实数复习课公开课教案

合集下载

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标:1. 理解实数的定义及分类,掌握有理数和无理数的特点。

2. 掌握实数的运算规则,包括加、减、乘、除、乘方和开方等。

3. 能够运用实数解决实际问题,提高运用数学知识解决问题的能力。

二、教学内容:1. 实数的定义及分类2. 有理数和无理数的特点3. 实数的运算规则4. 实数在实际问题中的应用三、教学重点与难点:1. 教学重点:实数的定义及分类,实数的运算规则,实数在实际问题中的应用。

2. 教学难点:实数的运算规则,特别是乘方和开方运算。

四、教学方法:1. 采用讲授法,讲解实数的定义、分类和运算规则。

2. 运用案例分析法,分析实数在实际问题中的应用。

3. 组织学生进行小组讨论,培养学生的合作意识。

4. 利用信息技术手段,如PPT、网络资源等,辅助教学。

五、教学过程:1. 导入新课:回顾实数的定义及分类,引导学生思考实数在生活中的应用。

2. 讲解实数的运算规则,通过例题展示运算过程,让学生熟练掌握。

3. 开展小组讨论:让学生运用实数解决实际问题,分享解题心得。

4. 总结课堂内容:回顾本节课所学,强调实数的重要性。

5. 布置作业:设计适量作业,巩固课堂所学。

6. 课后反思:根据学生作业完成情况,总结教学效果,调整教学策略。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业评价:检查学生作业的完成质量,评估学生对实数运算规则的掌握程度。

3. 测试评价:组织单元测试,评估学生对实数知识的整体掌握情况。

七、教学资源:1. 教材:实数相关章节教材,用于引导学生学习。

2. PPT:制作精美PPT,辅助讲解实数概念和运算规则。

3. 网络资源:收集相关实数应用案例,供学生课后拓展学习。

4. 练习题库:准备各类实数练习题,巩固学生所学知识。

八、教学进度安排:1. 第1-2课时:讲解实数的定义及分类。

2. 第3-4课时:讲解实数的运算规则。

实数经典复习教案(精品)

实数经典复习教案(精品)
教学内容
课题: 实数复习
掌握本章节知识点及疏导成系统知识点网络 寻找实数题型的知识点的夯实 实数相关提醒的解题思路及其技巧
教学目标 重 难 点 点
一、基础测试 1. 算术平方根: 如果一个正数 x 0 的算术平方根是 。 等于 a, 即 x2=a, 那么这个 x 正数就叫做 a 的算术平方根, 记作 ,
26.若
3
0.3670 0.7160, 3 3.670 1.542,则 3 367 __________ ___
27、若 x x 有意义,则 x 1 =
, 若 102.01 10.1 ,则± 1.0201 =
28、已知 5+ 11 的小数部分为 a,5- 11 的小数部分为 b,求:(1)a+b 的值; 的值. 29.已知 2a 1 的平方根是 3 , 3a b 1 的算术平方根是 4,求 a 2b 的平方根. 30、若 x 2 则,化简 ( x 2)2 3 x =( 31、若 a =3,
2/8
【例 1】(2010 年浙江省金华)在 -3,- 3 , -1, 0 这四个实数中,最大的是( A. -3 B.- 3 C. -1 D. 0 ) D. a 1

【例 2】二次根式 1 a 中,字母 a 的取值范围是( A. a 1 专题 5 二次根式的运算 B.a≤1 C.a≥1
2.平方根:如果一个数 x 的 等于 a,即 x2=a 那么这个数 a 就叫做 x 的平方根(也叫做二次方根式),正 数 a 的平方根记作 .一个正数有 平方根,它们 ;0 的平方根是 ;负数 平方根.
特别提醒:负数没有平方根和算术平方根.
3.立方根:如果一个数 x 的 等于 a,即 x3= a,那么这个数 x 就叫做 a 的立方根,记作 数的立方根是 ,0 的立方根是 ,负数的立方根是 。 4、实数的分类 .正

实数(单元复习)标准教案

实数(单元复习)标准教案

实数(单元复习)标准教案一、教学目标1. 知识与技能:(1)理解和掌握实数的定义及分类,包括有理数和无理数;(2)熟练运用实数的基本性质,如加、减、乘、除、乘方等;(3)掌握实数的运算规则,如负数的运算、分数的运算、根式的运算等。

2. 过程与方法:(1)通过复习和练习,提高学生对实数的认识和理解;(2)培养学生运用实数解决实际问题的能力;(3)引导学生运用数形结合的方法,加深对实数概念的理解。

3. 情感态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生的团队合作精神,提高学生沟通交流能力;(3)引导学生认识数学在生活中的重要性,培养学生的数学应用意识。

二、教学内容1. 实数的定义及分类;2. 实数的基本性质;3. 实数的运算规则;4. 实数在实际问题中的应用。

三、教学重点与难点1. 教学重点:实数的定义及分类,实数的基本性质和运算规则,实数在实际问题中的应用。

2. 教学难点:实数的概念理解和运用,实数的运算规则,实数在实际问题中的运用。

四、教学方法1. 采用讲解法,引导学生理解和掌握实数的定义及分类,实数的基本性质和运算规则;2. 采用案例分析法,分析实数在实际问题中的应用,培养学生的数学应用意识;3. 采用小组讨论法,激发学生的思考,提高学生的团队合作精神;4. 采用练习法,巩固学生对实数的理解和运用。

五、教学过程1. 引入:通过数轴,引导学生回顾实数的概念,理解实数的定义及分类;2. 讲解:讲解实数的基本性质和运算规则,结合实际例子,让学生深刻理解;3. 案例分析:分析实数在实际问题中的应用,让学生体会数学的价值;4. 小组讨论:引导学生进行小组讨论,分享各自的思考和理解,提高团队合作精神;5. 练习:布置练习题,巩固学生对实数的理解和运用。

六、教学评价1. 课堂表现评价:观察学生在课堂中的参与程度、提问回答情况,以及小组讨论的表现,了解学生的学习状态和理解程度。

2. 练习题评价:对学生的练习题进行批改,评估学生对实数的理解和运用能力,发现并纠正学生的错误。

人教版初中数学七年级下册第六章《实数》复习课教案

人教版初中数学七年级下册第六章《实数》复习课教案

人教版初中数学七年级下册第六章实数复习课教案课题 实数复习 课型 复习 备课人教学目标 1.体会特殊到一般、化零为整的认识过程,运用类比思想,强化符号意识,进一步培养估算和运算能力。

2.理解算术平方根、平方根、立方根概念;掌握算术平方根和平方根的区别于联系;了解平方根、立方根的计算器求法;巩固实数的运算。

3.从局部到整体,一点一练,分层过关。

教学过程设计教学环节教学学活动设计 一、知识网络专题一:平方根与立方根【1】算术平方根: 1.如果一个正数x 的平方等于a ,即a x =2,那么,这个正数x 就叫做a 的算术平方根,记为:“a ”。

特别规定:0的算术平方根仍然为0。

2.算术平方根的性质:具有双重非负性,即:)0(0≥≥a a 。

总体复习这一章的概况先复习平方根和立方根这一专题,熟悉概念,性质,以及这两个概念,性质之间的区别与联系3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

因此,算术平方根只有一个值,并且是非负数,它只表示为:a ;而平方根具有两个互为相反数的值,表示为:a ±。

【2】平方根: 1.概念:如果一个数x 的平方等于a ,那么,这个数x 就叫做a 的平方根;也即)0(2≥=a a x ,当时,我们称x 是a 的平方根,记做)0(≥±=a a x :。

2.性质:(1)正数有两个平方根,他们互为相反数 (2)0的平方根是0; (3)负数没有平方根 3.算术平方根与平方根的关系:算术平方根是平方根中正的一个值,它与它的相反数共同构成了平方根。

【3】立方根 1.概念:如果x 的立方等于a ,那么,就称x 是a 的立方根,或者三次方根。

记做:3a (注意:这里的3是根指数,不能省略) 2.立方根的性质: (1)正数的立方根是正数, 负数的立方根是负数; 0的立方根是0. (2) 2.平方根与立方根:每个数都有立方根,并且一个数只有一个立方根;但是,并不是每个数都有平方根,只有非负数才能有平方根。

第3章实数复习公开课教案教学设计课件

第3章实数复习公开课教案教学设计课件

基础(二)实数的分类.
3. 将下列各数分别填入下列集合括号中.
3 9,22 ,4, ,0,3 0.125,0.3724865, 3,
7
2
2.373773777377773(每两个3之间依次多一个7).
无理数: 3 9, , 3, 2.373773777377773
2
有理数: 22 , 44, ,00,3 0.125,0.3724865
那么点 A呢?
1 2
1 2
拓展提高 数形结合.
变式2. 如图,在数轴上的点B、C关于点A对称,A,B两点对应 的实数分别是和-1,则点C对
应的数分别是 2 3 1.
1 3 1 3
( 3 1 3)
变式1. 如图,在数轴上以1个单位长为边作正方形,以表示1
的点为圆心,正方形对角线长为半径画圆弧,交数轴为A ,B
C. 负数既没有平方根,也没有立方根
D. 一个非负数的平方根的平方就是它本身
【解析】 0 的平方根是 0,只有 1 个,故 A,B 错误;
负数没有平方根,但是有立方根,故 C 错误;D 正确.
【答案】 D
【变式 1-2】 已知实数 x,y 满足|x-5|+ y+4=0,求 (x+y)2016 的值.
【变式14】 一个正数a的平方根分别是2x-5和 1-x,求a.
你会求这 个正数吗?
实数分类
正整数
(1)按定义分类: 整数 零
有理数
负整数
实数
分数
正分数 负分数
有限小数或 无限循环小数
无理数 :无限不循环小数
(2)按 实大 数小 (正01分 无) 实类 理数 如数:一正 正, 般有 无 有理 理三,数 数 2种, 形式. 2等含的数; ( (负 32)) 实如如 数3.0负 负120有 无 , 031理 理050等 数 数01开 等方有开规不律尽 但的 无限数不;偱环的.

实数复习课教学设计

实数复习课教学设计

第六章实数复习课教学设计(共4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第六章《实数》复习教学设计易门县十街中学白维肖一、教材分析1.地位和作用:本章的主要内容是平方根、立方根的概念和求法,实数的有关概念和运算。

通过本章的学习,学生对数的认识就由有理数范围扩大到实数范围,本章之前的数学内容都是在有理数范围内讨论的,学习本章之后,将在实数范围内研究问题。

虽然本章的内容不多,篇幅不大,但在中学数学中占有重要的地位,本章内容不仅是初中阶段学习二次根式、一元一次方程以及解三角形等知识的基础,也是学习高中数学内容的基础。

2.考标要求:(1)对于算术平方根、平方根和立方根,应该重点考察算术平方根和平方根的概念之间的联系和区别(2)会判断一个无理数在哪两个相邻整数之间,比较实数大小,解决实际问题(3)对于实数运算,应把握教科书的要求,循序渐进,不考察复杂、繁琐的实数运算二、教学目标:1.理解平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方根或立方根;2.了解无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;3.了解实数与数轴上的点一一对应,了解有理数的运算律适用于实数范围.会按结果所要求的精确度用近似的有限小数代替无理数进行实数的四则运算.三、教学重、难点:1.平方根和算术平方根的概念、性质,无理数与实数的意义;2.算术平方根的意义及实数的性质.教学准备:多媒体课件、课本、笔记本2(10)、求下列各数的立方根:82 1257;())1-8迁移应用专题二、实数的有关概念【例3】在,板书设计:教学反思:1、时间分配不合理,前面的第一环节,知识梳理所用的时间太长,15分钟左右,导致后面的环节,练习题有所遗漏,没有时间做。

2、对学生的关注还是不全面,没有关注到所有学生。

3、板书没有跟上知识点的呈现同步展示出来,是后面知识点复习完了,自己很生硬的加上去的,不利于学生知识的生成。

《实数(复习课) 》教案

课堂探究:
复习专题一:平方根与算术平方根
1. 16的平方根是_
2.的算术平方根是___
3.化简:= _____
4.说出下列各式的值:
复习专题二:立方根的定义与性质
求下列各式的值
复习专题三:实数
1.的相反数是_____
2.比较大小:____3
3.计算:
巩-2和5x+6,求这个数?
2.已知2a-1的平方根是 ,3a+b的算数平方根是4,求a+2b的平方根。
达标测评:
(见试卷)
课堂小结:
作业策略
1.整理易错知识在笔记本上
2.复习试卷(四)
A,B层学生全部完成1
C层完成复习试卷中的填空、选择部分和解答题15-17
分层布置作业,让我们的学生在数学上有不同的进步
教学反思
温馨提示:
达标测评:
鼓励学生作答,抢答,激励每组的学生学习,树立学习数学的信心。
1.教师(在大屏幕)解读学习目标
2.在后板完整书写巩固提升1和2题,规范学生的书写,完善学生的思路
学习任务
课前准备:
做复习卡上的题目
预习交流:
各小组在组长的带领下,结合手抄报,练习册和教材回顾本章知识点,找出易错的问题与本组同学交流。把你组认为易错的问题写到后板,备展。
3、知识梳理,夯实基础 15’
4、巩固提升,拓展运用 15’
5、达标测评,小结作业 6’
课前准备:
学情预见:学生对实数这一章的知识点可能有些遗忘,解决问题时考虑的不全面。
方法指导:如有困难,可同本组学生交流探讨。
预习交流:
各小组在组长的带领下,结合手抄报,练习册和教材回顾本章知识点,找出易错的问题与本组同学交流。把你组认为易错的问题写到后板,备展。

实数教学设计(复习课)

实数教学设计(复习课)【学习目标】1.了解实数的意义,并能将实数按要求进行准确的分类;2.熟练掌握实数大小的比较方法;(重点)3.了解实数和数轴上的点一一对应,能用数轴上的点表示无理数.(难点)【学习过程】一、自主探究使用计算器计算,把下列有理数写成小数的形式,你有什么发现?5327119-,,,,254911二、探究新知1、实数的概念和分类(1)、归纳概念:任何一个有理数都可以写成_______小数或________小数的形式。

反过来,任何______小数或____________小数也都是有理数观察通过前面的探讨和学习,我们知道,很多数的_____根和______根都是____________小数,π=L也是无理数____________小数又叫无理数, 3.14159265结论: _______和_______统称为实数你能举出一些无理数吗?(2)、试一试把实数分类像有理数一样,无理数也有正负之分。

-,例如2,33,π是____无理数,233-,π-是____无理数。

由于非0有理数和无理数都有正负之分,所以实数也可以这样分类:实数2、实数与数轴上的点我们知道,每个有理数都可以用数轴上的点来表示。

无理数是否也可以用数轴上的点来表示呢?(1)如图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O′,点O′的坐标是多少?从图中可以看出OO′的长时这个圆的周长______,点O′的坐标是_______这样,无理数可以用数轴上的点表示出来(2)总结:事实上,每一个无理数都可以用数轴上的__________表示出来,这就是说,数轴上的点有些表示__________,有些表示__________当从有理数扩充到实数以后,实数与数轴上的点就是__________的,即每一个实数都可以用数轴上的__________来表示;反过来,数轴上的__________都是表示一个实数3、实数的大小比较与有理数规定的大小一样,数轴上右边的点表示的实数比左边的点表示的实数大.议一议不用计算器,5与2比较哪个大?与3比较呢?三、当堂练习1.下列说法正确的是()A.a一定是正实数B.2217是有理数C.22是有理数D.数轴上任一点都对应一个有理数2.有一个数值转换器,原理如下,当输x=81时,输出的y是()A.9B.3C.3D.±33.判断快枪手——看谁最快最准!(1)实数不是有理数就是无理数. ( )(2)无理数都是无限不循环小数. ( )(3)带根号的数都是无理数. ( )(4)无理数都是无限小数. ( )(5)无理数一定都带根号. ( )4.把下列各数填入相应的括号内:有理数:{ }; 无理数:{ }; 整数:{ }; 负数:{ }; 分数:{ }; 实数:{ }.5. 37与6的大小.四、我的感悟这节课我的最大收获是:我不能解决的问题是:五、课后反思9-3564π•6.043-39-313.0。

八年级上实数复习教案

教学目标:通过对实数的复习,让学生掌握实数的基本概念及运算规则,培养学生的实际问题解决能力。

一、知识要点:1.实数的定义及分类2.实数的运算规则3.实数的性质及应用二、教学过程:1.导入新知,复习实数的定义及分类(10分钟)2.复习实数的运算规则(20分钟)(1)基本运算法则教师以例题的形式讲解实数的加减乘除运算,引导学生回忆实数的运算规则。

学生可以根据需要,借助白板或课本进行演算,完整记录计算过程。

(2)混合运算教师布置一些综合运算的习题,要求学生独立完成,同时要求学生在解题过程中,标注并运用实数的运算规则。

学生可以自主选择解题方法,也可以创新解题方法,拓展解题思路。

3.复习实数的性质及应用(20分钟)(1)稀疏性、比较关系和无穷性教师以例题的形式复习实数的稀疏性、比较关系和无穷性,并引导学生深入思考这些性质在实际问题中的应用。

(2)表示和运用实数教师提供一些实际问题,要求学生通过画图、列式等方式表示和运用实数,并给出解决问题的详细步骤和答案。

同时,教师可以让学生互相交换问题并尝试解答,以增加答题的多样性。

4.深化学习,拓展应用(30分钟)教师设计一些探究性问题或案例分析,要求学生通过调查、研究等方式深化学习,并拓展实数在不同学科中的应用。

学生可以选择合适的方法和工具,进行数据收集、分析和总结,最终呈现研究结果。

5.温故知新,评价反思(10分钟)教师设计一些简单的选择题或应用题,要求学生回答并解释自己的答案。

同时,教师还可以就本节课的教学过程和内容,引导学生分享自己的学习感悟和体会。

教师可以根据学生的表现和回答情况,进行针对性的评价和建议。

三、教学反思及延伸本节课通过复习实数的定义、分类、运算规则、性质及应用,让学生巩固和拓展对实数的理解和应用能力。

教师通过灵活运用多种教学手段和方法,引导学生主动思考和解决问题,提高学生的实践能力和创新意识。

同时,教师鼓励学生积极参与学习,加强合作交流,提高学生的团队协作和沟通能力。

中考数学实数的运算复习教案

中考数学实数的运算复习教案【教学目标】1.复习实数的概念和特性。

2.复习实数的四则运算。

3.复习实数的混合运算。

4.加强解决实际问题的能力。

【教学重点】1.实数的概念和特性。

2.实数的四则运算。

3.实数的混合运算。

【教学难点】实数的混合运算和实际问题的解决。

【教学方法】知识点讲解、示例分析、学生练习、解题讲评。

【教学准备】教材、黑板、白板、教学投影仪。

【教学过程】Step 1 知识点讲解(8分钟)1.复习实数的概念和基本性质,引出实数的运算。

2.讲解实数的四则运算规则:加法、减法、乘法和除法。

3.引导学生讨论混合运算的步骤和技巧。

Step 2 示例分析(10分钟)1.以例子讲解实数的四则运算步骤和规则。

2.分析典型实例,引导学生找出解题的关键点。

Step 3 学生练习(20分钟)1.学生在课本上独立完成练习题。

2.教师巡视指导,发现问题及时纠正。

3.鼓励学生与同桌合作,共同解决难点问题。

Step 4 解题讲评(15分钟)1.教师选取几道典型题目进行讲解。

2.鼓励学生上台讲解解题思路和步骤。

3.全班讨论解题过程和答案的准确性。

Step 5 实际问题解决(15分钟)1.提供几个实际问题,要求学生用实数的四则运算解答。

2.鼓励学生分组讨论,并找出问题的关键信息。

3.鼓励学生提出解决问题的方法和步骤。

Step 6 总结讲评(10分钟)1.教师总结实数的运算规则和解题技巧。

2.引导学生总结实数的四则运算步骤。

【教学反思】通过这堂数学复习课,学生对实数的概念和运算规则有了更深入的理解。

同时,学生通过实际问题的解答,提高了解决实际问题的能力。

但是,在学生练习环节,部分学生的注意力稍有不集中,需要教师在课堂上更加精心地引导和激发学生的学习兴趣。

为了更好地提高课程效果,可以在教学中增加一些游戏化的活动,让学生在实际操作中体会实数的运算规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实数复习课教案
活动目标
1.复习平方根、算术平方根、立方根的概念,能用平方或立方运算求某些数的平方
根或立方根;
2.复习无理数的意义,会对实数进行分类,了解实数的相反数和绝对值的意义;
3.复习数轴、相反数、绝对值的性质,并在实数范围内准确运用。
4. 能对实数进行运用和比较大小。
活动重点
1. 平方根、立方根的概念、性质,会求一个实数的平方根、立方根。
2.对实数准确分类和比较大小。
活动难点:

掌握实数的有关概念及会进行实数大小比较;会进行开平方和开立方运算,
会求一个非负数的算术平方根;能够运用实数的有关性质解决问题
教学准备

课件、导学案
活动过程
一、 知识疏理
(一) 平方根、算术平方根、立方根


































































.00;;___00;.;00:,的立方根是方根负数有一个负的立方根正数有一个正的立性质定义立方根开立方的算术平方根是的正的平方根正数性质定义算术平方根负数没有平方根的平方根是们互为相反数根一个正数有两个平方性质定义平方根开平方开方乘方
互为逆运算
a

设计意图:对比复习平方根、算术平方根、立方根让学生对知识之间的联系,进一步
掌握它们之间的区别,达到正确求一个数的方根的目的。
一点一练我能行!
1.明辩事非
3是9的算术平方根 ( )
0的平方根是0,0的算术平方根也是0 ( )
(-2)2的平方根是2 ( )
64的立方根是4 ( )
-10是1000的一个立方根 ( )
2.填一填
25的平方根是 16的算术平方根是 27的立方根是

16
的平方根是______ 327 的平方根是_________
3.火眼睛睛

(1)计算2(3)的结果是( )
A.3 B.3 C.3 D. 9
(2)下列说法中正确的是( )
A.81的平方根是±3 B.1的立方根是±1 C.1=±1 D.-5是5的平方根
的相反数
(3)下列式子中

① 4是16的算术平方根,即164 ②4是16的算术平方根,即 164

③-7是49的算术平方根,即 277 ④7是(-7)²的算术平方根,即 277
其中正确的是( )
A. ①③ B. ②③ C. ②④ D. ①④
(二)实数的分类、性质、比较大小、运算
1.实数分类(按定义分和按正负分)

负无理数正无理数无理数负有理数正有理数有理数实数0
分类中特别强调无理数的形式
针对练习:

(2) 73是( ):
A.无理数 B.有理数 C.整数 D.负数
1、在下列各数
、、、、、、、、27111311010010001.672232.0051525354.0



中无理数的

个数是( )
A.2 B.3 C.4 D.5
2、把下列各数填在相应的大括号内:



1010010001.2,64,333.3,14.3,,75,13

整数集合:{ ……};
分数集合:{ ……};
有理数集合:{ };
无理数集合:{ }。

3. 下列说法错误的有( )
①无限小数一定是无理数; ②无理数一定是无限小数;③带根号的数一定是无理数;
④不带根号的数一定是有理数.
A ①②③ B ②③④ C ①③④ D ①②④

2.实数的性质
5.实数与数轴:实数与数轴上的点______________对应.
6.实数的相反数、倒数、绝对值:
相反数:实数a的相反数为______;若a,b互为相反数,则a+b=______;
倒数:非零实数a的倒数为_____(a≠0);若a,b互为倒数,则ab=________。

绝对值:______(0)||______(0)aaa
9.实数和有理数一样,可以进行加、减、乘、除、乘方运算,而且有理数的
运算法则与运算律对实数仍然适用.

10.常用公式:2a= (a)2= 33a= (3a)3=
针对练习:

1. -25的倒数是_______.-2的绝对值是 3的相反数是
2.12的相反数是_________,32= .
3.如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线
长为半径画弧,交数轴正半轴于点A,则点A表示的数是( )

A.1.5 B.1.4 C.2 D.3

5.相反数是本身的数是 ;绝对值是本身的数是 ;倒数是本身的数是 。
6.a、b互为相反数,c与d互为倒数则a+1+b+cd= 。

7.计算31+23(1)=________.

(1)、计算33841627的值是( )。
A、1 B、±1 C、2 D、7
(2)、计算252826的值。
3.实数大小比较的方法:
1)有理数大小的比较法则在实数范围内同样适用,即:
法则1:在数轴上表示的两个实数,右边的数总比左边的数大。
法则2:正实数都大于0,负实数都小于0;正实数大于一切负实数;两个负实数,绝
对值大的反而小。

考考你:
1.下列各数中,最小的数是 ( ) A.-1 B.0 C.1 D.2
2.实数a,b,c,d在数轴上的对应点如图所示,则它们从小到大的顺序是 。

3.比较下列各组数的大小

4.若2,1yx,且yxxy,0 。
(2)、2)3( ; 4. 3的相反数是 。

9.cbacba那么已知,01)5(22 。

2 3 )1(
23 13 )2(
3.
4. 5.两个无理数的和为有理数,这两个无理数可以是______和_______.

6.若│x2-25│+3y=0,则x=_______,y=_______.
7.已知x的平方根是±8,则x的立方根是______

二、强化基础,巩固拓展.(也可以由学生提出典型薄弱题型进行讲解)
1.求下列各数的平方根:

(1)972;(2)25;(3)252.

6.在实数2、13.0、3、71、0.80108中,无理数的个数为_______个.

三、查缺补漏,归纳提升.
1.通过今天的探究学习,你们有哪些收获?
2.非负数的和等于零的条件是:当且仅当每个非负数的值都等于零.此性质在解题
时经常会被用到.
3.对于本章的内容你还有那些疑问?
_.
二、选一选:
8.4的平方根是( )

A.2 B.-2 C.±2 D.±2
9.下列各式中,无意义的是( )
A.-3 B.3 C.2(3) D.310
10.下列各组数中,互为相反数的一组是( )
A.-2与2(2) B.-2与38 C.-2与-12 D.│-2│与2
11. 下列说法正确的是 ( )
A.1的平方根是1; B.1的算术平方根是1; C.-2是2的平方根; D.-1的平方根是-1
三、做一做:
12. 求下列各数的平方根:(1)81;(2)1625;(3)1.44;(4)214; (5)81.
13. 求下列各式中的x:①x2=1.21; ②27(x+1)3+64=0.
15.已知2a-1的平方根是±3,3a+b-1的平方根是±4,求a+2b的平方根.
5. 3.若643x,则x______。16的值为________. 327125=_______

相关文档
最新文档