矩估计与最大似然估计
4 极大似然估计和广义矩估计

OLS
ˆ x ˆ ML y ˆOLS ML
MLE的线性回归模型的残 差平方和等于OLS的残差 平方和
2 的极大似然估计
2 ˆ ML
1 n 2 ˆ x )2 RSS n 2 ˆ ML ˆ ( yi ML i OLS n i 1 n n
i 1 n i 1
更方便、更容易
极大似然估计的思想: θ 的极大似然估计是使得产生样 本 y1, y2 ,, yn 的最高概率的那个 θ 值,(使得观测到该样本 可能性最大的那个 θ );即 θ 的极大似然估计是使似然函数 ˆ L(θ) 达到最大的值。记为 θ 似然方程
ML
ˆ ) max L(θ; y), L(θ ML
L(θ) ln L(θ) 0, or 0 θ θ
总体有离散型和连续型两种,离散型总体通过分布列来构 造似然函数,而连续型总体通过密度函数来构造似然函数.
2014-6-4 S( θ)
ln L(θ) Score向量,梯度向量 θ
离散型随机变量极大似然原理
若总体为离散型分布,分布列 P{ X x} f ( x; θ)
n
n
i 1
似然函数 L(θ) f ( xi ; θ), 对数似然 ln L(θ) ln f ( xi ; θ) i 1 i 1 ˆ 极大似然估计就是使得下式成立的 θ
ML
n
ˆ ) max L(θ) L(θ ML
具体求法:由 L(θ) / θ 0 解出极大值点,因函数ln单增,故
上式达到极大的一阶条件是
d ln L( p) N1 N N1 0 dp p 1 p
解之得到p的极大似然估计量
ˆ N1 / N p
概率论与数理统计答案 魏宗舒

第六章习题1.设是取自总体X的一个样本,在下列情形下,试求总体参数的矩估计与最大似然估计:(1),其中未知,;(2),其中未知,。
2.设是取自总体X的一个样本,其中X服从参数为的泊松分布,其中未知,求3.设是取自总体X的一个样本,其中X服从区间的均匀分布,其中未知,求的矩估计。
4.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计。
5.设是取自总体X的一个样本,X的密度函数为其中未知,求的矩估计和最大似然估计。
6.设是取自总体X的一个样本,总体X服从参数为的几何分布,即,其中未知,,求的最大似然估计。
7. 已知某路口车辆经过的时间间隔服从指数分布,其中未知,现在观测到六个时间间隔数据(单位:s):1.8,3.2,4,8,4.5,2.5,试求该路口车辆经过的平均时间间隔的矩估计值与最大似然估计值。
8.设总体X的密度函数为,其中未知,设是取自这个总体的一个样本,试求的最大似然估计。
9. 在第3题中的矩估计是否是的无偏估计?解故的矩估计量是的无偏估计。
10.试证第8题中的最大似然估计是的无偏估计。
11. 设为总体的样本,证明都是总体均值的无偏估计,并进一步判断哪一个估计有效。
12.设是取自总体的一个样本,其中未知,令,试证是的相合估计。
13.某车间生产滚珠,从长期实践中知道,滚珠直径X服从正态分布,从某天生产的产品中随机抽取6个,量得直径如下(单位:mm):14.7,15.0,14.9,14.8,15.2,15.1,求的0.9双侧置信区间和0.99双侧置信区间。
14.假定某商店中一种商品的月销售量服从正态分布,未知。
为了合理的确定对该商品的进货量,需对和作估计,为此随机抽取七个月,其销售量分别为:64,57,49,81,76,70,59,试求的双侧0.95置信区间和方差的双侧0.9置信区间。
15.随机地取某种子弹9发作试验,测得子弹速度的,设子弹速度服从正态分布,求这种子弹速度的标准差和方差的双侧0.95置信区间。
五种估计参数的方法

五种估计参数的方法在统计学和数据分析中,参数估计是一种用于估计总体的未知参数的方法。
参数估计的目标是通过样本数据来推断总体参数的值。
下面将介绍五种常用的参数估计方法。
一、点估计点估计是最常见的参数估计方法之一。
它通过使用样本数据计算出一个单一的数值作为总体参数的估计值。
点估计的核心思想是选择一个最佳的估计量,使得该估计量在某种准则下达到最优。
常见的点估计方法有最大似然估计和矩估计。
最大似然估计(Maximum Likelihood Estimation,简称MLE)是一种常用的点估计方法。
它的核心思想是选择使得样本观测值出现的概率最大的参数值作为估计值。
最大似然估计通常基于对总体分布的假设,通过最大化似然函数来寻找最优参数估计。
矩估计(Method of Moments,简称MoM)是另一种常用的点估计方法。
它的核心思想是使用样本矩和总体矩之间的差异来估计参数值。
矩估计首先计算样本矩,然后通过解方程组来求解参数的估计值。
二、区间估计点估计只给出了一个参数的估计值,而没有给出该估计值的不确定性范围。
为了更全面地描述参数的估计结果,我们需要使用区间估计。
区间估计是指在一定的置信水平下,给出一个区间范围,该范围内包含了真实参数值的可能取值。
常见的区间估计方法有置信区间和预测区间。
置信区间是对总体参数的一个区间估计,表示我们对该参数的估计值的置信程度。
置信区间的计算依赖于样本数据的统计量和分布假设。
一般来说,置信区间的宽度与样本大小和置信水平有关,较大的样本和较高的置信水平可以得到更准确的估计。
预测区间是对未来观测值的一个区间估计,表示我们对未来观测值的可能取值范围的估计。
预测区间的计算依赖于样本数据的统计量、分布假设和预测误差的方差。
与置信区间类似,预测区间的宽度也与样本大小和置信水平有关。
三、贝叶斯估计贝叶斯估计是一种基于贝叶斯理论的参数估计方法。
它将参数看作是一个随机变量,并给出参数的后验分布。
贝叶斯估计的核心思想是根据样本数据和先验知识来更新参数的分布,从而得到参数的后验分布。
点估计和区间估计公式

点估计和区间估计公式统计学中,点估计和区间估计是两个重要的概念。
点估计是指通过样本数据来估计总体参数的值,而区间估计则是通过样本数据来估计总体参数的值所在的区间。
本文将详细介绍点估计和区间估计的公式及其应用。
一、点估计公式点估计是通过样本数据来估计总体参数的值。
在统计学中,常用的点估计方法有最大似然估计和矩估计。
最大似然估计是指在给定样本数据的情况下,选择使得样本出现的概率最大的总体参数值作为估计值。
矩估计是指通过样本矩来估计总体矩,从而得到总体参数的估计值。
点估计的公式如下:最大似然估计:设总体参数为θ,样本数据为x1,x2,…,xn,样本概率密度函数为f(x;θ),则总体参数的最大似然估计为:θ^=argmaxθL(θ;x1,x2,…,xn)=argmaxθ∏i=1nf(xi;θ)其中,L(θ;x1,x2,…,xn)为似然函数,θ^为总体参数的最大似然估计值。
矩估计:设总体参数为θ,样本数据为x1,x2,…,xn,样本矩为μ1,μ2,…,μk,则总体参数的矩估计为:θ^=g(μ1,μ2,…,μk)其中,g为函数,θ^为总体参数的矩估计值。
二、区间估计公式区间估计是通过样本数据来估计总体参数的值所在的区间。
在统计学中,常用的区间估计方法有置信区间估计和预测区间估计。
置信区间估计是指通过样本数据来估计总体参数的值所在的区间,使得该区间内的真实总体参数值的概率达到一定的置信水平。
预测区间估计是指通过样本数据来估计未来观测值的区间,使得该区间内的未来观测值的概率达到一定的置信水平。
区间估计的公式如下:置信区间估计:设总体参数为θ,样本数据为x1,x2,…,xn,样本均值为x̄,样本标准差为s,置信水平为1-α,则总体参数的置信区间为:x̄±tα/2,n−1×s/√n其中,tα/2,n−1为自由度为n-1、置信水平为1-α的t分布的上分位数。
预测区间估计:设总体参数为θ,样本数据为x1,x2,…,xn,样本均值为x̄,样本标准差为s,置信水平为1-α,则未来观测值的预测区间为:x̄±tα/2,n−1×s×√1+1/n其中,tα/2,n−1为自由度为n-1、置信水平为1-α的t分布的上分位数。
参数的矩估计及评价标准

概率论与数理统计(第三版)龙永红
目录
上一页
下一页
返回
结束
衡量点估计量好坏的标准
概率论与数理统计(第三版)龙永红
目录
上一页
下一页
返回
结束
1.无偏性
ˆ ˆ( X1, X 2 ,, X n ) 的数学期望 设参数 的估计量 存在且等于 ,即 ˆ) , E (
则称 ˆ 是 的无偏估计量.
目录 上一页 下一页 返回 结束
概率论与数理统计(第三版)龙永红
复习知识点
1. 事件间的关系与运算,概率的公理化定义, 概率的性质,古典概率,条件概率,乘法公式, 全概率公式、贝叶斯公式,事件的独立性; 书上相关内容,例题1.9,1.11,1.15, 1.16, 1.20 , 1.23, 1.25, 1.26及课后练习P14 4、5, P20 3, P29 9,P35 习题一 7.
ˆ2 有效. ˆ1 比 则称
ˆ) 最小, 则 如果对于给定的样本容量n ,ˆ 的方差 D( 称 ˆ 是 的有效估计量.
概率论与数理统计(第三版)龙永红
目录
上一页
下一页
返回
结束
3.一致性(不作要求)
如果 n 时,ˆn 按概率收敛于 , 即对于任意给定 的正数 ,有
n
ˆn ) 1, lim P(
ˆ( X1 , X 2 ,, X n ) 作为未知参数的估计量; 选择适当的统计量
ˆ( x1 , x2 ,, xn ) 作为未知参数 的估计值. 相应的观测值
概率论与数理统计(第三版)龙永红
目录
上一页
下一页
返回
结束
1.矩估计法
设总体 X 的分布中含有未知参数 1 , 2 ,, m , 假定 总体X 的 1 ,2 , ,m 阶原点矩都存在,
数理统计复习

n 2 2
( xi ) 0
1n
2 4
( xi
i 1
)2
0
得
1
ni 21
n
n
xi
1
n
(
i 1
xi
x
x )2
s02
经检验,x和s02确为似然函数的最大值点,
从而, 2的极大似然估计量为 ˆ X , 2 S02
i 1
i 1
n
n
(
n
C xi m
xi ) p i1
(1
nm xi p) i1
i 1
n
对数似然方程为 ln L( p) ln(
C xi m
)
nx
ln
p
(nm
nx)
ln(1
p)
i 1
令 ln L( p) nx (nm nx) 0 p x
抽取6件,测得它们的长度为:32.56, 29.66, 31.64, 30.00, 31.87, 31.03。问 这批零件的长度是否符合产品要求?
3、某药厂生产一种抗菌素,每瓶抗菌素的某项指标服从正态分布。某日开 工后随机抽取5瓶,测得该项指标数据为:22.3, 21.5, 22.0, 21.8, 21.4。 1)求该指标均值的区间估计; 2)设在正常情况下,该指标的均值为23.0,问该日的生产是否正常?
2
n
|xi |
2)极大似然估计:似然函数L( )
n
n i 1
p(
xi
;
)
1
《概率论与数理统计》7
未知参数 , ,, 的函数.分别令
12
k
L(1,,k ) 0,(i 1,2,...,k)
或令
i
ln L(1,,k ) 0,(i 1,2,...,k)
i
由此方程组可解得参数 i 的极大似然估计值 ˆi.
例5 设X~b(1,p), X1, X2 , …,Xn是来自X的一个样本,
求参数 p 的最大似然估计量.
解 E( X ) ,E( X 2 ) D( X ) [E( X )]2 2 2
由矩估计法,
【注】
X
1
n
n i 1
X
2 i
2
2
ˆ X ,
ˆ
2
1 n
n i 1
(Xi
X )2
对任何总体,总体均值与方差的矩估计量都不变.
➢常见分布的参数矩估计量
(1)若总体X~b(1, p), 则未知参数 p 的矩估计量为
7-1
第七章
参数估计
统计 推断
的 基本 问题
7-2
参数估 计问题
(第七章)
点估计 区间估 计
假设检 验问题 (第八章)
什么是参数估计?
参数是刻画总体某方面概率特性的数量.
当此数量未知时,从总体抽出一个样本, 用某种方法对这个未知参数进行估计就 是参数估计.
例如,X ~N ( , 2),
若, 2未知, 通过构造样本的函数, 给出
k = k(A1, A2 , …, A k)
用i 作为i的估计量------矩估计量.
例1 设总体X服从[a,b]上的均匀分布,a,b未知,
X1, X2 , …,Xn为来自总体X的样本,试求a,b的 矩估计量.
解 E(X ) a b , D(X ) (b a)2
常用的参数估计方法
常用的参数估计方法参数估计是统计分析中的一个重要概念,指的是通过已有的样本数据来估计未知的参数。
常见的参数估计方法包括点估计和区间估计两种。
下面将分别介绍这两种方法及其常见的应用。
一、点估计点估计是通过样本数据来估计总体参数的方法之一,通常用样本的统计量(如样本均值、样本方差等)作为总体参数的估计值。
点估计的特点是简单直观,易于计算。
但是点估计的精度不高,误差较大,因此一般用在总体分布已知的情况下,用于快速估计总体参数。
常见的点估计方法包括最大似然估计、矩估计和贝叶斯估计。
1.最大似然估计最大似然估计是目前最常用的点估计方法之一。
其基本思想是在已知的样本信息下,寻找一个未知参数的最大似然估计值,使得这个样本出现的概率最大。
最大似然估计的优点是可以利用样本数据来估计参数,估计量具有一定的无偏性和效率,并且通常具有渐进正常性。
常见的应用包括二项分布、正态分布、泊松分布等。
2.矩估计矩估计是另一种常用的点估计方法,其基本思想是利用样本矩(如一阶矩、二阶矩等)与相应的总体矩之间的关系,来进行未知参数的估计。
矩估计的优点是计算简单,适用范围广泛,并且具有一定的无偏性。
常见的应用包括指数分布、伽马分布、weibull分布等。
3.贝叶斯估计贝叶斯估计是另一种常用的点估计方法,其基本思想是先对未知参数进行一个先验分布假设,然后基于样本数据对先验分布进行修正,得到一个后验分布,再用后验分布来作为估计值。
贝叶斯估计的优点是能够有效处理小样本和先验信息问题,并且可以将先验偏好考虑进去。
常见的应用包括正态分布、伽马分布等。
二、区间估计区间估计是通过样本数据来构造总体参数的置信区间,从而给出总体参数的不确定性范围。
区间估计的特点是精度高,抗扰动性强,但是计算复杂度高,需要计算和估计的样本量都很大。
常见的区间估计方法包括正态分布区间估计、t分布区间估计、置信区间估计等。
1.正态分布区间估计正态分布区间估计是一种用于总体均值和总体方差的区间估计方法,其基本思想是在已知样本数据的均值和标准差的情况下,根据正态分布的性质得到总体均值和总体方差的置信区间。
极大似然估计和广义矩估计
05
案例分析
极大似然估计的案例
线性回归模型
在回归分析中,极大似然估计常用于估计线性回归模型的参数。通过最大化似然 函数,可以得到最佳线性无偏估计,使得预测值与实际观测值之间的误差最小。
正态分布参数估计
极大似然估计在正态分布的参数估计中也有广泛应用。例如,假设一组数据来自 正态分布,我们可以通过极大似然估计来估计均值和方差。
极大似然估计和广义矩估 计
• 引言 • 极大似然估计 • 广义矩估计 • 极大似然估计与广义矩估计的比较 • 案例分析 • 总结与展望
01
引言
主题简介
极大似然估计
极大似然估计是一种参数估计方 法,基于观测数据的概率分布模 型,通过最大化似然函数来估计 未知参数。
广义矩估计
广义矩估计是一种非参数估计方 法,通过最小化一系列矩(如一 阶矩、二阶矩等)的离差来估计 未知参数。
唯一性
在某些条件下,极大似然估计具有唯一性,即真实参 数值是极大似然函数的唯一最大值。
极大似然估计的步骤和实现
1 2
定义似然函数
根据数据分布和模型假设,定义似然函数。
求导并求解
对似然函数求导,并使用优化算法求解导数为零 的点,得到参数的极大似然估计值。
3
验证估计值
使用验证数据集验证估计值的准确性和有效性。
3. 优化目标函数
实现
使用优化算法(如牛顿法、拟牛顿法等) 最小化目标函数,以找到最优的模型参数 。
在编程语言(如Python、R等)中,可以 使用相应的统计库(如statsmodels、 EMMA等)来方便地实现广义矩估计。
04
极大似然估计与广义矩估计的比较
相似之处
理论基础
01
概率论与数理统计教案 第7章 参数估计
第7章参数估计
教学要求
1.理解参数的点估计、估计量与估计值的概念.
2.熟练掌握矩估计法和最大似然估计法.
3.理解估计量的无偏性、有效性和一致性的概念,并会验证估计量的无偏性和有效性.
4.理解区间估计的概念.
5. 会求单个正态总体的均值和方差的置信区间以及两个正态总体均值差和方差比的置信区间.
教学重点
参数的矩估计和最大似然估计,正态总体参数的区间估计.
教学难点
最大似然估计.
课时安排
本章安排10课时.
教学内容和要点
一、点估计
1. 点估计的概念
2. 矩估计法
3. 最大似然估计法
4. 估计量的评选标准(无偏性、有效性、一致性)
二、区间估计
1. 置信区间的概念
2. 单个正态总体均值与方差的置信区间
3. 两个正态总体均值与方差的置信区间
4. 单侧置信区间
主要概念
1. 矩估计
2. 最大似然估计
3. 无偏估计、
4.有效估计
5. 一致估计
6. 区间估计
7. 置信水平
8. 双单侧置信区间侧置信区间
9. 单侧置信区间。