讲圆周角定理与圆的切线

合集下载

圆的概念 公式及推导完整版

圆的概念 公式及推导完整版

〖圆的定义〗几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。

集合说:到定点的距离等于定长的点的集合叫做圆。

〖圆的相关量〗圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.14159265358979323846…,通常用π表示,计算中常取3.1416为它的近似值。

圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

圆心角和圆周角:顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。

圆锥侧面展开图是一个扇形。

这个扇形的半径成为圆锥的母线。

〖圆和圆的相关量字母表示方法〗圆—⊙半径—r 弧—⌒直径—d扇形弧长/圆锥母线—l 周长—C 面积—S〖圆和其他图形的位置关系〗圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO<r。

两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。

两圆圆心之间的距离叫做圆心距。

两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。

郭氏数学-圆的切线长定理、弦切角定理、切割线定理、相交弦定理

郭氏数学-圆的切线长定理、弦切角定理、切割线定理、相交弦定理

郭氏数学-圆的切线长定理、弦切角定理、切割线定理、相交弦定理切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。

2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。

3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。

直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。

5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。

6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。

7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD.连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥A B于P.PC2=PA·PB.用相交弦定理.切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O 于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。

九年级数学下册《圆周角定理及其推论》教案、教学设计

九年级数学下册《圆周角定理及其推论》教案、教学设计
1.对圆周角定理的理解不够深入,难以将其应用于实际问题。
2.在解决综合性的几何问题时,缺乏系统的解题思路和方法。
3.部分学生对几何图形的观察和分析能力较弱,影响了解题效果。
针对以上情况,教师应关注以下几点:
1.注重启发引导,帮助学生建立圆周角定理的知识体系,提高学生的理解能力。
2.通过典型例题的讲解和练习,培养学生分析问题、解决问题的能力。
3.学生独立完成练习题,教师巡回辅导,解答学生疑问。
4.选取部分学生的作业进行展示和点评,表扬优秀作业,指出不足之处,并提出改进建议。
(五)总结归纳
1.引导学生回顾本节课所学内容,总结圆周角定理及其推论的核心要点。
2.帮助学生梳理解题思路和方法,强调几何图形在解题过程中的作用。
3.鼓励学生提出本节课的收获和疑问,组织全班同学进行交流讨论。
2.鼓励小组成员积极发表见解,共同探讨解决问题的策略和方法。
3.教师巡回指导,针对每个小组的讨论情况进行点评,引导学生深入思考。
4.各小组汇报讨论成果,分享解题心得,促进全班同学共同提高。
(四)课堂练习
1.设计具有梯度性的练习题,让学生分层练习,巩固所学知识。
2.练习题涵盖圆周角定理及其推论的应用,包括基础题、提高题和拓展题。
-采用多元化的评价方式,如课堂问答、小组讨论、课后作业和阶段测试,全面评估学生的学习效果。
-关注学生在解题过程中的思维过程,鼓励创新和灵活运用知识。
-定期对学生的学习情况进行反馈,指导学生改进学习方法,提高学习效率。
四、教学内容与过程
(一)导入新课
1.复习圆的基本概念和性质,如圆心、半径、直径等,为学生学习圆周角定理做好铺垫。
-总结反馈:引导学生总结学习收获,对易错点进行梳理和讲解,巩固学习成果。

(完整)切线长定理与弦切角定理.知识精讲(-) -教师版

(完整)切线长定理与弦切角定理.知识精讲(-) -教师版

中考内容中考要求A B C直线与圆的位置关系了解直线与圆的位置关系;了解切线的概念,理解切线与过切点的半径之间的关系;会过圆上一点画圆的切线;了解切线长的概念能判定直线和圆的位置关系;会根据切线长的知识解决简单的问题;能利用直线和圆的位置关系解决简单问题 能解决与切线有关的问题⎧⎧⎪⎪⎨⎪⎪⎪⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎧⎪⎪⎪⎨⎪⎪⎪⎩⎩概念切线长定理定理相关结论概念切线长定理与弦切角定理弦切角定理定理相交弦定理圆幂定理切割线定理割线定理一、切线长定理1、切线长的概念在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长. 2、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.BAPO【注意】在新课讲解时需要讲解为什么从圆外一点引圆的两条切线.切线长定理与弦切角定理中考大纲知识精讲知识网络图3、相关结论(1)圆的两条平行切线,切点间的线段是直径. (2)圆外切四边形的两组对边和相等. (3)圆外切平行四边形是菱形。

(4)圆心和圆外这点的连线垂直平分两切点的连线. 【注意】:切线是直线,切线长是线段长;二、弦切角定理(选讲) 1、弦切角顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角. 2、弦切角定理定理:弦切角等于它所夹的弧所对的圆周角。

推论:两个弦切角所夹的弧相等,那么这两个弦切角也相等【注意】1、明确弦切角所夹的弧是在弦切角内部的一条弧。

2、弦切角必须具备的三个条件:(1)顶点在圆上(2)一边与圆相切(3)一边与圆相交3、弦切角和圆周角的联系与区别弦切角可以看做是圆周角的一边绕顶点旋转到圆相切时所成的角,顶点都在圆上。

弦切角的一边是过顶点的弦,另一边是切线上以切点为端点的一条射线,而圆周角的两边均是弦。

三、圆幂定理(选讲) 1、相交弦定理(1)相交弦定理:圆内的两条相交弦被交点分成的两条线段长的乘积相等. 如图,弦AB 和CD 交于⊙O 内一点P ,则PA PB PC PD ⋅=⋅.P ODC A【证明】如图,AB 、CD 为⊙O 的两条任意弦.相交于点P ,连接AD 、BC ,由于B ∠与D ∠同为弧AC 所对的圆周角,因此由圆周角定理知:B D ∠=∠,同理A C ∠=∠,所以PAD PCB ∽△△. 所以有:PA PDPC PB=,即:PA PB PC PD ⨯=⨯.PDCBA(2)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项. 2、切割线定理如图,在⊙O 中,AB 是⊙O 的切线,AD 是⊙O 的割线,则题意中满足2AB AC AD =⋅.ODCB A3、割线定理从从圆外一点P 引两条割线与圆分别交于A 、B ;C 、D ,则有··PA PB PC PD =1、圆的切线长定理是解决圆内求线段长、角度数,证明线段相等和成比例等的重要工具,在解题过程中常: (1)连结圆心和切点构造直角三角形; (2)连结圆心和圆外这一点构造角平分线; (3)连结两切点等构造等腰三角形或垂直关系。

高三数学圆周角定理与弦切角的性质(中学课件201911)

高三数学圆周角定理与弦切角的性质(中学课件201911)

• A、∠P;
B、∠CAQ;
• C、∠PAB;
D、以上都不对
QA
O B
C
图 11
B
P
E
O A
C
D
图 12
• 练习5:如图12,AB是⊙O的直径,DE
切 ⊙ O 于 点 C 。 若 ∠ ACD=40° , 则
∠BAC=
()
• A、30°;B、40°;C、50°;D、
60°。
B O
A
E
图C12
D
小结:
900.则ACD DAC 900. 因为AC是弦,且
直线CE和圆O切于点C,所以ACD B.
因此, DAC CAB,即AC平分BAD .
练习:课本P26习题1、2、3
• 练 习 4 : PQ 是 ⊙ O 的 切 线 , 切 点 为 A , PBC是⊙O的割线,则与∠C相等的角是 ()
一、圆周角定理及证明 二、圆心角定理及证明 三、弦切角定理及证明 四、其它与圆有关的角的性质
选修 4-1
几何证明选讲
第二讲 直线与圆的位 置关系
圆周角定理
复习:
一、圆中的角: 圆周角、圆心角、弦切角
A
C
O
B
C
E
A(B)
图2 1
练习1:下列各图中,哪一个角是弦切 角?
C
C
C
B
A
B
A C
B
A
A
B
C
B A
D
• 练习2:图3中有几个弦切角?( ) • A、2 ;B、3; C、 4; D、5.
D
O C
E
A
B
图3
;武汉网站建设 武汉网站制作 武汉网站建设 武汉网站制作

圆的切线的性质定理和画法

圆的切线的性质定理和画法

.
A
.O
.
B
l
.O
.
切点A
l
.O
l
二、用圆心o到直线l的距离d与圆的半 径r的关系来区分
.O
1、直线和圆相离
d > r
r d ┐ l
2、直线和圆相切
d = r
.o d r ┐
l
3、直线和圆相交
d < r
.O d r ┐
l
探究
如图,直线l是圆O的切线,切点为A,圆O的半径为r . 试探究:半径OA与l的位置关系?
. O
A
C D
已知:AB是直径,AD是切线,判 断弦切角∠DAC与圆周角∠ABC 之间的关系 B E
O
C D
A
结束寄语
下课了!
• 具有丰富知识和经验的人,比 只须一种知识和经验更容易产 生新的联想和独到的见解。
直线l就是所求作的切线,如图
练习
1.如图,这是手表的圆形表盘,两个圆的圆心都是O, 大圆的弦AB所在直线是小圆的切线,切点为C,
求证:C是线段AB的中点.
证明: 两个同心圆.连接OA,OB
OA=OB ∴△OAB为等腰三角形 C为切点,OC⊥AB 即OC为△ABO的高,
A
O · C ·
B
∴OC为△ABO的中线
25.5直线与圆的位置关系
-----切线的性质和画法
知识回顾 直线与圆的位置关系
一、用公共点的个数来区分
特点: 直线和圆有两个公共点, 叫直线和圆相交, 这时的直线叫做圆的割线。 特点: 直线和圆有唯一的公共点, 叫做直线和圆相切。 这时的直线叫切线, 唯一的公共点叫切点。 特点: 直线和圆没有公共点, 叫做直线和圆相离。

第一章 §2 2.1 圆周角定理

第一章  §2  2.1  圆周角定理

2.1 圆周角定理对应学生用书P12]1.圆周角定理(1)文字语言:一条弧所对的圆周角等于它所对的圆心角的一半;圆周角的度数等于它所对的弧的度数的一半.(2)符号语言:在⊙O BAC,∠BOC,则有∠BAC=∠BOC=(3)图形语言:如图所示.2.圆周角定理的推论(1)推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.(2)推论2 半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弧是半圆.1.圆周角定理中圆周角与圆心角所对的弧是同一段弧吗?提示:一定对着同一条弧才能有定理中的数量关系.2.推论1中若把“同弧或等弧”改为“同弦或等弦”结论还成立吗?提示:不成立.因为一条弦所对的圆周角有两种可能,在一般情况下是不相等的.对应学生用书P13]利用圆周角定理解决计算问题[例1][思路点拨] 本题主要考查圆周角定理.顶点A的位置不确定,所以点A和圆心O可能在BC的同侧,也可能在BC的异侧.[精解详析] (1)当点A和圆心O在BC的同侧时,如图①所示.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BAC=∠BOC=55°.(2)当点A和圆心O在BC的异侧时,如图②所示.设P为圆上与圆心O在BC的同侧一点,连接PB,PC.∵OB=OC,∴∠OBC=∠OCB.∵∠OBC=35°,∴∠BOC=180°-2∠OBC=110°.∴∠BPC=∠BOC=55°.∴∠BAC=180°-∠BPC=180°-55°=125°.综上所得,∠A的度数是55°或125°.使用圆周角定理时,一定要注意“同一条弧”所对的圆周角与圆心角这一条件.1.如图,△ABC内接于⊙O,OD⊥BC于D,∠A=50°,则∠OCD的度数是( )A.40° B.25°C.50° D.60°解析:选A 连接OB.因为∠A=50°,所以BC弦所对的圆心角∠BOC=100°,∠COD=∠BOC=50°,∠OCD=90°-∠COD=90°-50°=40°.所以∠OCD=40°.[例2] 如图,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4 cm.(1)试判断OD与AC的关系;(2)求OD的长;(3)若2sin A-1=0,求⊙O的直径.[思路点拨] 本题主要考查圆周角定理推论2的应用.解题时,可判断∠ACB=90°.利用OD∥BC可得OD⊥AC.用相似可得OD的长,由边角关系可求⊙O的直径.[精解详析] (1)∵AB为⊙O的直径,∴∠ACB=90°.∵OD∥BC,∴∠ADO=∠ACB=90°,∴OD⊥AC.(2)∵△AOD∽△ABC,∴==,∴OD=BC=×4=2(cm).(3)∵2sin A-1=0,∴sin A=.∵sin A=,∴=,∴AB=2BC=2×4=8(cm).“半圆(直径)所对的圆周角是直角,和直径能构成直角三角形”这一性质应用广泛,解题时注意直角三角形中有关定理的应用.本例的条件变为:“弦AC=4,BC=3,CD⊥AB于D”,求CD.解:由勾股定理知AB=5,∵S△ACB=AC·BC=AB·CD,∴3×4=5×CD,∴CD=.利用圆周角定理解决证明问题[例3]E,求证:AE =BE.[思路点拨] 本题主要考查利用圆周角定理证明问题.解题时只需在△ABE中证明∠ABE=∠EAB.而要证这两个角相等,只需借助∠ACB即可.[精解详析] ∵BC是⊙O的直径,∴∠BAC为直角,又AD⊥BC,∴Rt△BDA∽Rt△BAC.∴∠BAD=∠BCA.FBA=∠ACB.∴∠BAD=∠FBA.∴△ABE为等腰三角形.∴AE=BE.有关圆的题目中,圆周角与它所对的弧及弦可以相互转化.即欲证圆周角相等,可转化为证明它们所对的弧相等.要证线段相等可以转化为证明它们所对的弧相等.这是证明圆中线段相等的常用方法.2.如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO的延长线交于点D.求证:(1)∠CAB=∠BOD.(2)△ABC≌△ODB.证明:(1)因为AB是⊙O的直径,所以∠ACB=90°,由∠ABC=30°,所以∠CAB=60°.又OB=OC,所以∠OCB=∠OBC=30°,所以∠BOD=60°,所以∠CAB=∠BOD.(2)在Rt△ABC中,∠ABC=30°,得AC=AB,又OB=AB,所以AC=OB.由BD切⊙O于点B,得∠OBD=90°.在△ABC和△ODB中,所以△ABC≌△ODB.本课时主要考查圆周角定理及推论的计算与证明问题,难度中档.[考题印证]如图,AB是圆O的直径,D,E为圆O上位于AB异侧的两点,连接BD并延长至点C,使BD=DC,连接AC,AE,DE.求证:∠E=∠C.[命题立意]本题主要考查圆周角定理的推论及平行线的性质.[自主尝试] 连接OD,因为BD=DC,O为AB的中点,所以OD∥AC,于是∠ODB=∠C.因为OB=OD,所以∠ODB=∠B.于是∠B=∠C.因为点A,E,B,D都在圆O上,且D,E为圆O上位于AB异侧的两点,所以∠E和∠B为同弧所对的圆周角,故∠E=∠B.所以∠E=∠C.对应学生用书P14]一、选择题1.如图,CD是⊙O的直径,弦AB⊥CD于E,∠BCD=25°,则下列结论错误的是( )A.AE=BE B.OE=DEC.∠AOD=50° D.D解析:选B 因为CD是⊙O的直径,弦AB⊥CD,AE=BE,因为∠BCD=25°,所以∠AOD=2∠BCD=50°,故A,C,D正确,B不能得证.2.如图所示,AB是⊙O的直径,C AC=8,BC=6,则⊙O的半径r等于( )A. B.5C.10 D.不确定解析:选B 由已知得∠ACB=90°,∴AB==10,即2r=10,r=5.3.如图,直径为10的⊙C经过点A(0,5)和点O(0,0),B是y轴右侧⊙C弧上一点,则cos∠ABO的值为( )A. B.C. D.解析:选B 法一:设⊙C与x轴另一个交点为D,连接AD,如图所示:因为∠AOD=90°,所以AD为⊙C的直径,又因为∠ABO与∠ADO为圆弧AO所对的圆周角,所以∠ABO=∠ADO,又因为A(0,5),所以OA=5,在Rt△ADO中,AD=10,AO=5,根据勾股定理得:OD==5.所以cos∠ABO=cos∠ADO===,故选B.法二:连接CO,因为OA=5,AC=CO=5,所以△ACO为等边三角形,∠ACO=60°,∠ABO=∠ACO=30°,所以cos∠ABO=cos 30°=.4.已知P R都在弦AB的同侧,且点P Q的圆内,点R(如图),则( )A.∠AQB<∠APB<∠ARBB.∠AQB<∠ARB<∠APBC.∠APB<∠AQB<∠ARBD.∠ARB<∠APB<∠AQB解析:选D 如图所示,延长AQ交圆O于点C,设AR与圆O相交于点D,连接BC,BD,则有∠AQB>∠ACB,∠ADB>∠ARB.因为∠ACB=∠APB=∠ADB,所以∠AQB>∠APB>∠ARB.二、填空题5.如图,点A,B,C在⊙O上,∠AOC=60°,则∠ABC的度数是.解析:因为∠AOC=60°,所以弧ABC的度数为60°,AC对的优弧的度数为360°-60°=300°,所以∠ABC=150°.答案:150°6.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为.解析:因为∠BOD=100°,所以∠A=∠BOD=50°.因为∠B=60°,所以∠C=180°-∠A-∠B=70°.答案:70°7.如图,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D在⊙O 上,∠ADC=68°,则∠BAC= .解析:因为AB是圆O的直径,所以弧ACB的度数为180°,它所对的圆周角为90°,所以∠BAC=90°-∠ABC=90°-∠ADC=90°-68°=22°.答案:22°8.如图,在半径为2 cm的⊙O内有长为2 cm的弦AB,则此弦所对的圆心角∠AOB为.解析:作OC⊥AB于C,则BC=,在Rt△BOC中,∵OC===1(cm),∴=,∴sin∠B=,∠B=30°,∴∠BOC=60°,∴∠AOB=120°.答案:120°三、解答题9.如图,在⊙O中,弦AB=16,点C在⊙O上,且sin C=.求⊙O的半径长.解:作直径AD,连接BD,则∠ABD=90°,∠D=∠C.因为sin C=,所以sin D=.在Rt△ABD中,sin D==,又因为AB=16,所以AD=16×=20,所以OA=AD=10,即⊙O的半径长为10.10.如图,已知在⊙O中,直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交⊙O于D,求BC,AD和BD的长.解:因为AB为直径,所以∠ACB=∠ADB=90°.在Rt△ABC中,BC===8(cm).因为CD平分∠ACB,所以△ADB为等腰三角形.所以AD=BD=AB=×10=5(cm).11.如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C.(1)求证:CB∥MD.(2)若BC=4,sin M=,求⊙O的直径.解:(1)证明:因为∠C与∠M是同一弧所对的圆周角,所以∠C=∠M.又∠1=∠C,所以∠1=∠M,所以CB∥MD(内错角相等,两直线平行).(2)由sin M=知,sin C=,所以=,BN=×4=.由射影定理得:BC2=BN·AB,则AB=6.所以⊙O的直径为6.。

圆中的9个定理

圆中的9个定理

1.圆弧、圆心角、弦、弦心距关系定理。

(四者有一个量相等,其余三个量也相等)
2.垂径定理
(垂直于弦的直径平分弦,并且平分弦所对的两条弧)
3.垂径定理逆定理
(平分弦(不是直径)的直径垂直弦,并且平分弦所对的两条弧)
4.圆周角定理
(同弧所对的圆周角是圆心角的一半)
5.圆周角推论1
(同弧所对的圆周角相等)
6.圆周角推论2
(直径对的圆周角是90度,90度的圆周角对的弦是直径)
7.切线性质定理
(切线垂直于过切点的半径)
8.切线判定定理
(过半径的外端点且垂直于半径的直线是圆的切线)
9.切线长定理
(从圆外一点向圆可以引两条切线,切线长
相等;这个点和圆心的连线平分两条切线的夹角)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲圆周角定理与圆地切线
基础梳理
1.圆周角定理
(1>圆周角:顶点在圆周上且两边都与圆地角.
(2>圆周角定理:圆周角地度数等于它所对弧度数地
(3>圆周角定理地推论
①同弧(或等弧>上地圆周角;同圆或等圆中,相等地圆周角所对地弧.
②半圆(或直径>所对地圆周角是90° 90°地圆周角所对地弦是•—
2.圆地切线
(1>直线与圆地位置关系
(2>切线地性质及判定
①切线地性质定理:圆地切线垂直于经过地半径.
②切线地判定定理
过半径外端且与这条半径地直线是圆地切线.
(3>切线长定理
从圆外一点引圆地两条切线长.-
3.弦切角
(1>弦切角:顶点在圆上,一边与圆___ 另一边与圆相交地角.
(2>弦切角定理及推论
①定理:弦切角地度数等于所夹弧地度数地._
②推论:同弧(或等弧>上地弦切角相等,同弧(或等弧〉上地弦切角与圆周角
=3,CD = 1,则
sin/ APB= xHAQX74J0X
双基自测
1 •如图所示,△ ABC 中,/C= 90°,AB= 10,AC= 6,以AC 为直径地圆与斜边交 于点 P,则 BP 长为 ________ . b5E2RGbCAP
2 •如图所示,AB 、AC 是。

O 地两条切线,切点分别为B 、C,D 是优弧
错误!上地点,已知/ BAC= 80°那么/ BDC = __________ plEanqFDPw
3. (2018广州测试(一>>如图所示,CD 是圆O 地切线,切点为C,点A 、
B 在圆 O 上,BC= 1,Z BCD= 30°,则圆 O 地面积为 ________ . DXDiTa9E3d
4. (2018深圳二次调研 >如图,直角三角形ABC 中,/ B = 90°,AB = 4,以BC 为直
径地圆交AC 边于点D,AD= 2,则/ C 地大小为 _____________ TCrpUDGiT
5. (2018汕头调研〉如图,MN 是圆O 地直径,MN 地延长线与圆O 上过点P 地 切线 PA 相交于点 A,若/ M = 30°,AP = 2错误!,则圆 O 地直径为
5PCzVD7HxA
4 5 jLBHrnAlLg
考向一圆周角地计算与证明
【例1】?(2018中山模拟〉如图,AB 为O O 地直径,弦AC 、BD 交于点P 若AB
【训练1】如图,点A,B,C 是圆0上地点,且AB = 4,Z ACB= 30°,则圆O 地面积
考向二弦切角定理及推论地应用
【例2】?如图,梯形ABCD 内接于。

O,AD // BC,过B 引。

O 地切线分别交 DA 、CA 地延长线于 E 、F.已知 BC = 8,CD = 5,AF = 6,则 EF 地长为
【训练2】(2018新课标全国 >如图,已知圆上地弧错误!二错误!,过C 点地圆地
切线与BA 地延长线交于E 点,证明:dvzfvkwMIl
(1>Z ACE =Z BCD ;
2
(2>BC = BE X
CD.
等于
练习
1、<顺义2018年一模)如图所示:AB是半径为1地圆O地直径,BC ,CD是圆O地切
线,B, D为切点,若三ABD =30°,则AD OC地值为__________________ .rqyn14ZNXI
2、<海淀区2018年一模)如图,以ABC地边AB为直径地半圆交AC于点D,交BC于点E,EF A AB 于点F,AF = 3BF,BE= 2EC = 2,那么DCDE =,CD =.
A
<1) <2) <3)
(西城区2018年一模 >如图,AC 为O O 地直径,OB _ AC ,弦BN 交AC
于点 M •若 OC = J3,OM =1,则 MN = ________ .
4、<西城一模)如左下图,PC 切L O 于点C ,割线PAB 经过圆心O ,弦CD — AB 于点 E .已知L O 地半径为3, PA =2,则PC=.OE 二.
<4) <5 )
5、<石景山一模) 如右上图,已知PE 是圆O 地切线•直线 PB 交圆O 于A 、B 两
点,PA =4 , AB =12 , AE=4j3 •贝U PE 地长为 _______________ , ZABE 地 大小为
.SixE2yXPq5 3、。

相关文档
最新文档