全等三角形的判定 解答题优生辅导专题提升训练 2021-2022学年冀教版八年级数学上册

合集下载

2020-2021冀教版八年级数学上册 13.3 全等三角形的判定(3)

2020-2021冀教版八年级数学上册 13.3  全等三角形的判定(3)

八年级数学上册13.3 全等三角形的判定(3)一、选择题1.下列选项中具有稳定性的有 ( )A .正方形B .长方形C .梯形D .直角三角形2.如图,在△ABC 和△DEF 中,已知AB= DE ,BC= EF ,根据“SAS ”判定△ABC ≌△DEF ,还需的条件是 ( )A .∠A=∠DB .∠B=∠EC .∠B=∠FD .以上三个均可以3.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD= CED .BE= CD4.如图,∠ACB=90°,AC=BC ,AD ⊥CE ,BE ⊥CE ,垂足分别是点D ,E ,AD=3,BE=1,则DE 的长是 ( )A .23 B.2 C .22 D .10 二、填空题1.如图,△ABC 的两条高AD ,BE 相交于点F ,请添加一个条件,使得△ADC ≌△BEC (不添加其他字母及辅助线),你添加的条件是 .三、按要求做题1.如图,E、A、C三点共线,AB∥CD,∠B=∠E,AC= CD.求证:BC=ED.2.已知:如图,在△ABC、△ADE中,∠BAC=∠DAE= 90°,AB=AC,AD=AE,点C、D、E 三点在同一条直线上,连接BD.(1)求证:△BAD≌△CAE;(2)请判断BD、CE有何大小、位置关系,并证明.3.如图,CD= CA,∠1=∠2,BC=EC.求证:DE =AB.4.如图,分别过点C、B作△ABC的BC边上的中线AD及其延长线的垂线,垂足分别为点E、F.求证:BF= CE.5.【问题情境】某节数学课后,老师布置了一道课后练习题:如图①,已知在Rt△ABC中,AC =BC,∠ACB= 90°,CD⊥AB于点D,点E、F分别在AB和BC上,∠ECD=∠FEG,FC⊥AB于点G,求证:△CDE≌△EGF.(1)阅读理解,完成解答,本题证明的思路可用如下框图表示:根据上述思路,请你完整地书写这道练习题的证明过程:(2)特殊位置,证明结论,如图②,若CE平分∠ACD,其余条件不变,求证:AE= BF.13.3全等三角形的判定(3)答案一、选择题1. D 由于三角形具有稳定性,所以正方形、矩形、平行四边形、直角三角形中具有稳定性的是直角三角形.2. B 已知AB= DF,BC= EF,再添加条件:∠B=∠E,根据“SAS”可判定△ABC≌△DEF.3. D 欲使△ABE≌△ACD,已知AB =AC,可根据AAS、SAS、ASA添加条件,逐一证明即可.4. B ∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°.∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD= 90°,∴∠EBC=∠DCA.在△CEB和△ADC中,∴△CEB≌△ADC( AAS),∴BE=DC=1,CE=AD=3.∴DE=EC-CD=3-1=2.故选B.二、填空题1.答案AC=BC(答案不唯一)解析添加AC=BC(答案不唯一),∵AD,BE是△ABC的两条高,∴∠ADC= ∠BEC=90°.在△ADC和△BEC中,∴△ADC≌△BEC( AAS).三、按要求做题1.证明∵AB∥CD,∴∠BAC=∠ECD.在△ABC和△CED中,∴△ABC≌△CED( AAS),∴BC=ED.2.解析(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠EAD+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,∴△BAD≌△CAE( SAS).(2)BD=CE,BD⊥CE.证明如下:由(1)知,△BAD≌△CAE,∴BD= CE, ∠ABD=∠ACE,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB= ∠DBC+∠ACE+∠ACB =90°,∴BD⊥CE.3.证明∵∠1=∠2,∴∠1+∠ECA= ∠2+∠ECA,∴∠ACB= ∠DCE,在△DCE与△ACB中,∴△DCE≌△ACB(SAS),∴DE =AB.4.证明根据题意,知CE⊥AF,BF⊥AF,∴∠CED=∠BFD=90°,又∵AD是边BC的中线,∴BD=DC.在Rt△BDF和Rt△CDE中,.∴△BDF≌△CDE( AAS),∴BF= CE(全等三角形的对应边相等).5.解析(1)∵AC=BC,∠ACB=90°,∴∠A=∠B=45°,∵CD上AB,∴∠CDB= 90°,∴∠DCB= 45°.∵∠ECF= ∠DCB+∠ECD=45°+∠ECD,∠EFC= ∠B+∠FEC=45°+∠FEG, ∠ECD=∠FEG,∴∠ECF= ∠EFC,∴CE=EF,∵CD⊥AB,FC⊥AB,∴∠CDE=∠EGF=90°,在△CDE和△EGF中,∴△CDE≌△EGF( AAS).(2)证明:由(1)知CE=EF,∠A=∠B,∵CE平分∠ACD,∴∠ACE=∠ECD,∵∠ECD=∠FEG,∴∠ACE=∠FEG,在△ACE和△BEF中,∴△ACE≌△BEF( AAS),∴AE=BF.。

2022-2023学年冀教版八年级数学上册《13-3全等三角形的判定》同步达标测试题(附答案)

2022-2023学年冀教版八年级数学上册《13-3全等三角形的判定》同步达标测试题(附答案)

2022-2023学年冀教版八年级数学上册《13.3全等三角形的判定》同步达标测试题(附答案)一.选择题(共8小题,满分40分)1.如图三角形纸片被遮住了一部分,小明根据所学知识画出了一个与原三角形完全重合的三角形,他画图的依据是()A.SSS B.AAS C.ASA D.SAS2.如图所示,△ABC≌△AEF.在下列结论中,不正确的是()A.∠EAB=∠F AC B.BC=EF C.CA平分∠BCF D.∠BAC=∠CAF 3.如图,△ABC≌△ADE,AB=3cm,AC=5cm,点B,A,E在同一条直线上,则下列说法中,正确的是()A.BE=8cm B.CD=1cm C.∠C=∠ADE D.BC=8cm4.如图所示,某同学把一块三角形的模具不小心打碎成了三块,现在要去商店配一块与原来一样的三角形模具,那么最省事的是带哪一块去()A.①B.②C.③D.①和②5.在如图所示的3×3网格中,△ABC是格点三角形(即顶点恰好是网格线的交点),则与△ABC有一条公共边且全等(不含△ABC)的所有格点三角形的个数是()A.4个B.3个C.2个D.1个6.如图,OC平分∠AOB,D,F分别是OC,OB上的点,E,G在OA上,已知OF=13,OE=18,OG=10,△ODF的面积是26,则△DEG的面积是()A.14B.16C.18D.207.如图,在△ABC中,∠ABC的角平分线和∠ACB相邻的外角平分线CD交于点D,过点D作DE∥BC交AB于E,交AC于G,若EG=2,且GC=6,则BE长为()A.8B.7C.10D.98.如图,AB⊥BC,BE⊥AC,∠1=∠2,AD=AB.下列结论中:(1)∠1=∠EFD;(2)BE=EC;(3)BF=DF=CD;(4)FD∥BC.正确的个数是()A.1B.2C.3D.4二.填空题(共8小题,满分40分)9.如图,CD是Rt△ABC的角平分线,∠A=90°,AD=4,BC=7,则△BCD的面积为.10.如图,AD是△ABC的角平分线,DF⊥AB于点F,点E,G分别是边AB,AC上的点,且DE=DG,则∠AED+∠AGD=度.11.如图,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC′,△AEB≌△AEB′,且C′D∥EB′,BE,CD交于点F.若∠BAC=40°,则∠BFC的度数为.12.如图,CA⊥AB于点A,AB=4,AC=2,射线BM⊥AB于点B,一动点D从点A出发以2个单位/秒的速度沿射线AB运动,E为射线BM上一动点,随着点D的运动而运动,且始终保持ED=BC,若点D运动t秒(t>0),△EDB与△BCA全等,则t的值为.13.如图,已知△ABC三个内角的角平分线相交于点O,点D在CA的延长线上,且DC=BC,连接DO,若∠BAC=100°,则∠DOC的度数为.14.一个三角形的三条边的长分别是5,8,10,另一个三角形的三条边的长分别是5,4x+2,2y﹣2,若这两个三角形全等,则x+y的值是.15.若四点A(2,0),B(3,0),C(2,3),D(0,2),则∠ACD﹣∠ACB=.16.如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC,E是AB上一点,且AE=AD,连接DE,过E作EF⊥BD,垂足为F,延长EF交BC于点G.现给出以下结论:①EF =FG;②CD=DE;③∠BEG=∠BDC;④∠DEF=45°.其中正确的是.(写出所有正确结论的序号)三.解答题(共5小题,满分40分)17.如图,已知∠1=∠2,AB=AD,请添加一个条件,使△ABC≌△ADE,并加以证明.(1)你添加的条件是(只需添加一个条件);(2)写出证明过程.18.如图,AB∥CD,点E在CB的延长线上,∠A=∠E,AC=DE.(1)求证:BC=CD;(2)连接BD,求证:∠ABD=∠EBD.19.如图,在△ABC中,AB=AC,D为线段BC的延长线上一点,且DB=DA,BE⊥AD 于点E,点F为BE上一点,连接AF.(1)试说明∠BAC+∠EBD=90°;(2)过C作CG⊥BD,与AD交于点G,若∠BAC=∠DAF,则AF=AG吗?请说明理由.20.如图,在△AOB和△COD中,OA=OB,OC=OD,∠AOB=∠COD=50°,(1)试说明:AC=BD;(2)AC与BD相交于点P,求∠APB的度数.21.如图,在△ABC中,AB=AC,点D为BA延长线上一点,DE⊥BC交BC的延长线于点E,点F为AC延长线上一点,FH⊥BC交BC的延长线于点H,且FH=DE.(1)△BDE与△CFH全等吗?为什么?(2)连接DF交BH于点P,若BC=6,求PH的长.参考答案一.选择题(共8小题,满分40分)1.解:他画图的依据是ASA,即有两角和它们的夹边对应相等的两个三角形全等,故选:C.2.解:∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC﹣∠EAE=∠EAF﹣∠EAC,∴∠EAB=∠F AC,故A不符合题意;∵△ABC≌△AEF,∴BC=EF,故B不符合题意;∵△ABC≌△AEF,∴AC=AF,∠ACB=∠F,∴∠ACF=∠F=∠ACB,∴CA平分∠BCF,故C不符合题意;∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC>∠CAF,故D符合题意,故选:D.3.解:∵△ABC≌△ADE,∴AC=AE,AB=AD,∠C=∠AED,∠BAC=∠DAE,故C选项不符合题意,∵AB=3cm,AC=5cm,∴BE=AB+AC=8(cm),CD=AC﹣AD=5﹣3=2(cm),故A选项符合题意,B选项不符合题意,∵∠BAC+∠DAE=180°,∴∠BAC=90°,根据勾股定理,BC==(cm),故D选项不符合题意,故选:A.4.解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.5.解:如图,观察图象可知满足条件的三角形有4个.故选:A.6.解:过D作DM⊥OB于M,DN⊥OA于N,∵OC平分∠AOB,∴DM=DN,∵△ODF的面积是26,OF=13,∴×13DM=2,∴DN=DM=4,∵OE=18,OG=10,∴EG=8,∴△DEG的面积=EG•DN=×4×8=16,故选:B.7.解:∵CD平分∠ACF,∴∠ACD=∠FCD,∵DE∥BF,∴∠FCD=∠EDC,∴∠ACD=∠EDC,∴GD=GC=6,∵BD平分∠ABC,∴∠ABD=∠FBD,∵DE∥BF,∴∠FBD=∠EDB,∴∠ABD=∠EDB,∴BE=DE=EG+DG=2+6=8、故选:A.8.解:(1)在△ADF和△ABF中,,∴△ADF≌△ABF(SAS),∴∠ADF=∠ABF,∵∠ABF+∠BAE=∠ADF+∠DFE=90°,∴∠BAE=∠DFE,∵∠1=∠2,∴2∠1=∠DFE,故(1)错误;(2)当△ABC不是等腰直角三角形时,∠C≠45°,则∠C≠∠CBE,此时BE≠CE,故(2)错误;(4)∵△ADF≌△ABF,∴∠ABF=∠ADF,∵AB⊥BC,BE⊥AC,∴∠ABE+∠CBE=∠BCE+∠C=90°,∴∠ABE=∠C,∴∠ADF=∠C(等量代换),∴DF∥BC(同位角相等,两直线平行),故(4)正确;(3)过D点作DM⊥BC于点M,过点F作FN⊥BC于点N,则DM=FN,∵∠C+∠CBF=∠C+∠CDM=90°,∴∠CDM=∠FBN,∴△CDM≌△FBN(AAS),∴CD=FB,∵△ADF≌△ABF,∴DF=BF.∴BF=DF=CD,故(3)正确;综上所述,正确的说法有(3)、(4)两种;故选:B.二.填空题(共8小题,满分40分)9.解:过D作DE⊥BC于E,∵CD是Rt△ABC的角平分线,∠A=90°,AD=4,∴DE=AD=4,∵BC=7,∴△BCD的面积=BC•DE=7×4=14,故答案为:14.10.解:如图,过点D作DH⊥AC于点H,∴∠DHG=90°,∵DF⊥AB,∴∠DFE=90°,∵AD是△ABC的角平分线,∴DF=DH,∵DE=DG,∴△DEF≌△DGH(HL),∴∠AGD=∠DEF,∴∠AED+∠AGD=∠AED+∠DEF=180°,故答案为:180.11.解:延长C′D交AB′于H.∵△AEB≌△AEB′,∴∠ABE=∠AB′E,∵C′H∥EB′,∴∠AHC′=∠AB′E,∴∠ABE=∠AHC′,∵△ADC≌△ADC′,∴∠C′=∠ACD,∵∠BFC=∠DBF+∠BDF,∠BDF=∠CAD+∠ACD,∴∠BFC=∠AHC′+∠C′+∠DAC,∵∠DAC=∠DAC′=∠CAB′=40°,∴∠C′AH=120°,∴∠C′+∠AHC′=60°,∴∠BFC=60°+40°=100°,故答案为:100°.12.解:∵CA⊥AB,BM⊥AB,∴∠CAB=∠DBE=90°,又∵ED=BC,∴△EDB与△BCA全等,分情况讨论:∵点D运动t秒(t>0),当点D运动到点B时,可得2t=4,解得t=2,此时不能构成△BDE,故t≠2,①△ABC≌△BED,则BD=AC,∵AB=4,AC=2,当0<t<2时,BD=4﹣2t,∴4﹣2t=2,解得t=1,当t>2时,BD=2t﹣4,∴2t﹣4=2,解得t=3;②△ABC≌△BDE,则BD=AB,当0<t<2时,4﹣2t=4,解得t=0(舍),当t>2时,2t﹣4=4,解得t=4,综上,满足条件的t=1或3或4,故答案为:1或3或4.13.解:∵△ABC三个内角的角平分线相交于点O,∴BO平分∠ABC,CO平分∠ACB,∴∠ABO=∠CBO=∠ABC,∠ACO=∠BCO=∠ACB,∵∠BAC=100°,∴∠ABC+∠ACB=80°,∴∠OBC+∠OCB=40°,∴∠BOC=140°,在△BCO和△DCO中,,∴△BCO≌△DCO(SAS),∴∠DOC=∠BOC=140°,故答案为:140°.14.解:∵两个三角形全等,∴4x+2=8,2y﹣2=10或4x+2=10,2y﹣2=8,解得:x=,y=6或x=2,y=5,∴x+y=7.5或7,故答案为:7.5或7.15.解:如图,取OA的中点为E,连接CE、DE,过点C作CF⊥y轴于F,∵A(2,0),B(3,0),C(2,3),D(0,2),∴OE=FD=AE=AB=1,OD=CF=2,CA⊥BE,∠CFD=∠DOE=90°,∴BC=EC,∴∠ACB=∠ACE,在△CFD和△DOE中,,∴△CFD≌△DOE(SAS),∴CD=DE,∠CDF=∠DEO,∴∠ODE+∠DEO=90°,∴∠ODE+∠CDF=90°,∴∠CDE=180°﹣90°=90°,∴△CDE是等腰直角三角形,∴∠DCE=45°,∴∠ACD﹣∠ACB=∠ACD﹣∠ACE=∠DCE=45°,故答案为:45°.16.解:∵BD平分∠ABC,∴∠1=∠2,∵EF⊥BD,∴∠3=∠4=90°,∠EFD=∠DFG=90°,在△BEF和△BEG中,,∴△BEF≌△BEG,∴EF=FG,故①正确;过D作DM⊥AB,∵∠ACB=90°,∴DC⊥BC,又∵BD平分∠ABC,∴DC=DM,在Rt△EMD中:ED>MD,∴CD≠DE,故②说法错误;∵△BEF≌△BEG,在四边形CDFG中∠C+∠8+∠DFG+∠7=180°,∠C=∠DFG=90°,∴∠7+∠8=180°,∵∠7+∠6=180°,∴∠6=∠8,∴∠5=∠8,即∠BEG=∠BDC,故③正确;∴∠AEF=∠ADF,∵AE=AD,∴∠AED=∠ADE,∴∠DEF=∠EDF,∵∠DFE=90°,∴∠DEF=45°,故④正确.故答案为:①③④.三.解答题(共5小题,满分40分)17.解:(1)添加的条件是AE=AC,故答案为:AE=AC(答案不唯一);(2)证明:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,即∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE.18.证明:(1)∵AB∥CD,∴∠ABC=∠DCE,在△ABC和△ECD中,,∴△ABC≌△ECD(AAS),(2)如图,连接BD,∵BC=CD,∴∠CBD=∠CDB,∵AB∥CD,∴∠ABD+∠CDB=180°,又∵∠CBD+∠EBD=180°,∴∠ABD=∠EBD.19.解:(1)∵AB=AC,∴∠ABC=∠ACB,∴∠BAC=180°﹣2∠ABC,∵DA=DB,∴∠DAB=∠DBA,∴∠BDE=180°﹣2∠ABC,∴∠BAC=∠BDE,∵BE⊥AD,∴∠BDE+∠DBE=90°,∴∠BAC+∠EBD=90°.(2)AF=AG.理由如下:∵∠BAC=∠DAF,∴∠BAF=∠CAG,∵∠BAC=∠BDE,∴∠DAF=∠BDE,∵∠CGD=90°﹣∠BDG,∠AFE=90°﹣∠DAF,∴∠AFE=∠CGD,∴∠AFB=∠AGC,又∵AB=AC,∠BAF=∠CAG,∴△ABF≌△ACG(AAS),∴AF=AG.20.(1)证明:∵∠AOB=∠COD,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD;(2)解:设AC与BO交于点M,则∠AMO=∠BMP,∵△AOC≌△BOD,∴∠OAC=∠OBD,∴180°﹣∠OAC﹣∠AMO=180°﹣∠OBD﹣∠BMP,即∠MPB=∠AOM=50°,∴∠APB=50°.21.解:(1))△BDE≌△CFH,理由如下:∵AB=AC,∴∠ABC=∠ACB,∵∠ACB=∠FCH,∴∠ABC=∠FCH,∵DE⊥BC,FH⊥BC,∴∠BED=∠CHF=90°,在△BED和△CHF中,,∴△BDE≌△CFH(AAS);(2)∵△BDE≌△CFH,∴BE=CH,∴BC=EH,∵BC=6,∴EH=6,∵DE⊥BC,∴∠DEP=90°,在△DEP和△FHP中,,∴△DEP≌△FHP(AAS),∴EP=PH=3,∴PH=3.。

第1章全等三角形 优生辅导专题提升训练(附答案) 2021-2022学年苏科版八年级数学上册

第1章全等三角形 优生辅导专题提升训练(附答案) 2021-2022学年苏科版八年级数学上册

2021-2022学年苏科版八年级数学上册《第1章全等三角形》优生辅导专题提升训练(附答案)1.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠F AB=∠EAB,③EF=BC,④∠EAB=∠F AC,其中正确结论的个数是()A.1个B.2个C.3个D.4个2.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE3.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF 4.如图所示,若△ABE≌△ACF,且AB=6,AE=2,则BF的长为()A.2B.3C.5D.45.下列命题中正确的是()A.全等三角形的高相等B.全等三角形的中线相等C.全等三角形的角平分线相等D.全等三角形的对应角平分线相等6.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的周长、面积分别相等;④面积相等的两个三角形全等,其中正确的说法为()A.①③④B.②③④C.①②③D.①②③④7.如图,已知线段AC、BD相交于点O,从下列条件:①点O是线段AC中点;②点O是线段BD的中点;③AB=DC;④AB∥DC中选两个仍不能说明△ABO≌△CDO的是()A.①②B.①③C.③④D.①④8.如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是()A.AB=DE B.∠A=∠D C.AC=DF D.AC∥FD9.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等B.两个锐角对应相等C.斜边和一直角边对应相等D.斜边和一锐角对应相等10.如图,AC,BD相交于点O,OB=OD.要使△AOB≌△COD,则下列添加的条件中错误的是()A.∠A=∠C B.∠B=∠D C.OA=OC D.AB=CD11.如图,AC、BD相交于点O,∠1=∠2,若用“SAS”说明△ACB≌△BDA,则还需要加上条件()A.AD=BC B.BD=AC C.∠D=∠C D.OA=AB12.某同学把一块三角形的玻璃打碎了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的方法是()A.带①去B.带②去C.带③去D.带①②③去13.如图,已知BC=EC,∠BCE=∠ACD,如果只添加一个条件使△ABC≌△DEC,则添加的条件不能为()A.AB=DE B.∠B=∠E C.AC=DC D.∠A=∠D 14.如图,已知CD⊥AB于D,现有四个条件:①AD=ED;②∠A=∠BED;③∠C=∠B;④AC=EB,那么不能得出△ADC≌△EDB的条件是()A.①③B.②④C.①④D.②③15.如图,△ABC≌△ADE,∠EAC=25°,则∠BAD=°.16.已知△ABC≌△DEF,且△ABC的三边长分别为3cm,4cm,5cm,则△DEF的周长为cm.17.如图,已知△ABC≌△ADE,若AB=7,AC=4,则BE的值为.18.如图,已知∠1=∠2、AD=AB,若再增加一个条件不一定能使结论△ADE≌△ABC成立,则这个条件是.19.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB=.20.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.21.已知:BE⊥CD,BE=DE,BC=DA,求证:①△BEC≌△DEA;②DF⊥BC.22.如图,∠A=∠B=90°,E是AB上的一点,且AE=BC,∠1=∠2.(1)Rt△ADE与Rt△BEC全等吗?并说明理由;(2)△CDE是不是直角三角形?并说明理由.23.如图,点E,F分别是线段AD上的两点,AE=DF,AB∥CD,AB=CD,线段CE与BF有什么数量关系和位置关系?请说明理由.24.如图所示,A、F、C,D四个点在同一直线上,AB⊥BC.DE⊥EF,AC=DF,AB=DE.求证:BF∥CE.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕着点C旋转到如图1所示的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕着点C旋转到如图2所示的位置时,①找出图中一对全等三角形;②DE、AD、BE之间有怎样的数量关系,并加以证明.26.如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.(1)求证:△ADC≌△CEB.(2)AD=5cm,DE=3cm,求BE的长度.27.已知:如图,AB=AC,PB=PC,PD⊥AB,PE⊥AC,垂足分别为D、E.证明:(1)PD=PE.(2)AD=AE.28.在△ABC中,AB=CB,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF.(1)求证:Rt△ABE≌Rt△CBF;(2)若∠CAE=30°,求∠ACF度数.29.(1)已知,如图①,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E,求证:DE=BD+CE.(2)如图②,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.参考答案1.解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠F AC=∠EAB≠∠F AB,故②错误;EF=BC,故③正确;∠EAB=∠F AC,故④正确;综上所述,结论正确的是①③④共3个.故选:C.2.解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.3.解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF ∴Rt△ABC≌Rt△DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选:A.4.解:∵△ABE≌△ACF,∴AF=AE=2,∴BF=AB﹣AF=6﹣2=4,故选:D.5.解:∵A、B、C项没有“对应”∴错误,而D有“对应”,D是正确的.故选:D.6.解:①全等图形的形状相同、大小相等,正确;②全等三角形的对应边相等,正确;③全等三角形的周长、面积分别相等,正确;④面积相等的两个三角形不一定全等,错误;故选:C.7.解:A、∵点O是线段AC中点,点O是线段BD的中点,∴OA=OC,OB=OD,∵∠AOB=∠COD,∴△ABO≌△CDO(SAS),不符合题意;B、∵点O是线段AC中点,AB=DC,∴OA=OC,∵∠AOB=∠COD,不能判定△ABO≌△CDO,符合题意;C、∵AB=DC;AB∥DC,∴∠B=∠D,∠A=∠C,∴△ABO≌△CDO(ASA),不符合题意;D、∵点O是线段AC中点,∴OA=OC,∵AB∥DC,∴∠B=∠D,∠A=∠C,∴△ABO≌△CDO(AAS),不符合题意;故选:B.8.解:∵BF=EC,∴BF+FC=EC+FC,∴BC=EF,又∵∠B=∠E,∴当添加条件AB=DE时,△ABC≌△DEF(SAS),故选项A不符合题意;当添加条件∠A=∠D时,△ABC≌△DEF(AAS),故选项B不符合题意;当添加条件AC=DF时,无法判断△ABC≌△DEF,故选项C符合题意;当添加条件AC∥FD时,则∠ACB=∠DFE,故△ABC≌△DEF(ASA),故选项D不符合题意;故选:C.9.解:A、根据SAS可以判定三角形全等,本选项不符合题意.B、AA不能判定三角形全等,本选项符合题意.C、根据HL可以判定三角形全等,本选项不符合题意.D、根据AAS可以判定三角形全等,本选项不符合题意.故选:B.10.解:∵∠AOB=∠COD,OB=OD,∴当添加∠A=∠C时,可根据“AAS”判断△AOB≌△COD;当添加∠B=∠D时,可根据“ASA”判断△AOB≌△COD;当添加OA=OC时,可根据“SAS”判断△AOB≌△COD.故选:D.11.解:还需要加上条件BD=AC,∵在△ABD和△BAC中,∴△ACB≌△BDA(SAS),故选:B.12.解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.最省事的方法是应带③去,理由是:ASA.故选:C.13.解:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,A、根据BC=CE,AB=DE,∠ACB=∠DCE不能推出△ABC≌△DEC,故本选项正确;B、因为∠ACB=∠DCE,∠B=∠E,BC=CE,所以符合AAS定理,即能推出△ABC≌△DEC,故本选项错误;C、因为BC=CE,∠ACB=∠DCE,AC=CD,所以符合SAS定理,即能推出△ABC≌△DEC,故本选项错误;D、因为∠A=∠D,∠ACB=∠DCE,BC=CE,所以符合AAS定理,即能推出△ABC≌△DEC,故本选项错误;故选:A.14.解:A、∵CD⊥AB,∴∠ADC=∠BDE=90°,在△ADC和△EDB中,∵,∴△ADC≌△EDB(AAS),正确,故本选项错误;B、∵CD⊥AB,∴∠ADC=∠BDE=90°,在△ADC和△EDB中,∵,∴△ADC≌△EDB(AAS),正确,故本选项错误;C、∵CD⊥AB,∴∠ADC=∠BDE=90°,在Rt△ADC和Rt△EDB中,∵,∴Rt△ADC≌Rt△EDB(HL),正确,故本选项错误;D、根据三个角对应相等,不能判断两三角形全等,错误,故本选项正确;故选:D.15.解:∵△ABC≌△ADE,∴∠CAB=∠EAD,∴∠CAB﹣∠EAB=∠EAD﹣∠BAD,即:∠BAD=∠EAC=25°,故答案为25.16.解:∵△ABC的三边长分别为3cm,4cm,5cm,△ABC≌△DEF,∴△DEF的三边长分别为3cm,4cm,5cm,∴△DEF的周长为3+4+5=12(cm),故答案为:12.17.解:∵△ABC≌△ADE,∴AB=AD=7,AC=AE=4,则BE的值为:7﹣4=3.故答案为:3.18.解:增加的条件为DE=BC,理由:∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,∵AD=AB,DE=BC,∴△ADE≌△ABC不一定成立,故答案为:DE=BC.19.解:∵点C是AD的中点,也是BE的中点,∴AC=DC,BC=EC,∵在△ACB和△DCE中,,∴△ACB≌△DCE(SAS),∴DE=AB,∵DE=20米,∴AB=20米,故答案为:20米.20.(1)证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF与△DCE中,,∴△ABF≌△DCE(AAS),∴AB=DC.(2)△OEF为等腰三角形理由如下:∵△ABF≌△DCE,∴∠AFB=∠DEC,∴OE=OF,∴△OEF为等腰三角形.21.证明:(1)∵BE⊥CD,∴∠BEC=∠DEA=90°,又∵BE=DE,BC=DA,∴△BEC≌△DEA(HL);(2)∵△BEC≌△DEA,∴∠B=∠D.∵∠D+∠DAE=90°,∠DAE=∠BAF,∴∠BAF+∠B=90°.即DF⊥BC.22.解:(1)全等,理由是:∵∠1=∠2,∴DE=CE,在Rt△ADE和Rt△BEC中,,∴Rt△ADE≌Rt△BEC(HL);(2)是直角三角形,理由是:∵Rt△ADE≌Rt△BEC,∴∠3=∠4,∵∠3+∠5=90°,∴∠4+∠5=90°,∴∠DEC=90°,∴△CDE是直角三角形.23.解:CE=BF,CE∥BF,理由如下:∵AB∥CD,∴∠A=∠D,又∵AE=DF,∴AE+EF=DF+EF,即AF=DE,又∵AB=CD,∴△ABF≌△DCE(SAS),∴CE=BF,∠CED=∠BF A,∴CE∥BF.24.证明:如图,在Rt△ABC与Rt△FED中,.∴Rt△ABC≌Rt△FED(HL).∴∠A=∠D.∵AC=DF,∴AC﹣FC=DF﹣FC,即AF=DC.在△ABF与△DEC中,.∴△ABF≌△DEC(SAS).∴∠AFB=∠DCE.∴∠BFC=∠ECF.∴BF∥CE.25.(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠ACD+∠BCE=180°﹣90°=90°,∴∠DAC=∠ECB;在△ADC和△CEB中,∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(AAS)①,∴DC=EB,AD=CE,∴DE=AD+BE.(2)解:同理可得△ADC≌△CEB①;∴AD=CE,CD=BE,∴DE=AD﹣BE②.26.(1)证明:∵AD⊥CE,∠ACB=90°,∴∠ADC=∠ACB=90°,∴∠BCE=∠CAD(同角的余角相等),在△ADC与△CEB中∴△ADC≌△CEB(AAS);(2)解:由(1)知,△ADC≌△CEB,则AD=CE=5cm,CD=BE.∵CD=CE﹣DE,∴BE=AD﹣DE=5﹣3=2(cm),即BE的长度是2cm.27.证明:(1)连接AP.在△ABP和△ACP中,,∴△ABP≌△ACP(SSS).∴∠BAP=∠CAP,又∵PD⊥AB,PE⊥AC,垂足分别为D、E,∴PD=PE(角平分线上点到角的两边距离相等).(2)在△APD和△APE中,∵,∴△APD≌△APE(AAS),∴AD=AE;28.(1)证明:∵∠ABC=90°,∴∠CBF=∠ABE=90°,在Rt△ABE和Rt△CBF中,,∴Rt△ABE≌Rt△CBF(HL);(2)解:∵AB=BC,∠ABC=90°,∴∠CAB=∠ACB=45°,又∵∠BAE=∠CAB﹣∠CAE=45°﹣30°=15°,由(1)知:Rt△ABE≌Rt△CBF,∴∠BCF=∠BAE=15°,∴∠ACF=∠BCF+∠ACB=15°+45°=60°.29.证明:(1)∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)结论DE=BD+CE仍然成立,理由是:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.。

八年级数学上册 第十三章 全等三角形 专题练习 三角形的尺规作图2 冀教版(2021学年)

八年级数学上册 第十三章 全等三角形 专题练习 三角形的尺规作图2 冀教版(2021学年)

八年级数学上册第十三章全等三角形专题练习三角形的尺规作图2(新版)冀教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第十三章全等三角形专题练习三角形的尺规作图2(新版)冀教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第十三章全等三角形专题练习三角形的尺规作图2(新版)冀教版的全部内容。

三角形的尺规作图1.用尺规作图,已知三边作三角形,用到的基本作图是ﻩﻩﻩ()A.作一个角等于已知角B.作已知直线的垂线C.作一条线段等于已知线段D.作角的平分线2.如图2-6-5,点C在∠AOB的OB边上,用尺规作出了CN∥OA,作图痕迹中,弧FG是ﻩﻩﻩﻩﻩﻩﻩﻩ()图2-6-5A.以点C为圆心,OD为半径的弧B.以点C为圆心,DM为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DM为半径的弧3.已知两角和其中一角的对边作三角形时,可由三角形内角和定理求出第三个角,再依据________作三角形.4.已知∠A和线段AB,要求作一个唯一的△ABC,还需给出一个条件是________________. 5.已知:△ABC(如图2-6-6所示).求作:△A′B′C′,使△A′B′C′≌ABC。

图2-6-66.如图2-6-7,已知线段a,b,且a〉b。

求作△ABC,使∠C=90°,AB=a,AC=b.图2-6-77.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线,方法如下:作法:如图2-6-8(1),①在OA和OB上分别截取OD、OE,使OD=OE。

②分别以D、E为圆心,以大于错误!DE的长为半径作弧,两弧在∠AOB内交于点C.③作射线OC,则OC就是∠AOB的平分线.小聪只带了直角三角板,他发现利用三角板也可以作角平分线,方法如下:步骤:如图2-6-8(2),①利用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P。

八年级上册数学第十二章全等三角形解答题 专题训练 4916含解析.docx

八年级上册数学第十二章全等三角形解答题 专题训练 4916含解析.docx

第十二章《全等三角形》解答题专题训练⑷一、解答题1.如图所示,点P位于等边&ABC的内部,且ZACP=ZCBP.(l)ZBPC的度数为°;⑵延长BP至点D,使得PD=PC,连接AD, CD.①依题意,补全图形;②证明:AD+CD=BD;(3)在⑵的条件下,若BD的长为2,求四边形ABCD的面积.2.(1)如图1,在四边形ABCD 中,AB=AD, ZBAD=120°, ZB=ZADC=90°, E、F 分别是BC、CD上的点.且BE+DF=EF.试求ZEAF度数.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明AABE^AADG,再证明AAEF^AAGF,可得求出/EAF度数,他求出的ZEAF度数应是.请你根据他的思路完成论证过程.⑵如图2,若在四边形ABCD中,AB=AD, ZB+ZD=180°. E, F分别是BC, CD上的点,试探究当ZEAF 与ZBAD满足什么关系时有BE+DF=EF,并说明理由.3.(类比学习,从图1中找方法在图2中运用)(1)如图1,在正方形ABCD (四条边都相等,每个内角都是90°)中,E是AB上一点,G 是AD 上一点,F是AD延长线上一点,且ZGCE=45° , BE=DF.求证:GE=BE+GD.(2)如图2,已知:AC 平分ZBAD, CE±AB, CD=CB, ZB+ZD=180°.求证:AE=AD+BE.求证:AABD^ACDB.5.如图,在四边形A3CD中,BC = DC, AC平分ZS4D.(1)当A3>AO时,求证:ZB + ZD = 180°.(2)当AB = AD时,Z。

应满足什么条件时,等式ZB + ZD = 180°才成立?6.如图,CA — CD, Z7 = Z2, ZA — Z£).求ijE:BC = EC7.如图所示,AE1AB, BC1AB, AE BA, ED = AC.求证:EDLAC.8.教材呈现:如图是华师版八年级上册数学教材第96页的部分内容.3.角'F 分线我们已经知道角是轴对称图形,角平分线所在的直 线是角的对称轴.如图13. 5. 4, OC 是Z.4Ofi 的平分线. P 是OC 上任一点,作PD ± 04, P£ J. OB,垂足分别为 点D 和点E.将LA0B 沿OC 对折,我们发现PD 与PE 完全重:合.由此即有:角平分线的性质定理角平分线上的点到角两边 的距离相等.已知:如图13. 5. 4, 0C 是^AOB 的平分线,点P 是 °C 上的任意一点,PD ± 0A, PE x OB.垂足分别为点 0和点E.求证:PD 图中有两个直角三角形PDO ffl 证明这两个三角形全等,便可证得PD =(1)定理证明:请根据教材中的分析,结合图①,写出"角平分线的性质定理"完整的证明 过程.(2) 定理应用:如图②,在ZkABC 中,AD 、BE 分别是ZBAC, ZABC 的角平分线,AD 、BE 的交点为0,连结C0交AB 于点F,求证:ZACF=ZBCF.(3) 如图③,在(2)的条件下,若BE=CE, ZC=30°, Z\ABD 沿AD 翻折使点B 落在边AC上的点M 处,连结DM,其中AB=也,则S ADCM = ________ .图①9,如图,ZV4BC 中,AD_LBC 于 0,若 BD=AD, FD=CD. 求证:BE±AC. 10. 如图,ZA=ZB, AE = BE,点D 在AC 边上,Z1=Z2, AE 和BD 相交于点0.求证:AAEC 丝Z\BED ;PE.图②图③E11.(1)如图1,求证:三角形的三条角平分线相交于一点,并且这一点到三边的距离相等;(2)如图2,若ZABC的平分线与4CB外角ZACZ)的平分线相交于点P连接AP ,若ABAC = 62° ,则/PAC 是度.12.如图1,在平面直角坐标系中,P (3, 3),点4、B分别在x轴正半轴和y轴负半轴上,且PA = PB.(1)求证:PA1PB;(2)若点4 (9, 0),则点B的坐标为;(3)当点B在y轴负半轴上运动时,求OA - OB的值;(4)如图2,若点B在y轴正半轴上运动时,直接写出OA+OB的值.13.已知:如图,在四边形ABCD中,AC是对角线,AD=BC, Z1=Z2.求证:AB=CDB14.如图,点B:E如:F在一条直线上,AB=DE,AC = DF,BE = CF.求证:15.已知一个三角形的两条边长分别是lcm和2cm, 一个内角为40度.(1)请你借助图1画出一个满足题设条件的三角形;(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由;(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm, 一个内角为40° ", 那么满足这一条件,且彼此不全等的三角形共有几个.友情提醒:请在你画的图中标出已知角的度数和已知边的长度,“尺规作图”不要求写作法,但要保留作图痕迹.16.(本题6分)已知Z\ABC中,AB=AC=5, BC=6, AM平分ZBAC, D为AC的中点,E为BC延长线上一点,且CE=-BC. (1)求ME的长;(2)求证:DB=DE217.如图:△础7中CA=CB, 2/争90°,直线〃经过点G ADLm, BE里田,垂足分别是点D、E(1)在图(甲)中,求证:△46Z2△翊你能探索出线段应?、BE、庞之间的关系吗?(2)在图(乙)中上面的结论还成立吗?为什么?(甲)18.如图,平行四边形ABCD中,点。

(河北专版)2022秋八年级数学上册 第13章 全等三角形全章热门考点整合专训课件冀教版

(河北专版)2022秋八年级数学上册 第13章 全等三角形全章热门考点整合专训课件冀教版

12.如图,在小明的一张地图上,有 A,B,C 三个城市,但是 图上城市 C 已被墨迹污染,只知道∠BAC=∠α,∠ABC= ∠β,请你用尺规作图法帮他在图中确定城市 C 的具体位置. 解:如图所示,点C为求作的点.
13.如图,某段河流的两岸是平行的,数学兴趣小组在老师带领 下不用涉水过河就测到了河的宽度,他们是这样做的: ①在河流的岸边 B 点,选对岸上与 B 点正对的一棵树 A; ②沿河岸直走 20 步有一棵树 C,继续前行 20 步到达 D 处; ③从 D 处沿与岸边垂直的方向行走,当走到 A 树正好被 C 树遮挡住的 E 处时停止行走; ④测得 DE 的长就是河宽 AB.
在△BEM 和△CFM 中, BE=CF,
因为∠EBM=∠FCM, BM=CM,
所以△BEM≌△CFM(SAS).
所以∠BME=∠CMF.
又因为∠BME+∠CME=180°,所以∠CMF+∠CME=180°.
所以 E,M,F 在一条直线上,即三个小石凳在一条直线上.
10.如图,AB=DC,∠A=∠D.求证:∠ABC=∠DCB. 证明:如图,分别取 AD,BC 的中点 N,M,连接 BN,CN,
全章热门考点整合应用 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月5日星期六2022/3/52022/3/52022/3/5
2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于 独立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/52022/3/52022/3/53/5/2022 3、书籍—通过心灵观察世界的窗口.住宅里没有书,犹如房间里没有窗户。2022/3/52022/3/5March 5, 2022 4、享受阅读快乐,提高生活质量。2022/3/52022/3/52022/3/52022/3/5

八年级数学上册 第十三章 全等三角形 专题练习 全等三角形的判定3(无答案)冀教版(2021年整理)

八年级数学上册 第十三章 全等三角形 专题练习 全等三角形的判定3(无答案)冀教版(2021年整理)

八年级数学上册第十三章全等三角形专题练习全等三角形的判定3(无答案)(新版)冀教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册第十三章全等三角形专题练习全等三角形的判定3(无答案)(新版)冀教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册第十三章全等三角形专题练习全等三角形的判定3(无答案)(新版)冀教版的全部内容。

全等三角形的判定一。

理解运用1.如图,已知AC和BD相交于O,且BO=DO,AO=CO,下列判断正确的是()A.只能证明△AOB≌△CODB.只能证明△AOD≌△COBC.只能证明△AOB≌△COBD.能证明△AOB≌△COD和△AOD≌△COB2.已知△ABC的六个元素,下面甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙3.如图,已知MB=ND,∠MBA=∠NDC,下列不能判定△ABM≌△CDN的条件是() A.∠M=∠N B.AB=CD C.AM=CN D.AM∥CN4.某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去第3题第4题第7题5.下列条件不可以判定两个直角三角形全等的是()A.两条直角边对应相等B.两个锐角对应相等C.一条直角边和它所对的锐角对应相等D.一个锐角和锐角所对的直角边对应相等6.△ABC中,AB=AC,BD、CE是AC、AB边上的高,则BE与CD的大小关系为()A.BE>CD B.BE=CD C.BE<CD D.不确定7.如图,是一个三角形测平架,已知AB=AC,在BC的中点D挂一个重锤,自然下垂.调整架身,使点A恰好在重锤线上,AD和BC的关系为_____.8.正方形ABCD中,AC、BD交于O,∠EOF=90o,已知AE=3,CF=4,则EF的长为___.9.“三月三,放风筝”,如图1—24—4是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH,小明是通过全等三角形的识别得到的结论,请问小明用的识别方法是_____(用字母表示).第8题第9题10.已知如图,AE=AC,AB=A D,∠EAB=∠CAD,试说明:∠B=∠D11。

(必考题)初中八年级数学上册第十二章《全等三角形》提高练习(答案解析)

(必考题)初中八年级数学上册第十二章《全等三角形》提高练习(答案解析)

一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3D解析:D【分析】 设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.2.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100°A 解析:A【分析】根据到角的两边距离相等的点在角的平分线上判断出点O 是三角形三条角平分线的交点,再根据三角形的内角和定理求出∠ABC+∠ACB ,然后求出∠OBC+∠OCB ,再利用三角形的内角和定理列式计算即可得解.【详解】解:∵O 到三边AB 、BC 、CA 的距离OF=OD=OE ,∴点O 是三角形三条角平分线的交点,∵∠BAC=70°,∴∠ABC+∠ACB=180°-70°=110°,∴∠OBC+∠OCB= 12(∠ABC+∠ACB )= 12×110°=55°, 在△OBC 中,∠BOC=180°-(∠OBC+∠OCB )=180°-55°=125°.故选:A .【点睛】本题考查了角平分线判定定理,三角形的内角和定理,要注意整体思想的利用. 3.如图,,AD BC ⊥垂足为,D BF AC ⊥,垂足为,F AD 与BF 交于点,5,2E AD BD DC ===,则AE 的长为( )A .2B .5C .3D .7C解析:C【分析】 先证明△ACD ≌△BED ,得到CD=ED=2,即可求出AE 的长度.【详解】解:∵AD BC ⊥,BF AC ⊥,∴90AFE BDE ADC ∠=∠=∠=︒,∵AEF BED ∠=∠,∴EAF EBD ∠=∠,∵5AD BD ==,∴△ACD ≌△BED ,∴CD=ED=2,∴523AE AD ED =-=-=;故选:C .【点睛】本题考查了全等三角形的判定和性质,余角的性质,解题的关键是掌握全等三角形的判定和性质,从而进行解题.4.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .4B解析:B【分析】 根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案.【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意;①和④不构成三角形全等的条件,故错误;故选:B .【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.5.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A.3cm B.6cm C.9cm D.12cm B解析:B【分析】过点O作MN,MN⊥AB于M,证明MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度,再把它们求和即可.【详解】如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=3cm,∴OM=OE=3cm,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=3cm,∴MN=OM+ON=6cm,即AB与CD之间的距离是6cm,故选B【点睛】此题主要考查角平分线的性质和平行线之间的距离,解答此题的关键是要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.6.如图所示,下面甲、乙、丙三个三角形和ABC全等的图形是()A .甲和乙B .乙和丙C .只有丙D .只有乙B解析:B【分析】 甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.用三角尺画角平分线:如图,先在AOB ∠的两边分别取OM ON =,再分别过点M ,N 作OA ,OB 的垂线,交点为P .得到OP 平分AOB ∠的依据是( )A .HLB .SSSC .SASD .ASA A解析:A【分析】 利用垂直得到90PMO PNO ∠=∠=,再由OM ON =,OP OP =即可根据HL 证明()HL ≌PMO PNO △△,由此得到答案.【详解】∵PM OA ⊥,PN OB ⊥,∴90PMO PNO ∠=∠=.∵OM ON =,OP OP =,∴()HL ≌PMO PNO △△, ∴POA POB ∠=∠,故选:A .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据题中的已知条件确定对应相等的边或角,由此利用以上五种方法中的任意一种证明两个三角形全等.8.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA C解析:C【分析】 根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.9.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD C解析:C【分析】 在△ACD 和△ABD 中,AD=AD ,AB=AC ,由全等三角形判定定理对选项一一分析,排除不符合题意的选项即可.【详解】解:添加A 选项中条件可用HL 判定两个三角形全等,故选项A 不符合题意;添加B 选项中的条件可用SSS 判定两个三角形全等,故选项B 不符合题意;添加C 选项中的条件∠1=∠2可得∠CDA=∠BDA ,结合已知条件不SS 判定两个三角形全等,故选项C 符合题意;添加D 选项中的条件可用SAS 判定两个三角形全等,故选项D 不符合题意.故选:C .【点睛】本题考查了全等三角形的判定,判定三角形全等的方法:SSS 、SAS 、ASA 、AAS ,判断直角三角形全等的方法:“HL”.10.已知,如图,OC 是∠AOB 内部的一条射线,P 是射线OC 上任意点,PD ⊥OA ,PE ⊥OB ,下列条件中:①∠AOC =∠BOC ,②PD =PE ,③OD =OE ,④∠DPO =∠EPO ,能判定OC 是∠AOB 的角平分线的有( )A .1个B .2个C .3个D .4个D解析:D【分析】 根据角平分线的性质、全等三角形的判定定理和性质定理判断即可.【详解】解:∵∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,① 符合题意;∵PD ⊥OA ,PE ⊥OB ,PD =PE ,∴OC 是∠AOB 的角平分线,② 符合题意;在Rt △POD 和Rt △POE 中,OD DE OP OP=⎧⎨=⎩ , ∴Rt △POD ≌Rt △POE ,∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,③ 符合题意;∵∠DPO=∠EPO ,PD ⊥OA ,PE ⊥OB∴在△POD 和△POE 中,DPO EPO PDO PEO OP OP =⎧⎪=⎨⎪=⎩∠∠∠∠∴△POD ≌△POE (AAS ),∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,④ 符合题意,故选:D .【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键;二、填空题11.如图,AC=BC ,请你添加一个条件,使AE=BD .你添加的条件是:________.∠A=∠B 或CD=CEAD=BE ∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可【详解】解:因为AC=BC ∠C=∠C 所以添加∠A=∠B 或CD=CEAD=BE ∠AEC=∠BDC 可得△ADC 与△解析:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC 等【分析】根据全等三角形的判定解答即可.【详解】解:因为AC=BC ,∠C=∠C ,所以添加∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC ,可得△ADC 与△BEC 全等,利用全等三角形的性质得出AD=BE ,故答案为:∠A=∠B 或CD=CE 、AD=BE 、∠AEC=∠BDC .【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.12.如图所示的是一张直角ABC 纸片(90C ∠=︒),其中30BAC ∠=︒,如果用两张完全相同的这种纸片恰好能拼成如图2所示的ABD △,若2BC =,则ABD △的周长为______.12【分析】根据题意证明三角形全等即可得解;【详解】如图所示由题可知∴∴∴BCD 在一条直线上∵∴△ABD 是等边三角形∴△ABD 的周长;故答案是12【点睛】本题主要考查了全等三角形的判定与性质结合等边解析:12【分析】根据题意证明三角形全等即可得解;【详解】如图所示,由题可知ABC ADC ≅△△,∴30BAC DAC ∠=∠=︒,90ACB ACD ∠=∠=︒,2BC BD ==,∴60BAD ∠=︒,180BCD ∠=︒,∴B ,C ,D 在一条直线上,∵60B D ∠=∠=︒,∴△ABD 是等边三角形,∴△ABD 的周长()3312BD BC CD ==+=; 故答案是12.【点睛】本题主要考查了全等三角形的判定与性质,结合等边三角形的性质计算是解题的关键. 13.已知在△ABC 中,AB =9,中线AD =4,那么AC 的取值范围是____1<AC <17【分析】作出图形延长AD 至E 使DE =AD 然后利用边角边证明△ABD 和△ECD 全等根据全等三角形对应边相等可得AB =CE 再利用三角形的任意两边之和大于第三边三角形的任意两边之差小于第三边解析:1<AC <17【分析】作出图形,延长AD 至E ,使DE =AD ,然后利用“边角边”证明△ABD 和△ECD 全等,根据全等三角形对应边相等可得AB =CE ,再利用三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出AC 的取值范围.【详解】如图,延长AD 至E ,使DE =AD ,∵AD 是△ABC 的中线,∴BD =CD ,在△ABD 和△ECD 中,BD CD ADB EDC AD DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ECD (SAS ),∴AB =CE ,∵AD =4,∴AE =4+4=8,∵AC +CE >AC >CE -AE ,∴9-8<AC <8+9,∴1<AC <17,故答案为:1<AC <17.【点睛】本题考查了全等三角形的判定与性质,三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边,“遇中线,加倍延”构造出全等三角形是解题的关键.14.如图,AB ,CD 交于点O ,AD ∥BC .请你添加一个条件_____,使得△AOD ≌△BOC .OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ∠C =∠D 然后根据全等三角形的判定方法添加条件即可【详解】解:添加的条件是OA =OB 理由如下:∵AD ∥BC ∴∠A =∠B ∠C =∠D 在△AOD 和 解析:OA =OB (答案不唯一)【分析】由AD ∥BC 可得∠A =∠B ,∠C =∠D ,然后根据全等三角形的判定方法添加条件即可.【详解】解:添加的条件是OA =OB ,理由如下:∵AD ∥BC ,∴∠A =∠B ,∠C =∠D在△AOD 和△BOC 中A B AO BO AOD BOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AOD ≌△BOC (ASA ).故答案为:OA =OB (答案不唯一).【点睛】本题主要考查了全等三角形的判定定理和平行线的性质,掌握全等三角形的判定定理的内容是解答本题的关键.15.如图,ABC 的面积为215cm ,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP ,过点C 作CD AP ⊥于点D ,连接DB ,则DAB 的面积是______2cm .【分析】如图延长CD 交AB 于E 由题意得AP平分∠CAB 证明△ADC ≌△ADE 得到CD=DE 由此得到推出即可得到答案【详解】如图延长CD 交AB 于E 由题意得AP 平分∠CAB ∴∠CAD=∠EAD ∵CD ⊥A 解析:152【分析】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,证明△ADC ≌△ADE ,得到CD=DE ,由此得到,ACD ADE BCD BED SS S S ==,推出ACD BCD ADE BED S S S S +=+,即可得到答案.【详解】如图,延长CD 交AB 于E ,由题意得AP 平分∠CAB ,∴∠CAD=∠EAD,∵CD ⊥AD ,∴∠ADC=∠ADE ,∵AD=AD ,∴△ADC ≌△ADE ,∴,ACD ADE BCD BED SS S S ==, ∴ACD BCD ADE BED SS S S +=+, ∴12ABD ADE BED ABC S S S S =+==152, 故答案为:152. .【点睛】此题考查三角形角平分线的作图方法,全等三角形的判定及性质,证出CD=DE 得到,ACD ADE BCD BED S S S S ==是解此题的关键.16.如图,ABC 中,∠C =90°,AD 平分∠BAC , AB =5,CD =2,则ABD △的面积是______5【分析】根据角平分线的性质求出DE 根据三角形的面积公式计算即可;【详解】如图:作DE ⊥AB 于点E ∵AD 平分∠BAC ∠C=90°DE ⊥AB ∴DE=DC=2∵AB=5∴△ABD 的面积=×AB×DE=5解析:5【分析】根据角平分线的性质求出DE ,根据三角形的面积公式计算即可;【详解】如图:作DE ⊥AB 于点E ,∵AD 平分∠BAC ,∠C=90°,DE ⊥AB ,∵AB=5∴△ABD 的面积=12×AB×DE=5, 故答案为:5.【点睛】本题考查了角平分线的性质,掌握角平分线上的点到角的两边的距离相等是解题的关键; 17.如图,四边形ABDC 中,对角线AD 平分BAC ∠,136ACD ∠=︒,44BCD ∠=︒,则ADB ∠的度数为_____【分析】先添加辅助线过点作交的延长线于点过点作交的延长线于点过点作于点根据角平分线的判定性质定义以及三角形外角的性质邻补角的定义角的和差等可求得【详解】解:过点作交的延长线于点过点作交的延长线于点过解析:46︒【分析】先添加辅助线“过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ”,根据角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等可求得()1462ADB CBE BAC ∠=∠-∠=︒.【详解】解:过点D 作DE AB ⊥交AB 的延长线于点E ,过点D 作DF AC ⊥交AC 的延长线于点F ,过点D 作DG BC ⊥于点G ,如图:∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥ ∴12BAD BAC ∠=∠,DE DF = ∵136ACD ∠=︒ ∴18044DCF ACD ∠=︒-∠=︒∵44BCD ∠=︒,92ACB ACD BCD ∠=∠-∠=︒∴CD 平分BCF ∠∵DF AC ⊥,DG BC ⊥∴DF DG =∴DE DG =∵DE AB ⊥,DG BC ⊥∴BD 平分CBE ∠ ∴12DBE CBE ∠=∠ ∴ADB DBE BAD ∠=∠-∠1122CBE BAC =∠-∠ ()12CBE BAC =∠-∠ 12BCA =∠ 46=︒.故答案是:46︒【点睛】本题考查了角平分线的判定、性质、定义以及三角形外角的性质、邻补角的定义、角的和差等,熟练掌握相关知识点是解题的关键.18.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,BD 平分ABC ∠.若P 是BC 边上一动点,则DP 长的最小值为______.3【分析】过D 作DE ⊥BC 于EDE 即为DP 长的最小值由题意可以得到△BAD ≌△BED 从而得到DE 的长度【详解】解:如图过D 作DE ⊥BC 于EDE 即为DP 长的最小值由题意知在△BAD 和△BED 中∴△BA解析:3【分析】过D 作DE ⊥BC 于E ,DE 即为DP 长的最小值,由题意可以得到△BAD ≌△BED ,从而得到DE 的长度.【详解】解:如图,过D 作DE ⊥BC 于E ,DE 即为DP 长的最小值,由题意知在△BAD 和△BED 中,A DEB ABD EBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAD ≌△BED ,∴ED=AD=3,故答案为3.【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定和性质是解题关键.19.如图,在Rt △ABC 中,∠C =90°,D 、E 分别为边BC 、AB 上的点,且AE =AC ,DE ⊥AB .若∠ADC =61°,则∠B 的度数为_____.32°【分析】由HL 可证明△ADE ≌△ADC 得出∠ADE =∠ADC =61°再根据直角三角形两个锐角互余即可得出结论【详解】解:∵DE ⊥AB ∴∠AED =90°=∠DEB 在Rt △ADE 和Rt △ADC 中∴解析:32°【分析】由HL 可证明△ADE ≌△ADC ,得出∠ADE =∠ADC =61°,再根据直角三角形两个锐角互余即可得出结论.【详解】解:∵DE ⊥AB ,∴∠AED =90°=∠DEB ,在Rt △ADE 和Rt △ADC 中,AD AD AE AC =⎧⎨=⎩, ∴Rt △ADE ≌Rt △ADC (HL ),∴∠ADE =∠ADC =61°,∴∠BDE =180°﹣61°×2=58°,∴∠B =90°﹣58°=32°.故答案为:32°.【点睛】本题考查了全等三角形的判定及性质问题,解题的关键是能够熟练掌握全等三角形的判定及性质.20.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.或【分析】根据等腰三角形的性质作辅助线构造全等三角形得到对应线段相等即可得到结论【详解】①如图所示:∴∵∴∵∴∴在△和中∴△△FDE ∴∴②当时同①的方法有:∴综上所述满足条件的点坐标为或故答案为:或解析:(8)0,或(40), 【分析】根据等腰三角形的性质,作辅助线构造全等三角形,得到对应线段相等即可得到结论.【详解】①如图所示:90AFE ︒∠=,∴90AFD OFE ︒∠+∠=,∵90OFE OEF ︒∠+∠=,∴AFD OEF ∠=∠,∵90AFE ︒∠=,45EAF ︒∠=,∴45AEF EAF ︒∠==∠,∴AF EF =,在△ADF 和FOE 中,ADE FOE AFD OEF AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△FDE ,∴4FO AD ==,8OE DF OD FO ==+=,∴(40)E ,. ②当90AEF ︒∠=时,同①的方法有:8OF =,4OE =,∴(40)E ,, 综上所述,满足条件的点E 坐标为(8)0,或(40), 故答案为:(8)0,或(40), 【点睛】本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解.三、解答题21.如图所示,△ABC 中,∠ACB=90°,AC=BC ,直线EF 经过点C ,BF ⊥EF 于点F ,AE ⊥EF 于点E .(1)求证:△ACE ≌△CBF ;(2)如果AE 长12cm ,BF 长5cm ,求EF 的长.解析:(1)证明见解析;(2)EF=17cm .【分析】(1)根据垂直的定义可得∠AEC=∠CFB=90°,然后求出∠EAC=∠FCB ,再利用“角角边”证明即可;(2)由全等三角形的性质可得:AE=CF ,CE=BF ,再根据线段的和差求解即可.【详解】(1)证明:在Rt △ACB 中,∵∠ACB=90°,∴∠ACE+∠BCF=90°∵AE ⊥EF ,BF ⊥EF∴∠ACE+∠EAC=90°∴∠CAE=∠BCF又∵ AC=CB∴△ACE ≌△CBF(ASA)(2)由△ACE ≌△CBF 可得:AE=CF=12cm , EC=BF=5cm ,∴EF=EC+CF=12+5=17cm .【点睛】本题考查了全等三角形的判定与性质,同角的余角相等的性质,熟练掌握三角形全等的判断方法并找出全等的条件是解题的关键.22.(阅读理解)课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC ≌EDB △的理由是______.(2)求得AD 的取值范围是______.(感悟)解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.(问题解决)(3)如图2,在ABC 中,点D 是BC 的中点,点M 在AB 边上,点N 在AC 边上,若DM DN ⊥,求证:BM CN MN +>.解析:(1)SAS ;(2)17AD <<;(3)见解析【分析】(1)根据AD=DE ,∠ADC=∠BDE ,BD=DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE=AC=6,AE=2AD ,由三角形三边关系定理得出8-6<2AD <8+6,求出即可;(3)延长ND 至点E ,使DE DN =,连接BE 、ME ,证明BED ≌()SAS CND △,得到BE CN =,根据三角形三边关系解答即可.【详解】(1)解:∵在△ADC 和△EDB 中,AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△EDB (SAS ),故答案为:SAS ;(2)解:∵由(1)知:△ADC ≌△EDB ,∴BE=AC=6,AE=2AD ,∵在△ABE 中,AB=8,由三角形三边关系定理得:8-6<2AD <8+6,∴1<AD <7,故答案为:1<AD <7.(3)证明:延长ND 至点E ,使DE DN =,连接BE 、ME ,如图所示:∵点D 是BC 的中点,∴BD CD =.在BED 和CND △中,DE DN BDE CDN BD CD =⎧⎪∠=∠⎨⎪=⎩, ∴BED ≌()SAS CND △,∴BE CN =,∵DM DN ⊥,DE DN =,∴ME MN =,在BEM △中,由三角形的三边关系得:BM BE ME +>,∴BM CN MN +>.【点睛】本题是三角形综合题,主要考查了三角形的中线,三角形的三边关系定理,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.23.如图,已知A ABC ∠=∠,D CBD ∠=∠,ABD CBD ∠=∠,点E 在BC 的延长线上.求证:CD 平分ACE ∠.解析:见解析【分析】根据题意,先证明//AB CD ,然后由平行线的性质以及等量代换,得到ACD DCE ∠=∠,即可得到结论成立.【详解】证明:D CBD ∠=∠,ABD CBD ∠=∠,D ABD ∴∠=∠,//AB CD ∴ABC DCE ∴∠=∠,A ACD ∠=∠又A ABC ∠=∠,CD ∴平分ACE ∠.【点睛】本题考查了平行线的判定和性质,角平分线的判定,解题的关键是掌握所学的知识,正确得到//AB CD .24.如图,在ABC 和BCD △中,90BAC BCD ︒∠=∠=,AB AC =,CB CD =;延长CA 至点E ,使AE AC =;延长CB 至点F ,使BF BC =.连接AD ,AF ,DF ,EF .延长DB 交EF 于点N .(1)求证:AD AF =;(2)求证:BD EF =.解析:(1)证明见解析;(2)证明见解析【分析】(1)结合题意得:ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,推导得ABF ACD ∠=∠;通过证明ABF ACD △≌△,即可完成证明;(2)根据(1)的结论ABF ACD △≌△得:BAF CAD ∠=∠;根据题意得90BAE ∠=;再通过证明AEF ABD △≌△,即可完成证明.【详解】(1) ∵ABF BAC ACB ∠=∠+∠,ACD ACB BCD ∠=∠+∠,90BAC BCD ︒∠=∠=∴ABF ACD ∠=∠∵BF BC =,CB CD =∴BF BC CD ==即AB AC ABF ACD BF CD =⎧⎪∠=∠⎨⎪=⎩∴ABF ACD △≌△∴AF AD =;(2)∵90BAC ︒∠=∴18090BAE BAC ∠=-∠=结合(1)的结论ABF ACD △≌△∴BAF CAD ∠=∠∵90EAF BAE BAF BAF ∠=∠-∠=-∠,90BAD BAC CAD CAD ∠=∠-∠=-∠∵AE AC =,AB AC =∴AE AC AB ==即AF AD EAF BAD AE AB =⎧⎪∠=∠⎨⎪=⎩∴AEF ABD △≌△∴BD EF =.【点睛】本题考查了三角形外角、全等三角形的知识;解题的关键是熟练掌握三角形外角、全等三角形的性质,从而完成求解.25.如图,CB 为ACE ∠的角平分线,F 是线段CB 上一点,,CA CF B E =∠=∠,延长EF 与线段AC 相交于点D .(1)求证:AB FE =;(2)若,//ED AC AB CE ⊥,求A ∠的度数.解析:(1)证明见解析;(2)120︒.【分析】(1)先根据角平分线的定义可得ACB FCE ∠=∠,再根据三角形全等的判定定理与性质即可得证;(2)先根据平行线的性质可得B FCE ∠=∠,从而可得E FCE B ACB ∠∠=∠=∠=,再根据直角三角形的性质可得30ACB ∠=︒,然后根据三角形的内角和定理即可得.【详解】(1)CB 为ACE ∠的角平分线,ACB FCE ∴∠=∠, 在ABC 和FEC 中,B E ACB FCE CA CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ABC FEC AAS ∴≅,AB FE ∴=;(2)//AB CE ,F E B C ∴∠=∠,E FCE B B AC ∠=∴∠=∠∠=,ED AC ⊥,即90CDE ∠=︒,90E FCE ACB ∠∠+∠∴+=︒,即390ACB ∠=︒,解得30ACB ∠=︒,30B ∴∠=︒,180120B A ACB ∠=︒-∠=∴∠-︒.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质、三角形的内角和定理等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.26.如图,AB ⊥CB ,DC ⊥CB , E 、F 在 BC 上,AF=DE ,BE=CF ,求证:AB =DC .解析:见解析【分析】由BE =CF 得BF =CE ,由AB ⊥CB ,DC ⊥CB 得到∠ABF =∠DCE =90°,然后根据“HL ”可判断Rt ABF ≌Rt DCE ,则AB =DC 即可.【详解】证明:∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE ,∵AB ⊥CB ,DC ⊥CB ,∴∠ABF =∠DCE =90°,∵在Rt ABF 和Rt DCE 中,AF DE BF CE =⎧⎨=⎩, ∴Rt ABF ≌Rt DCE (HL ),∴AB =DC .【点睛】本题考查了直角三角形的判定与性质:有一组直角边和斜边对应相等的两直角三角形全等;全等三角形的对应角相等,对应边相等.27.如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B . 求证:△ABC ≌△CDE .解析:见解析.【分析】首先根据AC ∥DE ,利用平行线的性质可得:∠ACB=∠E ,∠ACD=∠D ,再根据∠ACD=∠B 证出∠D=∠B ,再由∠ACB=∠E ,AC=CE 可根据三角形全等的判定定理AAS 证出△ABC ≌△CDE .【详解】证明:∵AC ∥DE ,∴ACD D ∠=∠,BCA E ∠=∠.又∵ACD B ∠=∠,∴B D ∠=∠,又∵AC CE =,∴()ABC CDE AAS ≌.【点睛】此题主要考查了全等三角形的判定,关键是熟练掌握判定两个三角形全等的方法:SSS 、SAS 、ASA 、AAS ,选用哪一种方法,取决于题目中的已知条件.28.如图,在△ABC 中,90ACB ∠=︒,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:AD =CE(2)AD =6cm ,DE =4cm ,求BE 的长度解析:(1)证明见解析;(2)2cm .【分析】(1)先根据垂直的定义可得90ADC E ∠=∠=︒,再根据直角三角形的两锐角互余、等量代换可得CAD BCE ∠=∠,然后根据三角形全等的判定定理与性质即可得证;(2)先结合(1)的结论可得6CE cm =,再根据线段的和差可得2CD cm =,然后根据全等三角形的性质即可得.【详解】(1),AD CE BE CE ⊥⊥,90ADC E ∠=∠=∴︒,90CAD ACD ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,CAD BCE ∴∠=∠,在ACD △和CBE △中,ADC E CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴≅,AD CE ∴=;(2)由(1)已证:AD CE =,6AD cm =,6CE cm ∴=,4DE cm =,2CD CE DE cm ∴=-=,又由(1)已证:ACD CBE ≅,2BE CD cm ∴==.【点睛】本题考查了直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021-2022学年冀教版八年级数学上册《13.3全等三角形的判定》解答题优生辅导专题提升训练(附答案)1.如图,B、C、D、E在同一条直线上,AB∥EF,BC=DE,AB=EF,求证:AC=DF.2.如图,AD与BC交于点O,①AD=BC;②∠A=∠C;③AB=CD,请以①②③中的两个作为条件,另一个为结论,写出一个真命题,并加以证明.3.如图,CB为∠ACE的角平分线,F是线段CB上一点,CA=CF,∠B=∠E,延长EF 与线段AC相交于点D.(1)求证:AB=FE;(2)若ED⊥AC,AB∥CE,求∠A的度数.4.如图,在△ABC中,AB=AC,点D在BC边上,点E在AC边上,连接AD、DE,若AD=DE,AC=CD.(1)求证:△ABD≌△DCE;(2)若BD=3,CD=5,求AE的长.5.如图,大小不同的两块三角板△ABC和△DEC直角顶点重合在点C处,AC=BC,DC =EC,连接AE、BD,点A恰好在线段BD上.(1)找出图中的全等三角形,并说明理由;(2)当AD=AB=4cm,则AE的长度为cm.(3)猜想AE与BD的位置关系,并说明理由.6.如图,△ABC中,AB=AC,点E,F在边BC上;BE=CF.(1)求证:△ABE≌△ACF;(2)点D在AF的延长线上,AD=AC,∠BAE=30°,∠BAD=75°,求证:AB∥DC.7.如图,小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树C处,接着再向前走了30步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E 在一条直线时,他从D点走了80步到达E处.如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.8.如图,四边形ABCD中,AD∥BC,E为CD的中点,连结BE并延长交AD的延长线于点F.(1)求证:△BCE≌△FDE;(2)连结AE,当AE⊥BF,BC=2,AD=1时,求AB的长.9.如图所示,A,D,B,E四点在同一条直线上,若AC=DF,∠A=∠EDF,∠E+∠CBE =180°,求证:AD=BE.10.某班数学兴趣小组为了测量湛河南北两岸的宽度AB,他们的方法是:让小明从点A出发,沿河岸向东走50步到达电线杆C处,继续前行50步到达D处,然后右转90°直行130步到达E处,这时B,C,E三点在一条直线上.(1)小组得到结论“DE的长度就是河宽”,请说明其中的道理.(2)若小明一步的长度为60厘米,请估计河宽有多少米.11.如图,在等腰△ABC中,BA=BC,点F在AB边上,延长CF交AD于点E,BD=BE,∠ABC=∠DBE.(1)求证:AD=CE;(2)若∠ABC=30°,∠AFC=45°,求∠EAC的度数.12.如图,AE与BD相交于点C,AC=EC,BC=DC,AB=6cm,点P从点A出发,沿A →B→A方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段BP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.13.如图,点A,C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:△ADE≌△CBF;(2)直接写出图中所有相等的线段(AE=CF除外).14.如图,小强为了测量高楼AB,在旗杆CD与楼之间选定一点P,∠APC=90°,量得P 到楼底距离PB与旗杆高度CD相等,等于10米,量得旗杆与楼之间距离DB=36米,小强计算出了楼高,楼高AB是多少米?15.如图,在△ABC中,AC=BC,点D在AB边上,点E在BC边上,连接CD,DE.已知∠ACD=∠BDE,CD=DE.(1)猜想AC与BD的数量关系,并证明你的猜想;(2)若AD=3,BD=5,求CE的长.16.已知△ABC中,∠ACB=∠DCE=α,AC=BC,DC=EC,且点A、D、E在同一直线上,AE与BC相交于点F,连接BE.如图1,当α=60°时,求出∠AEB的度数.17.如图,已知D是AC上一点,AB=DA,AB+DC=ED,AE=BC.(1)求证:△ABC≌△DAE,(2)若∠BAE=125°,求∠DCB的度数.18.如图,在四边形ABCD中,AB∥CD,∠1=∠2,AD=EC.则线段AB,BE,CD之间存在怎样的数量关系?并说明理由.19.在△ABC中,D为AC的中点,DM⊥AB于M,DN⊥BC于N,且DM=DN.求证:△ADM≌△CDN.20.小明沿一段笔直的人行道行走,边走边欣赏风景,在由C处走向D处的过程中,通过隔离带PM的缝隙P,刚好浏览完对面人行道宣传墙AB上的一条标语,具体信息如下:如图,AB∥PM∥CD,相邻两平行线间的距离相等,AC,BD相交于点P,PD⊥CD,垂足为D.小明根据自己步行的路程CD长为16m,测出标语AB的长度也为16m,请说明理由.21.如图,△ABC是等腰三角形,AB=AC,∠BAC=45°,过点B作BE⊥AC,垂足为E,在线段BE上截取ED=EC,AD的延长线交BC于点P,联结DC.(1)请说明AD=BC的理由;(2)请说明BP=PC的理由.22.风筝为中国人发明,相传墨翟以木头制成木鸟,研制三年有成,是人类最早的风筝起源.如图,小飞在设计的“风筝”图案中,已知AB=AD,∠B=∠D,∠BAE=∠DAC.AC与AE相等吗?请说明理由.23.如图,已知四边形ABCD中,AB=BC=8cm,CD=6cm,∠B=∠C,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速运动,点Q运动的速度是每秒2cm,点P 运动的速度是每秒acm(a≤2),当点Q到达点C时,P、Q两点都停止运动,设运动时间为t秒.(1)BQ=,BP=.(用含a或t的代数式表示)(2)运动过程中,连接PQ,DQ,△BPQ与△CDQ能否全等?若能,请求出相应的t 和a的值,若不能,说明理由.24.如图,已知四边形ABCD中,AB∥CD,AD∥BC.E为BD上一点,且BE=AD,∠DEF=∠ADC,EF交BC的延长线于点F.(1)AD和BC相等吗?为什么?(2)BF和BD相等吗?为什么?25.已知:如图,在△ABC中,AB=AC,BD⊥AC于点D,CE⊥AB于点E,过点D作CE 的平行线交BC延长线于点F,连接DE.求证:(1)∠DBC=∠ECB;(2)DE=CF.26.如图,在四边形ABCD中,AD=BC,AC=BD,AC与BD相交于点E.求证:∠DAC =∠CBD.27.已知:DF∥BC,∠FDC=∠AEC.(1)如图1,已知CD⊥AB,CB平分∠NCE.求∠ABC的度数;(2)如图2,若∠ABC=∠ACF,AC=FC,DM=BE.求证:BC=MC.28.如图,△ABC中,CD⊥AB,垂足为D.BE⊥AC,垂足为G,AB=CF,BE=AC.(1)求证:AE=AF;(2)求∠EAF的度数.29.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)在不添加任何辅助线的情况下,请直接写出图中面积为△ABC面积的一半的所有三角形.参考答案1.证明:∵AB∥EF,∴∠B=∠E,在△ACB和△FDE中,,∴△ACB≌△FDE(SAS),∴AC=DF.2.解:已知;①③,求证②或者已知②③,求证①.若AD=BC,AB=CD,连接BD,在△ABD和△CDB中,,∴△ABD≌△CDB(SSS),∴∠A=∠C.若∠A=∠C,AB=CD,在△AOB和△COD中,,∴△AOB≌△COD(AAS),∴OA=OC,OB=OD,∴AD=BC.3.证明:(1)∵CB为∠ACE的角平分线,∴∠ACB=∠FCE,在△ABC与△FEC中,,∴△ABC≌△FEC(AAS),∴AB=FE;(2)∵AB∥CE,∴∠B=∠FCE,∴∠E=∠B=∠FCE=∠ACB,∵ED⊥AC,即∠CDE=90°,∴∠E+∠FCE+∠ACB=90°,即3∠ACB=90°,∴∠ACB=30°,∴∠B=30°,∴∠A=180°﹣∠B﹣∠ACB=180°﹣30°﹣30°=120°.4.证明:∵AB=AC,∴∠B=∠C,又∠1=∠2,AD=DE,在△ABD与△DCE中,,∴△ABD≌△DCE(AAS);(2)解:∵△ABD≌△DCE,∴AB=DC=5,CE=BD=3,∵AC=AB,∴AC=5,∴AE=AB﹣EC=5﹣3=2.5.解:(1)△CBD≌△CAE,理由如下:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△CBD与△CAE中,,∴△CBD≌△CAE(SAS);(2)∵△CBD≌△CAE,∴BD=AE=AD+AB=4+4=8(cm),故答案为:8;(3)AE⊥BD,理由如下:在△AOD与△COE中,∵△CBD≌△CAE,∴∠ADO=∠CEO,∵∠AOD=∠COE,∴∠OAD=∠OCE=90°,∴AE⊥BD.6.证明:∵AB=AC,∴∠B=∠ACF,在△ABE和△ACF中,,∴△ABE≌△ACF(SAS);(2)∵△ABE≌△ACF,∠BAE=30°,∴∠BAE=∠CAF=30°,∵AD=AC,∴∠ADC=∠ACD,∴∠ADC==75°,∵∠BAD=75°,∴∠BAD=∠ADC,∴AB∥DC.7.解:在△ABC和△DEC中,,∴△ABC≌△DEC(ASA),∴AB=DE,又∵小刚走完DE用来80步,一步大约50厘米,∴DE=80×0.5=40(米).答:小刚在点A处时他与电线塔的距离为40米.8.解:(1)∵AD∥BC,∴∠F=∠EBC,∠FDE=∠C,∵点E为CD的中点,∴ED=EC,在△FDE和△BEC中,,∴△FDE≌△BEC(AAS);(2)∵△FDE≌△BEC,∴BE=EF,BC=DF,∵AE⊥BF,∴AB=AF,∴AB=AF=AD+DF=AD+BC=1+2=3,∴AB的长为3.9.证明:∵∠E+∠CBE=180°,∠ABC+∠CBE=180°,∴∠E=∠ABC,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AB=DE,∴AB﹣DB=DE﹣DB,∴AD=BE.10.解:(1)∵AB⊥AD,ED⊥AD,∴∠BAC=∠EDC,在△ABC与△DEC中,,∴△ABC≌△DEC(ASA),(2)∵DE=130×0.6=78(米),∴河宽AB=78米.11.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠ABE=∠DBE+∠ABE,∴∠ABD=∠CBE.在△ADB和△CEB中,,∴△ADB≌△CEB(SAS),∴AD=CE;(2)解:∵BA=BC,∠ABC=30°,∴∠BAC=∠BCA=(180°﹣30°)=75°,∵∠AFC=45°,∴∠BCE=∠AFC﹣∠ABC=45°﹣30°=15°,∵△ADB≌△CEB,∴∠BAD=∠BCE=15°,∴∠EAC=∠BAD+∠BAC=15°+75°=90°.12.(1)证明:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)当0≤t≤2时,BP=(6﹣3t)cm,当2<t≤4时,BP=(3t﹣6)cm,综上所述,线段BP的长为(6﹣3t)cm或(3t﹣6)cm;(3)由(1)得:∠A=∠E,ED=AB=4cm,在△ACP和△ECQ中,,∴△ACP≌△ECQ(ASA),当0≤t≤2时,3t=6﹣t,解得:t=1.5;当2<t≤4时,12﹣3t=6﹣t,解得:t=3;综上所述,当线段PQ经过点C时,t的值为1.5s或3s.13.(1)证明:∵AD∥BC∴∠DAC=∠BCA,又∵∠DAC+∠EAD=180°,∠BCA+∠FCB=180°,∴∠EAD=∠FCB,∵DE∥BF,∴∠E=∠F,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),(2)∵△ADE≌△CBF,∴ED=FB,DA=BC,EC=F A.∵AD∥BC,∴∠DAC=∠BCA,在△ADC和△CBA中,,∴△ADC≌△CBA(SAS),∴AB=CD;∴图中所有相等的线段有:ED=FB,DA=BC,AB=CD,EC=F A.14.解:∵∠CPD=36°,∠APB=54°,∠CDP=∠ABP=90°,∴∠DCP=∠APB=54°,在△CPD和△P AB中,∴△CPD≌△P AB(ASA),∴DP=AB,∵DB=36,PB=10,∴AB=36﹣10=26(m),答:楼高AB是26米.15.解:(1)AC=BD,理由如下:∵AC=BC,∴∠A=∠B,在△ADC和△BED中,∴△ADC≌△BED(AAS),∴AC=BD;(2)由(1)知:△ADC≌△BED,∴AC=BD=5,BE=AD=3,∴BC=AC=5,∴CE=BC﹣BE=2.16.解:(1)∵∠ACB=∠DCE=60°,CA=CB,CD=CE,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∵∠CF A=∠BFE,∴∠AEB=∠ACF=60°.17.(1)证明:∵DE=AB+DC,AB=AD,∴DE=AD+DC=AC,在△ABC和△DAE中,,∴△ABC≌△DAE(SSS).(2)解:∵△ABC≌△DAE,∴∠EAD=∠B,∴∠B+∠BAC=∠EAD+∠BAC=∠EAB=125°,∴∠DCB=180°﹣(∠B+∠BAC)=180°﹣125°=55°.18.解:AB+BE=CD,理由如下:∵AB∥CD,∴∠ABD=∠EDC,在△ABD和△EDC中,,∴△ABD≌△EDC(AAS),∴AB=DE,BD=CD,∵DE+BE=BD,∴AB+BE=CD.19.(Ⅰ)证明:∵DM⊥AB于M,DN⊥BC于N,∴∠DMA=∠DNC=90°,∵D是AC的中点,∴DA=DC,在Rt△ADM和Rt△CDN中,,∴Rt△ADM≌Rt△CDN(HL).20.解:CD=AB=16米,理由如下:∵AB∥CD,∴∠ABP=∠CDP,∵PD⊥CD,∴∠CDP=90°,∴∠ABP=90°,即PB⊥AB,∵相邻两平行线间的距离相等,∴PD=PB,在△ABP与△CDP中,,∴△ABP≌△CDP(ASA),∴CD=AB=16米.21.解:(1)∵BE⊥AC,,∠BAC=45°,∴∠ABE=90°﹣45°=45°,∴BE=AE,在△BCE和△ADE中,,∴△BCE≌△ADE(SAS),∴AD=BC.(2)∵AB=AC,∴∠ABC=∠ACB,∵BE⊥AC,BE=AE,EC=ED,∴∠DCE=∠CDE=∠EBA=∠BAE=45°,∴∠ABC﹣∠EBA=∠ACB﹣∠DCE,即∠DBC=∠DCB,∴BD=CD,∴PD为线段BC的垂直平分线,22.解:AC=AE,理由是:∵∠BAE=∠DAC,∴∠BAE+∠EAC=∠DAC+∠EAC,即∠BAC=∠DAE,在△BAC和△DAE中,∴△BAC≌△DAE(ASA),∴AC=AE.23.解:(1)由题意得,AP=atcm,BP=(8﹣at)cm,BQ=2tcm,故答案为:2tcm,(8﹣at)cm;(2)△BPQ与△CDQ能全等;∵∠B=∠C,∴△BPQ与△CDQ全等存在两种情况:①当△PBQ≌△QCD时,PB=CQ,BQ=CD,∴2t=6,8﹣at=8﹣2t,∴a=2,t=3;②当△PBQ≌△DCQ时,PB=DC,BQ=CQ,∴8﹣at=6,2t=8﹣2t,∴a=1,t=2;综上,△BPQ与△CDQ能全等,此时a=2,t=3或a=1,t=2.24.解:(1)AD=CB,理由如下:∵AD∥BC,∴∠ABD=∠CDB,同理可得,∠ADB=∠CBD,在△ABD与△CDB中,,∴△ABD≌△CDB(ASA),∴AD=CB;(2)BF=BD,理由如下:∵AD=CB,BE=AD,∵∠DEF=∠ADC,∴∠DEF﹣∠DBF=∠ADC﹣∠ADB,即∠EFB=∠CDB,在△EFB与△CDB中,,∴△EFB≌△CDB(ASA),∴FB=DB.25.证明:(1)∵BD⊥AC于点D,CE⊥AB于点E,∴∠AEC=∠ADB=90°,在Rt△ACE和Rt△ABD中,∴△ACE≌△ABD(AAS)∴AE=AD,CE=BD,∴∠AED=∠ADE,∵AB=AC,∴∠ABC=∠ACB,∵∠AED+∠ADE+∠A=∠ABC+∠ACB+∠A=180°,∴∠AED=∠ABC,∴ED∥BC,∵CE∥FD,∴四边形ECFD为平行四边形,∠ECB=∠F,∴CE=FD,∴BD=FD,∴∠DBC=∠F,∴∠DBC=∠ECB;(2)∵四边形ECFD为平行四边形,∴DE=CF.26.证明:在△DCA和△DCB中,,∴△CDA≌△DCB(SSS),∴∠DAC=∠CBD.27.解:(1)∵DF∥BC,∴∠FDC=∠NCB,∵CB平分∠NCE,∴∠NCB=∠BCE,∵∠FDC=∠AEC,∴∠FDC=∠NCB=∠BCE=∠AEC,∵CD⊥AB,∴∠ENC=90°,∴∠AEC+∠NCE=∠AEC+∠BCE+∠NCB=3∠NCB=90°,∴∠NCB=30°,∴∠ABC=90°﹣∠NCB=60°;(2)∵DF∥BC,∴∠FMC=∠ACB,∵∠ABC=∠ACF,∴180°﹣∠FMC﹣∠ACF=180°﹣∠ACB﹣∠ABC,即∠F=∠BAC,在△DFC和△EAC中,,∴△DFC≌△EAC(AAS),∴CD=CE,在△MDC和△BEC中,,∴△MDC≌△BEC(SAS),∴MC=BC.28.(1)证明:∵CD⊥AB,BE⊥AC,∴∠CAD+∠ACD=∠CAD+∠EBA=90°,∴∠ACD=∠EBA,在△AEB和△F AC中,,∴△AEB≌△F AC(SAS),∴AE=F A;(2)解:∵△AEB≌△F AC,∴∠E=∠CAF,∵∠E+∠EAG=90°,∴∠CAF+∠EAG=90°,即∠EAF=90°.29.(1)证明:∵AF∥BC,∴∠AFE=∠DBE,∵E是AD的中点,∴AE=DE,在△AFE和△DBE中,,∴△AFE≌△DBE(AAS);∴AF=DB∵AD是BC边上的中线,∴DB=CD∴AF=CD;(2)解:过A作AH⊥BC于H,则S△ABC﹣BC•AH,S△ABD=BD•AH,S△ACD=CD •AH,∵AD是BC边上的中线,∴BD=CD=BD,∴S△ABD=S△ACD=BD•AH=×BC•AH=S△ABC,∵AF=CD,AF∥BC,∴四边形ADCF是平行四边形,∴S△ACF=S△ACD=S△ABC,∴图中面积为△ABC面积的一半的所有三角形是△ACF,△ABD,△ACD.。

相关文档
最新文档