机械优化设计课后习题答案

合集下载

《机械优化设计》复习题-答案

《机械优化设计》复习题-答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f (X)=100(x 2— x 12) 2+(1— x 1) 2的最优解时,设X (0)=[—0。

5,0。

5]T ,第一步迭代的搜索方向为 [—47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解.4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)TGd 1=0,则d 0、d 1之间存在共轭关系.8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素.9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。

10、 K —T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [—2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X )=x 12+x 22—x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 .15、存在矩阵H,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭. 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点。

机械优化设计试题及答案

机械优化设计试题及答案

机械优化设计试题及答案### 机械优化设计试题及答案#### 一、选择题(每题2分,共10分)1. 机械优化设计的最基本目标是什么?- A. 最小化成本- B. 最大化效率- C. 确保安全性- D. 以上都是2. 以下哪个是优化设计中常用的数学方法?- A. 线性代数- B. 微积分- C. 概率论- D. 几何学3. 在进行机械优化设计时,以下哪个因素通常不是设计变量? - A. 材料选择- B. 尺寸参数- C. 工作温度- D. 制造工艺4. 机械优化设计中,约束条件通常包括哪些类型?- A. 应力约束- B. 位移约束- C. 速度约束- D. 所有上述5. 以下哪个软件不是用于机械优化设计的?- A. ANSYS- B. MATLAB- C. AutoCAD- D. SolidWorks#### 二、简答题(每题10分,共20分)1. 简述机械优化设计的基本步骤。

2. 解释什么是多目标优化,并举例说明其在机械设计中的应用。

#### 三、计算题(每题15分,共30分)1. 假设有一个机械臂设计问题,需要优化其长度以获得最大的工作范围。

如果机械臂的长度 \( L \) 与工作范围 \( R \) 的关系为 \( R = L \times \sin(\theta) \),其中 \( \theta \) 是机械臂与水平面的夹角,\( 0 \leq \theta \leq 90^\circ \),求当 \( \theta = 45^\circ \) 时,机械臂的最佳长度 \( L \)。

2. 考虑一个简单的梁结构,其长度为 \( 10 \) 米,承受均布载荷\( q = 10 \) kN/m。

若梁的弯曲刚度 \( EI \) 为 \( 1 \times10^7 \) Nm²,求梁的最大挠度 \( \delta \)。

#### 四、论述题(每题15分,共30分)1. 论述机械优化设计在现代制造业中的重要性。

《机械优化设计》复习题-答案

《机械优化设计》复习题-答案

机械优化设计复习题解答一、填空题1、用最速下降法求fX=100x 2- x 12 2+1- x 1 2的最优解时,设X 0=,T ,第一步迭代的搜索方向为 -47,-50T ;2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长;3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解;4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势;5、包含n 个设计变量的优化问题,称为 n 维优化问题;6、函数C X B HX X T T++21的梯度为HX+B ; 7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足d 0T Gd 1=0,则d 0、d 1之间存在共轭关系;8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素;9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是正定 ;10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合; 11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 10 ; 12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件;13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置; 14、将函数fX=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 ;15、存在矩阵H,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭; 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点;17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即求最优步长;1k k H g --18、与负梯度成锐角的方向为函数值下降的方向,与梯度成直角的方向为函数值变化为零的方向;19、对于一维搜索,搜索区间为[]b a ,,中间插入两个点()()111111,,,b f a f b a b a <<计算出,则缩短后的搜索区间为11b a20、由于确定搜索方向和最佳步长的方法不一致,派生出不同的无约束优化问题数值求解方法;1、导出等式约束极值条件时,将等式约束问题转换为无约束问题的方法有消元法和拉格朗日法;2、优化问题中的二元函数等值线,从外层向内层函数值逐渐变小;3、优化设计中,可行设计点位可行域内内的设计点;4、方向导数定义为函数在某点处沿某一方向的变化率5、在n 维空间中互相共轭的非零向量个数最多有n 个;6、外点惩罚函数法的迭代过程可在可行域外进行,惩罚项的作用是随便迭代点逼近边界或等式约束曲面; 二、选择题1、下面C 方法需要求海赛矩阵; A 、最速下降法 B 、共轭梯度法 C 、牛顿型法 D 、DFP 法2、对于约束问题根据目标函数等值线和约束曲线,判断()1[1,1]T X =为 ,()251[,]22TX =为 ;D A .内点;内点 B. 外点;外点 C. 内点;外点 D. 外点;内点3、内点惩罚函数法可用于求解B 优化问题; A 无约束优化问题B 只含有不等式约束的优化问题C 只含有等式的优化问题D 含有不等式和等式约束的优化问题4、对于一维搜索,搜索区间为a,b,中间插入两个点a1、b1,a1<b1,计算出fa1<fb1,则缩短后的搜索区间为D;A a1,b1B b1,bC a1,bD a,b15、D不是优化设计问题数学模型的基本要素;A设计变量B约束条件C目标函数D 最佳步长6、变尺度法的迭代公式为x k+1=x k-αk H k▽fx k,下列不属于H k必须满足的条件的是C ;A. Hk之间有简单的迭代形式B.拟牛顿条件C.与海塞矩阵正交D.对称正定7、函数)(Xf在某点的梯度方向为函数在该点的A;A、最速上升方向B、上升方向C、最速下降方向D、下降方向8、下面四种无约束优化方法中,D在构成搜索方向时没有使用到目标函数的一阶或二阶导数;A 梯度法B 牛顿法C 变尺度法D 坐标轮换法9、设)(Xf为定义在凸集R上且具有连续二阶导数的函数,则)(Xf在R上为凸函数的充分必要条件是海塞矩阵GX在R上处处B;A 正定B 半正定C 负定D 半负定10、下列关于最常用的一维搜索试探方法——黄金分割法的叙述,错误的是D,假设要求在区间a,b插入两点α1、α2,且α1<α2;A、其缩短率为B、α1=b-λb-aC、α1=a+λb-aD、在该方法中缩短搜索区间采用的是外推法;11、与梯度成锐角的方向为函数值A方向,与负梯度成锐角的方向为函数值B方向,与梯度成直角的方向为函数值 C方向;A、上升B、下降C、不变D、为零12、二维目标函数的无约束极小点就是 B;A、等值线族的一个共同中心B、梯度为0的点C、全局最优解D、海塞矩阵正定的点13、最速下降法相邻两搜索方向d k和d k+1必为 B 向量;A 相切B 正交C 成锐角D 共轭14、下列关于内点惩罚函数法的叙述,错误的是A;A 可用来求解含不等式约束和等式约束的最优化问题;B 惩罚因子是不断递减的正值C初始点应选择一个离约束边界较远的点;D 初始点必须在可行域内三、问答题看讲义1、试述两种一维搜索方法的原理,它们之间有何区答:搜索的原理是:区间消去法原理区别:1、试探法:给定的规定来确定插入点的位置,此点的位置确定仅仅按照区间的缩短如何加快,而不顾及函数值的分布关系,如黄金分割法2、插值法:没有函数表达式,可以根据这些点处的函数值,利用插值方法建立函数的某种近似表达式,近而求出函数的极小点,并用它作为原来函数的近似值;这种方法称为插值法,又叫函数逼近法;2、惩罚函数法求解约束优化问题的基本原理是什么答,基本原理是将优化问题的不等式和等式约束函数经过加权转化后,和原目标函数结合形成新的目标函数——惩罚函数求解该新目标函数的无约束极值,以期得到原问题的约束最优解3、试述数值解法求最佳步长因子的基本思路;答主要用数值解法,利用计算机通过反复迭代计算求得最佳步长因子的近似值4、试述求解无约束优化问题的最速下降法与牛顿型方法的优缺点;答:最速下降法此法优点是直接、简单,头几步下降速度快;缺点是收敛速度慢,越到后面收敛越慢;牛顿法优点是收敛比较快,对二次函数具有二次收敛性;缺点是每次迭代需要求海塞矩阵及其逆矩阵,维数高时及数量比较大;5、写出用数学规划法求解优化设计问题的数值迭代公式,并说明公式中各变量的意义,并说明迭代公式的意义;6、什么是共轭方向满足什么关系共轭与正交是什么关系四、解答题1、试用梯度法求目标函数fX=+ x1x2-2x1的最优解,设初始点x0=-2,4T,选代精度ε=迭代一步;解:首先计算目标函数的梯度函数,计算当前迭代点的梯度向量值梯度法的搜索方向为, 因此在迭代点x0的搜索方向为12,-6T 在此方向上新的迭代点为:===把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数令,可以求出当前搜索方向上的最优步长新的迭代点为当前梯度向量的长度, 因此继续进行迭代; 第一迭代步完成;2、试用牛顿法求f X =x1-22+x1-2x22的最优解,设初始点x0=2,1T;解1:注:题目出题不当,初始点已经是最优点,解2是修改题目后解法;牛顿法的搜索方向为,因此首先求出当前迭代点x0的梯度向量、海色矩阵及其逆矩阵不用搜索,当前点就是最优点;解2:上述解法不是典型的牛顿方法,原因在于题目的初始点选择不当;以下修改求解题目的初始点,以体现牛顿方法的典型步骤;以非最优点x0=1,2T作为初始点,重新采用牛顿法计算牛顿法的搜索方向为,因此首先求出当前迭代点x0的梯度向量、以及海色矩阵及其逆矩阵梯度函数:初始点梯度向量:海色矩阵:海色矩阵逆矩阵:当前步的搜索方向为:=新的迭代点位于当前的搜索方向上:====把新的迭代点带入目标函数,目标函数将成为一个关于单变量的函数令,可以求出当前搜索方向上的最优步长新的迭代点为当前梯度向量的长度, 因此继续进行迭代;第二迭代步:因此不用继续计算,第一步迭代已经到达最优点;这正是牛顿法的二次收敛性;对正定二次函数,牛顿法一步即可求出最优点;3、设有函数 fX=x12+2x22-2x1x2-4x1,试利用极值条件求其极值点和极值;解:首先利用极值必要条件找出可能的极值点:令=求得,是可能的极值点;再利用充分条件正定或负定确认极值点;因此正定, 是极小点,极值为fX=-84、求目标函数f X =x12+x1x2+2x22 +4x1+6x2+10的极值和极值点;解法同上5、试证明函数 f X =2x12+5x22 +x32+2x3x2+2x3x1-6x2+3在点1,1,-2T处具有极小值;解:必要条件:将点1,1,-2T带入上式,可得充分条件=40正定;因此函数在点1,1,-2T处具有极小值6、给定约束优化问题min fX=x1-32+x2-22. g1X=-x12-x22+5≥0g 2X=-x1-2x2+4≥0g 3X= x1≥0g 4X=x2≥0验证在点TX]2[,1=Kuhn-Tucker条件成立; 解:首先,找出在点TX]2[,1=起作用约束:g1X =0g2X =0g3X =2g4X =1因此起作用约束为g1X、g2X;然后,计算目标函数、起作用约束函数的梯度,检查目标函数梯度是否可以表示为起作用约束函数梯度的非负线性组合;==,求解线性组合系数得到均大于0因此在点T X ]2[,1=Kuhn-Tucker 条件成立 7、设非线性规划问题用K-T 条件验证[]TX 0,1*=为其约束最优点;解法同上8、已知目标函数为fX= x 1+x 2,受约束于:g 1X=-x 12+x 2≥0 g 2X=x 1≥0 写出内点罚函数; 解:内点罚函数的一般公式为其中: r 1>r 2 >r 3… >r k … >0 是一个递减的正值数列 r k =Cr k-1, 0<C <1 因此 罚函数为:9、已知目标函数为fX= x 1-12+x 2+22受约束于:g 1X=-x 2-x 1-1≥0g 2X=2-x 1-x 2≥0 g 3X=x 1≥0 g 4X=x 2≥0试写出内点罚函数; 解法同上10、如图,有一块边长为6m 的正方形铝板,四角截去相等的边长为x 的方块并折转,造一个无盖的箱子,问如何截法x 取何值才能获得最大容器的箱子;试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序;11、某厂生产一个容积为8000cm 3的平底无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型以及用MATLAB 软件求解的程序;12、一根长l 的铅丝截成两段,一段弯成圆圈,另一段弯折成方形,问应以怎样的比例截断铅丝,才能使圆和方形的面积之和为最大,试写出这一优化设计问题的数学模型以及用MATLAB 软件求解的程序;13、求表面积为300m 2的体积最大的圆柱体体积;试写出这一优化设计问题的数学模型以及用MATLAB 软件求解的程序; 14、薄铁板宽20cm,折成梯形槽,求梯形侧边多长及底角多大,才会使槽的断面积最大;写出这一优化设计问题的数学模型,并用matlab软件的优化工具箱求解写出M文件和求解命令;15、已知梯形截面管道的参数是:底边长度为c,高度为h,面积A=64516mm2,斜边与底边的夹角为θ,见图1;管道内液体的流速与管道截面的周长s的倒数成比例关系s只包括底边和两侧边,不计顶边;试按照使液体流速最大确定该管道的参数;写出这一优化设计问题的数学模型;并用matlab软件的优化工具箱求解写出M文件和求解命令;16、某电线电缆车间生产力缆和话缆两种产品;力缆每米需用材料9kg,3个工时,消耗电能4kW·h,可得利润60元;话缆每米需用材料4kg,10个工时,消耗电能5kW·h,可得利润120元;若每天材料可供应360kg,有300个工时消耗电能200kW·h可利用;如要获得最大利润,每天应生产力缆、话缆各多少米写出该优化问题的数学模型以及用MATLAB软件求解的程序;。

机械优化设计复习题答案

机械优化设计复习题答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是,充分条件是(正定 。

10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T++21的形式 。

15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。

机械优化设计复习题及答案

机械优化设计复习题及答案

机械优化设计复习题一.单项选择题1.一个多元函数()F X 在X *附近偏导数连续,则该点位极小值点的充要条件为( )A .()*0F X ∇= B. ()*0F X ∇=,()*H X 为正定 C .()*0H X = D. ()*0F X ∇=,()*H X 为负定2.为克服复合形法容易产生退化的缺点,对于n 维问题来说,复合形的顶点数K 应( )A . 1K n ≤+ B. 2K n ≥ C. 12n K n +≤≤ D. 21n K n ≤≤- 3.目标函数F (x )=4x 21+5x 22,具有等式约束,其等式约束条件为h(x)=2x 1+3x 2-6=0,则目标函数的极小值为( )A .1B . 19.05C .0.25D .0.14.对于目标函数F(X)=ax+b 受约束于g(X)=c+x ≤0的最优化设计问题,用外点罚函数法求解时,其惩罚函数表达式Φ(X,M (k))为( )。

A. ax+b+M (k){min [0,c+x ]}2,M (k)为递增正数序列B. ax+b+M (k){min [0,c+x ]}2,M (k)为递减正数序列C. ax+b+M (k){max [c+x,0]}2,M (k)为递增正数序列hnD. ax+b+M (k){max [c+x,0]}2,M (k)为递减正数序列1.B2.C3.B4.B5.A6.B7.D8.B9.A 10C.11.B 12.C 13A 14.B 15.B 16 D 17.D 18.A 19.B.20.D 21.A 22.D 23.C 24.B 25.D 26.D 27.A 28.B 29.B 30.B5.黄金分割法中,每次缩短后的新区间长度与原区间长度的比值始终是一个常数,此常数是( )。

A.0.382 B.0.186 C.0.618 D.0.8166.F(X)在区间[x 1,x 3]上为单峰函数,x 2为区间中一点,x 4为利用二次插值法公式求得的近似极值点。

《机械优化设计》复习题-答案讲解

《机械优化设计》复习题-答案讲解

《机械优化设计》复习题解答一、填空题1、用最速下降法求f(X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T ,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数 C X B HX X T T ++21的梯度为HX+B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d 0、d 1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(21x x f ,若在),(x 20100x x 点处取得极小值,其必要条件是 错误!未找到引用源。

,充分条件是 错误!未找到引用源。

(错误!未找到引用源。

正定 。

10、 库恩-塔克 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k= ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x 2+60表示成C X B HX X T T ++21的形式 错误!未找到引用源。

15、存在矩阵H ,向量 d 1,向量 d 2,当满足d 1T Hd 2=0,向量 d 1和向量 d 2是关于H 共轭。

《机械优化设计》复习题-答案

《机械优化设计》复习题解答一、填空题1、用最速下降法求f (X)=100(x 2- x 12) 2+(1- x 1) 2的最优解时,设X (0)=[-0.5,0.5]T,第一步迭代的搜索方向为 [-47,-50]T 。

2、机械优化设计采用数学规划法,其核心一是寻找搜索方向,二是计算最优步长。

3、当优化问题是凸规划的情况下,任何局部最优解就是全域最优解。

4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和终点,它们的函数值形成 高-低-高 趋势。

5、包含n 个设计变量的优化问题,称为 n 维优化问题。

6、函数C X B HX X T T++21的梯度为B 。

7、设G 为n×n 对称正定矩阵,若n 维空间中有两个非零向量d 0,d 1,满足(d 0)T Gd 1=0,则d0、d1之间存在共轭关系。

8、 设计变量 、 目标函数 、 约束条件 是优化设计问题数学模型的基本要素。

9、对于无约束二元函数),(x x f ,若在),(x 0x x 点处取得极小值,其必要条件是,充分条件是(正定 。

10、 K-T 条件可以叙述为在极值点处目标函数的梯度为起作用的各约束函数梯度的非负线性组合。

11、用黄金分割法求一元函数3610)(2+-=x x x f 的极小点,初始搜索区间]10,10[],[-=b a ,经第一次区间消去后得到的新区间为 [-2.36 10] 。

12、优化设计问题的数学模型的基本要素有设计变量、 目标函数 、 约束条件。

13、牛顿法的搜索方向d k = ,其计算量大 ,且要求初始点在极小点 附近 位置。

14、将函数f(X)=x 12+x 22-x 1x 2-10x 1-4x2+60表示成C X B HX X T T++21的形式 。

15、存在矩阵H,向量 d 1,向量 d2,当满足d1THd 2=0,向量 d1和向量 d2是关于H共轭。

16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因子r 数列,具有单调递增特点。

机械优化设计试题及答案

计算题1.试用牛顿法求()221285f X x x =+的最优解,设()[]01010TX =。

初始点为()[]01010TX =,则初始点处的函数值和梯度分别为()()0120121700164200410140f X x x f X x x =+⎡⎤⎡⎤∇==⎢⎥⎢⎥+⎣⎦⎣⎦,沿梯度方向进行一维搜索,有()010000010200102001014010140X X f X αααα-⎡⎤⎡⎤⎡⎤=-∇=-=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦0α为一维搜索最佳步长,应满足极值必要条件()()[]()()()(){}()αϕααααααααm i n 14010514010200104200108min min 200020001=-⨯+-⨯-⨯+-⨯=∇-=X f X f X f()001060000596000ϕαα'=-=, 从而算出一维搜索最佳步长 0596000.05622641060000α==则第一次迭代设计点位置和函数值01010200 1.245283010140 2.1283019X αα--⎡⎤⎡⎤==⎢⎥⎢⎥-⎣⎦⎣⎦ ()124.4528302f X =,从而完成第一次迭代。

按上面的过程依次进行下去,便可求得最优解。

2、试用黄金分割法求函数()20f ααα=+的极小点和极小值,设搜索区间[][],0.2,1a b =(迭代一次即可)解:显然此时,搜索区间[][],0.2,1a b =,首先插入两点12αα和,由式 ()1()10.61810.20.5056b b a αλ=--=--= ()2()0.20.6181.20.6944a b a αλ=+-=+⨯-=计算相应插入点的函数值()()4962.29,0626.4021==ααf f 。

因为()()12f f αα>。

所以消去区间[]1,a α,得到新的搜索区间[]1,b α, 即[][][]1,,0.5056,1b a b α==。

机械优化计划 自编习题及参考答案 09 zhl


f x2
f x2
cos 2 xo
T xo
方向上的单位向量,则有
f(x1,x2)在 x0 点处沿某一方向 d 的方向导数 f 等于函数在该点处的梯度 d xo
f (x0) 与 d 方向单位向量的内积。

并称它为函数
梯度方向是函数值变化最快的方向,而梯度的模就是函数变化率的最大值。
答:求解优化问题可以用解析解法,也可以用数值的近似解法。 解析解法就是把所研究的对象用数学方程(数学模型)描述出来,然后再用数学解析 方法(如微分、变分方法等)求出有化解。 但是,在很多情况下,优化设计的数学描述比较复杂,因而不便于甚至不可能用解析 方法求解;另外,有时对象本身的机理无法用数学方程描述,而只能通过大量试验数据用 插值或拟合方法构造一个近似函数式,再来求其优化解,并通过试验来验证;或直接以数 学原理为指导,从任取一点出发通过少量试验(探索性的计算),并根据试验计算结果的 比较,逐步改进而求得优化解。这种方法是属于近似的、迭代性质的数值解法。 数值解法不仅可用于求复杂函数的优化解,也可以用于处理没有数学解析表达式的优 化问题。因此,它是实际问题中常用的方法,很受重视。其中具体方法较多,并且目前还 在发展。但是,应当指出,对于复杂问题,由于不能把所有参数都完全考虑并表达出来, 只能是一个近似的最后的数学描述。由于它本来就是一种近似,那么,采用近似性质的数 值方法对它们进行解算,也就谈不到对问题的精确性有什么影响了。 不管是解析解法,还是数值解法,都分别具有针对无约束条件和有约束条件的具体方 法。 可以按照对函数倒数计算的要求,把数值方法分为需要计算函数的二阶导数、一阶导 数和零阶导数(即只要计算函数值而不需计算其导数)的方法。
利用可行域概念,可将数学模型的表达进一步简练。设同时满足

机械优化设计选择题有答案

一、单项选择题1. 在有限元中,系统之间只能通过( A )来传递内力。

A .结点B .网格C .表面D .边缘2.通过对有限元的态体分析,目的是要建立一个( C )来揭示结点外载荷与结点位移的关系,从而用来求解结点位移。

A .变换矩阵B .非线性方程组C .线性方程组D .目标函数3.从系统工程的观点分析,设计系统是一个由时间维、( A )和方法维组成的三维系统。

A .逻辑维B .位移维C .技术维D .质量维4. ( B )称为产品三次设计的第三次设计。

A .环境设计B .容差设计C .工艺设计D .可靠性设计5.人们将设计的对象系统看成是“黑箱”,集中分析比较系统中的能量、物料和( D )三个基本要素的输入输出关系。

A .时间B .质量C .成本D .信息6.创造技法中的“635法”指针对一个设计问题,召集6人与会,要求每人在卡片上出3个设计方案,( B )为一单元,卡片相互交流。

A .5个问题B .5分钟时间C .5个步骤D .5个标准7.( D )更适合表达优化问题的数值迭代搜索求解过程。

A .曲线或曲面B .曲线或等值面C .曲面或等值线D .等值线或等值面8.机械最优化设计问题多属于( C )优化问题。

A. 约束线性B. 无约束线性C. 约束非线性D. 无约束非线性9.当设计变量数目( B )时,该设计问题称为中型优化问题。

A. n <10B. n =10~50C. n <50D. n >5010.梯度方向是函数具有( D )的方向。

A. 最速下降B. 最速上升C. 最小变化D. 最大变化率。

11.若矩阵A 的各阶顺序主子式均大于零,则该矩阵为( A )矩阵A. 正定B. 正定二次型C. 负定D. 负定二次型12.多维无约束优化有多种方法,( D )不属于其中的方法。

A. 直接法B. 间接法C. 模式法D. 积分法13.为了确定函数单峰区间内的极小点,可按照一定的规律给出若干试算点,依次比较各试算点的函数值大小,直到找到相邻三点的函数值按( A )变化的单峰区间为止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 第一章习题答案 1-1 某厂每日(8h制)产量不低于1800件。计划聘请两种不同的检验员,一级检验员的标准为:速度为25件/h,正确率为98%,计时工资为4元/h;二级检验员标准为:速度为15件/h,正确率为95%,计时工资3元/h。检验员每错检一件,工厂损失2元。现有可供聘请检验人数为:一级8人和二级10人。为使总检验费用最省,该厂应聘请一级、二级检验员各多少人? 解:(1)确定设计变量;

根据该优化问题给定的条件与要求,取设计变量为X = 二级检验员一级检验员21xx; (2)建立数学模型的目标函数; 取检验费用为目标函数,即: f(X) = 8*4*x1+ 8*3*x2 + 2(8*25*0.02x1 +8*15*0.05x2 ) =40x1+ 36x2 (3)本问题的最优化设计数学模型:

min f (X) = 40x1+ 36x2 X∈R3· s.t. g1(X) =1800-8*25x1+8*15x2≤0 g2(X) =x1 -8≤0 g3(X) =x2-10≤0 g4(X) = -x1 ≤0 g5(X) = -x2 ≤0

1-2 已知一拉伸弹簧受拉力F,剪切弹性模量G,材料重度r,许用剪切应力[],许用最大变形量[]。欲选择一组设计变量TTnDdxxx][][2321X使弹簧重量最轻,同时满足下列限制条件:弹簧圈数3n,簧丝直径0.5d,弹簧中径21050D。试建立该优化问题的数学模型。 注:弹簧的应力与变形计算公式如下 322234881,1,(2nss

FDFDD

kkcdcdGd旋绕比),

解: (1)确定设计变量;

根据该优化问题给定的条件与要求,取设计变量为X = nDdxxx2321; (2)建立数学模型的目标函数; 取弹簧重量为目标函数,即:

f(X) = 322124xxrx (3)本问题的最优化设计数学模型: min f (X) = 322124xxrx X∈R3· s.t. g1(X) =0.5-x1 ≤0 2

g2(X) =10-x2 ≤0 g3(X) =x2-50 ≤0 g4(X) =3-x3 ≤0

g5(X) =312218)21(xFxxx≤0

g6(X) =413328GxxFx≤0 1-3 某厂生产一个容积为8000 cm3的平底、无盖的圆柱形容器,要求设计此容器消耗原材料最少,试写出这一优化问题的数学模型。

解:根据该优化问题给定的条件与要求,取设计变量为X = hrxx 21高底面半径 , 表面积为目标函数,即: minf(X) = x12 + 2 x1 x2 考虑题示的约束条件之后,该优化问题数学模型为: minf(X) = x12 + 2 x1 x2

X=[x1,x2]T∈R2 s.t. g1(X) = -x1 ≤0 g2(X) = -x2 ≤0 h1(X) = 8000 - x12 x2 = 0 1-4 要建造一个容积为1500 m3的长方形仓库,已知每平方米墙壁、屋顶和地面的造价分别为4元、6元和12元。基于美学的考虑,其宽度应为高度的两倍。现欲使其造价最低,试导出相应优化问题的数学模型。 解:(1)确定设计变量;

根据该优化问题给定的条件与要求,取设计变量为X = 高宽长321xxx; (2)建立数学模型的目标函数; 取总价格为目标函数,即: f(X) = 8(x1 x3 + x2 x3) + 6 x1 x2 + 12 x1 x2 (3)建立数学模型的约束函数;

1)仓库的容积为1500 m3。即: 1500-x1 x2 x3 =0 2)仓库宽度为高度的两倍。即: x2 -2 x3 = 0 3)各变量取值应大于0,即: x1 > 0, x2 .> 0.,则 -x1 ≤0,-x2 ≤0 (4)本问题的最优化设计数学模型:

min f (X) = 8(x1 x3 + x2 x3) + 18 x1 x2 X∈R3· 3

s.t. g1(X) = -x1 ≤0 g2(X) = -x2 ≤0 g3(X) = -x3 ≤0 h1(X) = 1500-x1 x2 x3 =0 h2(X) = x2 -2 x3 = 0

1-5 绘出约束条件: 82221xx; 82221xx; 421xx 所确定的可行域

1-6 试在三维设计空间中,用向量分别表示设计变量:

1[132]TX; 2[234]TX; 3[414]TX。

第二章习题答案

2-1 请作示意图解释:(1)()()()kkkkXXS的几何意义。 2-2 已知两向量12[1220],[2021]TTPP,求该两向量之间的夹角。 2-3 求四维空间内两点)2,1,3,1(和)0,5,6,2(之间的距离。 2-4 计算二元函数321121()56fxxxxX在(0)[11]TX处,沿方向[12]TS的方向导数(0)'()sfX

和沿该点梯度方向的方向导数(0)'()fX。 2-5 已知一约束优化设计问题的数学模型为 2212

121122123142

min()(3)(4)[,]()50()2.50()0()0TfxxxxgxxgxxgxgxXXXXXX

求: (1) 以一定的比例尺画出当目标函数依次为()1234fX、、、时的四条等值线,并在图上画出可行区的范围。

(2) 找出图上的无约束最优解1X和对应的函数值1()fX,约束最优解2X和2()fX; (3) 若加入一个等式约束条件:

12()0hxxX

求此时的最优解3X,3()fX。 解:下图为目标函数与约束函数(条件)设计平面X1OX2 。其中的同心圆是目标函数依次为f(X)=1、2、3、4时的四条等值线;阴影的所围的部分为可行域。 4

由于目标函数的等值线为一同心圆,所以无约束最优解为该圆圆心即: X1*=[3,4]T 函数值 f(X1*)= 0 。 而约束最优解应在由约束线g1(X)=0,g2(X)=0,g3(X)=0,g4(X)=0,组成的可行域(阴影线内侧)

内寻找,即约束曲线g1(X)=0与某一等值线的一个切点X2*,可以联立方程:01052121xxxx ,解得X2*=[2,3] 。 函数值 f(X2*)= (2-3)2 + (3-4)2 = 2 。 加入等式约束条件,则X3*为可行域上为h1(X)=0上与某一条等值线的交点,可以联立方程:

0052121xxxx

, 解得X3*=[5/2,5/2] 。

函数值 f(X3*)= (5/2-3)2 + (5/2-4)2 = 2.5 。 2-6 试证明在(1,1)点处函数522)(1222122141xxxxxxfX具有极小值。 证明:求驻点:2244)(121311xxxxxXf,221222)(xxxXf

0)(0)(21xXfxXf,由,4)(]11[**xfxT,极值得:驻点

2)(4)()(2412)(2221122212221212xXfxxxXfxxXfxxxXf,, 

24410

)(XH海赛矩阵

0244100102221121111aaaaa,各阶主子式: H(X)是正定的, 所以驻点必定是极小点。故在(1,1)点处函数)(Xf具有极小值。

2-7 求函数221212()32210fxxxxX的极值点,并判断其极值的性质。 解:26)(11xxXf,14)(22xxXf

0)(0)(21xXfxXf,由,24/229)(]4/13/1[**xfxT,极值得:极值点 5

4)(0)()(6)(222122212212xXfxxXfxxXfxXf,, 

4006)(XH海赛矩阵

04006062221121111aaaaa,各阶主子式: H(X)是正定的,所以,)(Xf为凸函数。 24/229)(]4/13/1[**xfT,极值得:极值点X

2-8 试判断函数2212121()221fxxxxxX的凸性。 解:124)(211xxxXf,12222)(xxxXf

2)(2)(2)(5)(222122212212xXfxxXfxxXfxXf,,, 

2225

)(XH海赛矩阵

02225052221121111aaaaa,各阶主子式: H(X)是正定的, 所以,)(Xf为凸函数。

2-9 试用向量及矩阵形式表示221212()10460fxxxxX并证明它在12{,,1,2}ixxxiD上是一个凸函数。

解:211210)(xxxXf,12224)(xxxXf

2)(1)(2)(222212212xXfxxXfxXf,, 

2112

)(XH海赛矩阵

02112022221121111aaaaa,各阶主子式:

相关文档
最新文档