨论⾓动量的藕合,并进⼀步讨论光错线在场中的分裂和精细结构,此外还会对电⼦在磁场中的⼀些其他的有趣的重要现象作些探讨。
§6. 1电⼦⾃旋施特恩(Stern)⼀盖拉赫(Gerlach)实验是发现电⼦具有⾃旋的最早的实验之⼀,如图6.1.1,由K 源射出的处于s 态的氢原⼦束经过狭缝和不均匀磁场,照射到底⽚PP 上,结果发现射线束⽅向发⽣偏转,分裂成两条分⽴的线.这说明氢原⼦具有磁矩,在⾮均匀磁场的作⽤下受到⼒的作⽤⽽发⽣偏转.由于这是处于s 态的氢原⼦,轨道⾓动量为零,s 态氢原⼦的磁矩不可能由轨道⾓动量产⽣,这是⼀种新的磁矩.另外,由于实验上只发现只有两条谱线,因⽽这种磁矩在磁场中只有两种取向,是空间量⼦化的,⽽且只取两个值。
假定原⼦具有的磁矩为M ,则它在沿z ⽅向的外磁场中的势能为U= -M =M cos θ (6.1.1)θ为外磁场与原⼦磁矩之间的夹⾓。
按(6.1.1)式,原⼦在z ⽅向所受的⼒是F z =-Z U ??=M zcos θ (6.1.2) 实验证明,这时分裂出来的两条谱线分别对应于cos θ=+1和-1两个值。
专题讲座6-角动量理论

专题讲座6-角动量与自旋在量子力学中角动量算苻(包括轨道角动量,自旋角动量)满足对易关系L L i L ⨯= 即及2[, ]=0.L L 即222[, ]0, [, ]0, [, ]0,x y z L L L L L L === 另外有2222,x y z L L L L =++下面由这些对易关系来求本征值和本征态 2L 同L 的各分量是对易的的,我们可以期望找到2L 和(比如说)z L 的共同本征态:2L f f λ= 和 .z L f f μ=引入算苻我们有()11, ()22x y L L L L L L i+-+-=+=-††, L L L L +--+== (L ±不是厄密算苻)L ±与z L 的对易关系为[, ][, ][, ]()(),z z x z y y x x y L L L L i L L i L i i L L iL ±=±=±-=±±所以[, ].z L L L ±±=±当然,也有2[, ]0.L L ±=定理: 如果f 是2L 和z L 的本征函数,那么L f ±也是: 证: 22()()()(),L L f L L f L f L f λλ±±±±===所以L f±是2L 具有相同的本征值λ的一个本征函数。
()()() =()(),z z z z L L f L L L L f L L f L f L f L f μμ±±±±±±±=-+=±+±所以L f ±是z L 的一个本征函数,但是本征值为μ± 。
我们称L +为“升阶”算符,因为它使z L 的本征值增加一个 ,L -为“降阶”算符,它使z L 的本征值减少一个 。
第三章 量子力学中的角动量

J 2 j1 , j2 , j , m = j ( j + 1) J z j1 , j2 , j , m = m
2
j1 , j2 , j , m
j1 , j2 , j , m
显然,总角动量量子数 j,它的 z 分量量子数 m 与 j1 , j 2 , m1 , m 2 有关,为了找出它们之间 的关系,首先必须将耦合表象和无耦合表象这两个表象联系起来。为此,将耦合表象的基矢
J Z j1 , j2 , j , m =
m1 , m2
∑ (J
1Z
+ J 2 Z ) j1 , m1 , j2 , m2 × j1 , m1 , j2 , m2 j1 , j2 , j , m
于是有
m = m1 + m2
上式可写成
j1 , j2 , j , m = ∑ j1 , m1 , j2 , m − m1
j1 , j 2 , j , m 按无耦合表象的基矢 j1 , m1 , j 2 , m 2 展开,得
j1 , j2 , j , m =
m1 , m2
∑
j1 , m1 , j2 , m2
j1 , m1 , j2 , m2 j1 , j2 , j , m
上式中的系数 j1 , m1 , j 2 , m 2 j1 , j 2 , j , m 称为克莱布希一高登(Clebsch 一 Gordon)系数。以算 符式 J z = J1z + J 2 z 分别作用于上式的两端,得
2 2 J , J2 =0
另外显然还存在
2 J Z , J12 = 0, JZ , J2 =0
J 2, JZ =0
这些对易关系表明 J12 , J 22 , J 2 , J Z 这四个算符两两对易,它们具有共同的正交、归一、完备、封 闭的本征函数系。记相应于量子数 j1 j 2 , j, m 的本征函数为 j1 , j 2 , j , m 有
量子力学中的自旋角动量和轨道角动量的叠加-概述说明以及解释

量子力学中的自旋角动量和轨道角动量的叠加-概述说明以及解释1.引言1.1 概述量子力学是描述微观领域的物理学理论,它在20世纪初由一些杰出的科学家如普朗克、爱因斯坦等人奠定了基础。
在量子力学中,自旋角动量和轨道角动量是两个重要的概念。
自旋角动量是粒子固有的属性,类似于物体的自转。
它与粒子的旋转对称性有关,可以用半整数来表示。
经过实验证明,自旋角动量在微观领域中起着非常重要的作用,并且与一些基本粒子的特性紧密相关。
自旋角动量的量子化使得粒子的行为在某些情况下表现出了奇特的性质,例如自旋相互作用和贝尔不等式等。
轨道角动量是粒子的运动轨道引起的角动量,与粒子的运动速度和轨道形状有关。
它可以用整数来表示。
轨道角动量在描述粒子围绕某一点或某一轴旋转的过程中的动力学性质时非常有用。
例如,在原子物理学中,轨道角动量可以解释电子在原子轨道中的分布和运动方式。
在量子力学中,自旋角动量和轨道角动量可以进行叠加,形成新的总角动量。
这种叠加有一些独特的规则和性质,例如自旋角动量和轨道角动量相互作用会导致总角动量的取值范围发生变化。
这种角动量的叠加在理论和实验研究中非常常见,对于理解粒子行为和物理现象具有重要意义。
本文将通过介绍自旋角动量和轨道角动量的定义和性质,探讨它们在量子力学中的叠加规律和重要性。
此外,我们还将讨论量子力学中自旋角动量和轨道角动量的一些应用,并对文章进行总结和结论。
这样的研究不仅有助于深入理解量子力学的基本概念和原理,还为未来的量子技术和量子计算领域的发展提供了理论基础和实验指导。
1.2文章结构文章结构部分的内容可以包括以下内容:文章的结构是为了让读者更好地理解和组织文章内容,使其逻辑清晰、层次分明。
本文将按照以下结构展开讨论:2.正文:本部分将详细介绍自旋角动量和轨道角动量的定义和性质,并探讨它们的叠加效应。
具体包括以下几个方面的内容:2.1 自旋角动量的定义和性质:介绍自旋角动量的概念和定义,包括自旋角动量的量子化、自旋的本质和自旋之间的相关性质等内容。
量子力学中的角动量及其运算

量子力学中的角动量及其运算量子力学是现代物理学的基石之一,而其中的角动量及其运算则是量子力学中一个重要的概念。
角动量在宏观世界中就已经被我们熟知,比如地球的自转和公转都涉及到角动量。
而在微观世界中,角动量的性质和运算方式则呈现出了与经典物理学截然不同的特点。
在量子力学中,角动量是一个量子态的一个重要的内禀性质,它描述了一个粒子围绕一个轴旋转的特性。
量子力学中的角动量可以分为轨道角动量和自旋角动量两部分。
轨道角动量主要描述了一个粒子在真空中围绕着一个轴旋转的行为。
它的值是量子化的,即只能取特定的数值。
根据量子力学的原理,一个量子态的角动量模长的平方只能是整数倍的普朗克常数除以转动常数。
至于如何进行角动量的运算,量子力学提供了一套严密的数学方法。
对于轨道角动量,我们可以用角动量算符来表示和计算。
角动量算符是通过对角动量的坐标进行偏导数定义的。
具体来说,我们可以用三个分量的角动量算符(Lx、Ly和Lz)来描述一个粒子的角动量。
角动量算符之间的运算遵循一些特定的规则,称为规范对易关系。
这些规则表明,Lx、Ly和Lz之间互相不对易,但它们之间的对易子具有一定的对称性。
根据这些对易关系,我们可以推导出角动量算符的本征值和本征函数。
与轨道角动量不同,自旋角动量是粒子固有的内禀性质。
它描述了粒子通过自旋而产生的角动量。
自旋角动量同样遵循量子化的原理,只能取特定的数值。
自旋角动量的运算方式与轨道角动量类似,也可以通过自旋算符来表示和计算。
自旋算符的分量(Sx、Sy和Sz)之间同样遵循规范对易关系,并且也有对应的本征值和本征函数。
通过角动量和自旋角动量的运算,我们可以获得很多重要的物理结果。
比如,根据量子力学的原理,特定角动量的量子态具有特定的能量。
因此,我们可以通过测量粒子的角动量来得知粒子的能级情况。
此外,角动量在量子力学中还有很多重要的应用。
比如,在原子物理中,角动量可以帮助我们解释分子的结构和能级分裂。
在固体物理中,角动量可以解释晶格中的电子行为和电子能带结构。
量子力学中的角动量与角动量守恒

量子力学中的角动量与角动量守恒量子力学是研究微观世界中粒子行为的物理学分支,而角动量是量子力学中的一个重要概念。
本文将探讨量子力学中的角动量以及守恒性质。
一、角动量的定义与性质角动量是描述物体旋转状态的物理量,它与物体的几何形状和运动方式密切相关。
在经典物理中,角动量可以通过物体的质量、位置矢量和速度矢量的叉积来定义。
然而,在量子力学中,由于粒子具有波粒二象性,角动量的定义与经典物理有所不同。
在量子力学中,角动量有两个关键属性:大小和方向。
大小由量子数j表示,而方向由量子数m表示。
这些量子数与角动量算符的本征值有关,通过测量可以得到具体的角动量数值。
二、角动量算符与本征态角动量算符在量子力学中具有重要的地位,它们分别表示对应的角动量分量在三个空间方向上的操作。
常见的角动量算符包括轨道角动量算符L和自旋角动量算符S。
通过对角动量算符的本征态进行测量,可以得到具体的角动量值。
这些本征态通常用球谐函数表示,并具有特定的角动量量子数。
例如,对于轨道角动量算符,其本征矢量即球谐函数Y_lm,其中l表示轨道量子数,m表示磁量子数。
三、角动量守恒定律在量子力学中,角动量守恒是一项重要的基本定律。
它意味着,在一个封闭系统中,角动量的总和在时间上保持不变。
这一定律的重要性在于它对微观粒子行为的限制,以及对物理现象解释的影响。
角动量守恒包括轨道角动量守恒和自旋角动量守恒。
轨道角动量守恒指的是在一个封闭系统中,轨道角动量的总和保持不变。
自旋角动量守恒则指的是系统中粒子的自旋角动量总和保持不变。
四、应用与实验验证角动量的概念和守恒性质在量子力学的各个领域都有广泛的应用。
例如,在原子物理中,轨道角动量和自旋角动量的守恒性质对于描述原子光谱、电子结构和化学键的性质至关重要。
实验证实了角动量守恒的重要性。
通过实验观测到的自旋和轨道角动量的守恒,科学家们验证了量子力学的正确性,并为进一步研究微观世界的行为提供了重要的基础。
结论量子力学中的角动量与角动量守恒是研究微观世界行为的重要概念和定律。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子力学中的自旋与角动量
量子力学是现代物理学中的一门重要学科,它研究的是微观粒子的行为和性质。
在量子力学中,自旋和角动量是两个基本概念,它们在解释和描述微观世界中的粒子运动和相互作用过程中起着至关重要的作用。
自旋是描述粒子内禀性质的一个量子数,它与粒子的角动量密切相关。
自旋可
以理解为粒子围绕自身轴线旋转的一种运动形式,但与经典力学中的角动量不同,自旋是一种纯粹的量子现象,它不依赖于粒子的运动状态或空间位置。
自旋的取值可以是整数或半整数,例如电子的自旋量子数为1/2,光子的自旋
量子数为1。
自旋量子数的大小决定了粒子的自旋态数目,对于自旋量子数为s的
粒子,它的自旋态数目为2s+1。
自旋态可以用矢量表示,例如自旋量子数为1/2的粒子有两个自旋态,分别用上箭头和下箭头表示。
在量子力学中,角动量是一个重要的物理量,它描述了粒子的旋转和转动运动。
角动量可以分为轨道角动量和自旋角动量两部分。
轨道角动量是由粒子的运动轨道和动量决定的,而自旋角动量则是由粒子的自旋性质决定的。
自旋和角动量之间存在着一种有趣的关系,即自旋角动量与轨道角动量的耦合。
这种耦合可以使得粒子的总角动量具有一些特殊的性质。
例如,当自旋和轨道角动量相互平行时,粒子的总角动量为最大值;当自旋和轨道角动量相互反平行时,粒子的总角动量为最小值。
这种耦合关系在原子物理学和核物理学中有着广泛的应用,可以解释和预测一些实验现象。
除了自旋和角动量的耦合关系,量子力学中还存在着一些有关自旋的重要概念。
例如,自旋的测量和自旋的态叠加。
在量子力学中,自旋的测量可以得到两个可能的结果,分别对应于自旋量子数的两个取值。
而自旋的态叠加则是指将两个自旋态进行线性组合,得到一个新的自旋态。
这种叠加可以用来描述多粒子系统中的自旋相互作用和纠缠现象。
自旋和角动量是量子力学中的重要概念,它们在解释和描述微观世界中的粒子行为和性质方面起着至关重要的作用。
通过研究自旋和角动量,我们可以更好地理解量子力学的基本原理和规律,进一步推动物理学的发展和应用。
未来,随着量子技术的不断进步,自旋和角动量的研究将在更广泛的领域中发挥重要作用,为人类认识和探索微观世界提供更多的可能性。