分数指数幂练习题
高一数学上册第二章--指数函数知识点及练习题(含答案)

课时 4 指数函数一 . 指数与指数幂的运算( 1)根式的观点①假如xna, a R, x R, n 1,且 nN ,那么 x 叫做 a 的 n 次方根. 当 n 是奇数时, a 的 n 次方根用符号 na 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号na 表示,负的 n 次方根用符号na表示; 0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当n 为奇数时, a 为随意实数;当 n 为偶数时, a.③根式的性质: (na )n a ;当 n 为奇数时, n a n a ;当 n 为偶数时, n a n | a |a (a 0) .a (a 0)( 2)分数指数幂的观点mna m (a①正数的正分数指数幂的意义是:a n 0, m,n N , 且 n 1) .0 的正分数指数幂等于0.②m(1m1 ) m( a正数的负分数指数幂的意义是:a n)n n (0, m, n N , 且 n1) .0 的负分数指aa数幂没存心义. 注意口诀: 底数取倒数,指数取相反数.( 3)分数指数幂的运算性质①a r a s a r s (a 0, r , s R)② (ar) sa rs (a 0, r , s R)③(ab)ra rb r (a0,b 0, rR)二 . 指数函数及其性质( 4)指数函数函数名称指数函数定义函数 ya x (a 0 且 a1) 叫做指数函数a 1a 1yy a xya xy图象y1y1(0,1)(0,1)OxOx定义域 R值域(0,+ ∞)过定点 图象过定点(0,1 ),即当 x=0 时, y=1.奇偶性非奇非偶单一性在 R 上是增函数在 R 上是减函数函数值的 y > 1(x > 0), y=1(x=0), 0< y < 1(x < 0)y > 1(x < 0), y=1(x=0), 0< y < 1(x > 0)变化状况a 变化对在第一象限内, a 越大图象越高,越凑近 y 轴; 在第一象限内, a 越小图象越高,越凑近 y 轴; 图象影响在第二象限内,a 越大图象越低,越凑近x 轴.在第二象限内,a 越小图象越低,越凑近x 轴.三 .例题剖析1.设 a 、 b 知足 0<a<b<1,以下不等式中正确的选项是 ( C)A.a a <a bB.b a <b bC.a a <b aD.b b <a b 分析: A 、B 不切合底数在 (0,1) 之间的单一性 ; C 、 D 指数同样 , 底小值小 . 应选 C. 2.若 0<a<1,则函数 y=a x 与 y=(a-1)x 2 的图象可能是 (D )分析: 当 0<a<1 时 ,y=a x 为减函数 ,a-1<0, 因此 y=(a-1)x2张口向下 , 应选 D.3.设指数函数 f(x)=a x (a>0 且 a ≠ 1),则以下等式中不正确的选项是 ( D )A.f(x+y)=f(x)f(y)f (x)B.f(x-y)=f ( y)C.f(nx)= [ f(x) ] nD.f [ (xy) n ] =[ f(x) ] n [ f(y) ] n (n ∈ N * )分析: 易知 A 、 B 、 C 都正确 .对于 D,f [(xy)n] =a (xy)n , 而[ f(x) ] n ·[f(y) ] n =(a x ) n ·(a y ) n =a nx+ny , 一般状况下 D 不建立 .11 34.设 a= ( 3) 3,b= ( 4)4,c= ( 3) 4,则 a 、b 、 c 的大小关系是 ( B )43 2A.c<a<b3分析: a= ( )B.c<b<aC.b<a<cD.b<c<a1 111(8133( 4)3 ( 4) 4=b, b=(4) 4)4(3) 4 =c.∴ a>b>c.3 332725.设 f(x)=4 x -2x+1,则 f -1 (0)=______1____________. 分析: 令 f -1 (0)=a, 则 f(a)=0 即有 4a -2 · 2a =0.2a · (2 a -2)=0, 而 2a >0,∴ 2a =2 得 a=1.6.函数 y=a x-3 +4(a>0 且 a ≠ 1)的反函数的图象恒过定点 ______(5,3)____________.分析: 因 y=a x 的图象恒过定点 (0,1), 向右平移 3 个单位 , 向上平移 4 个单位获得 y=a x-3 +4 的图象 , 易知恒过定点 (3,5).故其反函数过定点 (5,3).10 x 10 x.证明 f(x) 在 R 上是增函数 .7.已知函数 f(x)=x10 x10x1010x102x1,设 x 1<x 2∈ R,则f(x 1)-f(x2)=10x 1 1010x 1 10x 110x 210 x 2102 x 11 102 x 21 2(102 x 1102 x2).x 110x2 10x2 102 x1 1102 x21(102 x11)(102 x 2 1)∵ y=10 x是增函数 ,∴ 10 2x 1 10 2x 2 <0.而 10 2x 1 +1>0, 102 x 2 +1>0,故当 x <x 时 ,f(x)-f(x )<0,1212即 f(x 1)<f(x 2). 因此 f(x) 是增函数 .8.若定义运算 a b=b, ab,则函数 f(x)=3 x3-x 的值域为 ( A )a, a b,A.(0,1]B. [ 1,+∞ )C.(0,+ ∞ )D.(- ∞ ,+∞ )分析: 当 3x ≥3-x , 即 x ≥ 0 时 ,f(x)=3-x∈(0,1 ] ;x-x, 即 x<0 时 ,f(x)=3x∈ (0,1).3 x , x 0, 当 3<3∴ f(x)=x值域为 (0,1).3x ,0,9.函数 y=a x 与 y=-a -x (a>0,a ≠1) 的图象 ( C )A. 对于 x 轴对称B.对于 y 轴对称C.对于原点对称D.对于直线 y=-x 对称分析: 可利用函数图象的对称性来判断两图象的关系.10.当 x ∈[ -1,1]时 ,函数 f(x)=3 x-2 的值域为 _______[ -5,1 ] ___________.3分析: f(x) 在[ -1,1 ]上单一递加 .11.设有两个命题 :(1)对于 x 的不等式 x 2+2ax+4>0对全部 x ∈ R 恒建立 ;(2) 函数 f(x)=-(5-2a) x是减函数 .若命题 (1)和 (2)中有且仅有一个是真命题 ,则实数 a 的取值范围是 _______(- ∞ ,-2)__________.分析: (1) 为真命题=(2a) 2-16<0-2<a<2. (2)为真命题 5-2a>1 a<2.若 (1) 假 (2) 真 , 则 a ∈ (- ∞ ,-2]. 若 (1) 真 (2) 假, 则 a ∈ (-2,2)∩[ 2,+ ∞]=.故 a 的取值范围为 (- ∞ ,-2).12.求函数 y=4 -x -2-x +1,x ∈[ -3,2]的最大值和最小值 .解: 设 2-x=t, 由 x ∈[ -3,2 ]得 t ∈[ 1,8 ] , 于是 y=t 2-t+1=(t-1)2+3. 当 t= 1时 ,y3 .424有最小值 这时 x=1.当 t=8 时 ,y 有最大值57.这时 x=-3.2413.已知对于 x 的方程 2a2x-2-7a x-1 +3=0 有一个根是 2,求 a 的值和方程其他的根 . 解: ∵ 2 是方程 2a2x-2-9a x-1+4=0 的根 , 将 x=2 代入方程解得 a= 1或 a=4.2(1) 当 a= 1时 , 原方程化为 2· ( 1)2x-2-9(1) x-1 +4=0.①222x-1 2令 y=( 1) , 方程①变成 2y -9y+4=0,2解得 y 1=4,y 2= 1.∴ ( 1) x-1 =42x=-1,2( 1 ) x-1 = 1x=2.22(2) 当 a=4 时 , 原方程化为 2· 42x-2 -9 · 4x-1 +4=0. ②令 t=4 x-1 , 则方程②变成 2t 2-9t+4=0. 解得 t 1=4,t 2= 1.x-12=4x=2,∴44x-1 = 1x=- 1 .22故方程此外两根是当 a= 1时 ,x=-1;1 .2当 a=4 时 ,x=-214.函数 y= (1) 3 4xx 2的单一递加区间是 ( D )3A. [ 1,2]B.[ 2,3]C.(-∞ ,2]D.[ 2,+∞ )分析: 由于 y=3x2-4x+3 , 又 y=3t 单一递加 ,t=x 2-4x+3 在 x ∈[ 2,+ ∞ ) 上递加 , 故所求的递加区间为[ 2,+ ∞ ).15.已知 f(x)=3 x-b (2≤ x ≤ 4,b 为常数 ) 的图象经过点 (2,1), 则 F(x)=f 2(x)-2f(x) 的值域为 ( B )A. [ -1,+∞ )B. [ -1,63)C.[ 0,+∞ )D.(0,63 ]分析: 由 f(2)=1, 得 32-b =1,b=2,f(x)=3 x-2.∴ F (x)= [ f(x)-1 ]2-1=(3 x-2 -1) 2-1. 令 t=3 x-2 ,2 ≤x ≤4.2∴g(t)=(t-1) - 1,t ∈[ 1,9 ].2.1 指数函数练习1.以下各式中建立的一项A . ( n)71n 7 m 7B .12 ( 3)433m3C . 4 x 3y 3( x y) 4D .393321111 1 52.化简 (a 3 b 2 )( 3a 2 b 3 ) ( a 6 b 6 ) 的结果3D . 9a 2 A . 6aB . aC . 9a3.设指数函数 f ( x)a x ( a 0, a1) ,则以下等式中不正确的选项是f (x) A . f(x+y)=f(x) ·f(y)B . f ( x y )f ( y)C . f (nx)[ f ( x)]n (nQ )D . f ( xy) n [ f ( x)] n ·[f ( y)] n1 4.函数 y (x5) 0 ( x 2)2A . { x | x 5, x 2}B . { x | x 2}C . { x | x 5}D . { x | 2 x 5或 x 5}()()()(n N )( )5.若指数函数 y a x 在 [- 1,1]上的最大值与最小值的差是1,则底数 a 等于 ()A .15 B .1 5 C .15D .5 122 226.当 a0 时,函数 y axb 和 yb ax 的图象只可能是()7.函数 f ( x)2 |x| 的值域是()A . (0,1]B . (0,1)C . (0, )D . R8.函数 f ( x)2 x 1, x 0,知足 f ( x)1的 x 的取值范围1x 2 , x()A . ( 1,1)B . ( 1, )C . { x | x 0或 x2}D . { x | x 1或 x1}9.函数 y(1) x 2x2得单一递加区间是2()A .[ 1,1]B . ( , 1]C .[2,)D .[ 1,2]2exe x210.已知 f ( x)()2 ,则以下正确的选项是A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.已知函数 f (x)的定义域是(1, 2),则函数 f (2 x ) 的定义域是.12.当 a >0 且 a ≠1 时,函数 f (x)=a x -2- 3 必过定点.三、解答题:13.求函数 y1的定义域 .x5 x 1114.若 a >0, b > 0,且 a+b=c ,求证: (1) 当r >1时, a r +b r < c r ; (2) 当r < 1时, a r +b r > c r .a x 1 15.已知函数 f ( x)(a >1) .a x1( 1)判断函数 f (x) 的奇偶性;( 2)证明 f (x)在 (-∞, +∞ )上是增函数 .xa16.函数 f(x) = a (a>0 ,且 a ≠1) 在区间 [1,2] 上的最大值比最小值大2,求 a 的值.参照答案一、 DCDDD AADDA二、 11. (0,1);12. (2,- 2) ;三、 13. 解:要使函数存心义一定:x 1 0x 1x0 x 0x 1∴ 定义域为 : x xR 且 x0, x 1a rrrb r此中a1,0b114. 解:ba,c rcccc.r >1 ,a rb ra b 1,r r r当因此+b< c ;时c c c crrrrr当 r < 1 时, aba b1, 因此 a +b >c .ccc c15. 解 :(1)是奇函数 .(2) 设x <x ,则 f (x 1 )ax11 ax21 。
幂的运算实数练习题

幂的运算实数练习题一、基础题1. 计算:\(2^3\)2. 计算:\((3)^2\)3. 计算:\(\left(\frac{1}{2}\right)^4\)4. 计算:\((2)^5\)5. 计算:\(\left(\frac{3}{4}\right)^3\)二、混合运算题6. 计算:\(2^3 \times 3^2\)7. 计算:\(\frac{4^3}{2^2}\)8. 计算:\((5^2)^3\)9. 计算:\(\left(\frac{2}{3}\right)^2 \times \left(\frac{3}{4}\right)^2\)10. 计算:\(\left(\frac{5}{6}\right)^3 \div \left(\frac{2}{3}\right)^2\)三、指数比较题11. 比较:\(3^4\) 和 \(4^3\)12. 比较:\((2)^5\) 和 \((3)^4\)13. 比较:\(\left(\frac{3}{4}\right)^2\) 和\(\left(\frac{4}{5}\right)^2\)14. 比较:\(\left(\frac{2}{3}\right)^3\) 和\(\left(\frac{3}{4}\right)^3\)15. 比较:\(2^6\) 和 \(3^4\)四、应用题16. 一个正方形的边长为2,求其面积。
17. 一个数的平方是64,求这个数。
18. 一个数的立方是216,求这个数。
19. 如果一个数的平方根是4,求这个数的平方。
20. 如果一个数的立方根是3,求这个数的立方。
五、拓展题21. 计算:\(2^3 + 3^2 4^2\)22. 计算:\(\left(\frac{1}{2}\right)^5 \times\left(\frac{2}{3}\right)^4\)23. 计算:\(\left(\frac{3}{4}\right)^2 \div\left(\frac{4}{5}\right)^2\)24. 计算:\(\left(2^3\right)^2 \times \left(3^2\right)^3\)25. 计算:\(\sqrt[3]{64} \times \sqrt[4]{81}\)六、根式运算题26. 计算:\(\sqrt{49}\)27. 计算:\(\sqrt[3]{27}\)28. 计算:\(\sqrt{64} + \sqrt{25}\)29. 计算:\(\sqrt[4]{16} \times \sqrt[3]{8}\)30. 计算:\(\sqrt{121} \sqrt{81}\)七、分数指数幂题31. 计算:\(4^{\frac{1}{2}}\)32. 计算:\(9^{\frac{3}{2}}\)33. 计算:\(\left(\frac{1}{16}\right)^{\frac{1}{4}}\)34. 计算:\(\left(\frac{1}{25}\right)^{\frac{2}{3}}\)35. 计算:\(32^{\frac{1}{5}}\)八、指数方程题36. 解方程:\(2^x = 32\)37. 解方程:\(3^{x+1} = 27\)38. 解方程:\(\left(\frac{1}{2}\right)^x = 8\)39. 解方程:\(5^{2x1} = 25\)40. 解方程:\(4^{x+2} = \frac{1}{16}\)九、指数不等式题41. 解不等式:\(2^x > 16\)42. 解不等式:\(3^{x1} < 27\)43. 解不等式:\(\left(\frac{1}{3}\right)^x \geq 9\)44. 解不等式:\(5^{2x3} \leq 125\)45. 解不等式:\(4^{x+1} > \frac{1}{64}\)十、综合题46. 已知\(a^2 = 36\),\(b^3 = 64\),计算\(a^3 + b^2\)。
高中数学(必修一)第四章 指数 练习题及答案解析

高中数学(必修一)第四章 指数 练习题及答案解析学校:___________姓名:___________班级:_____________一、解答题1.计算:2.求下列各式的值: (1)1236;(2)52164⎛⎫ ⎪⎝⎭;(4)1216-⨯.3.(1)已知11223x x-+=,计算:22111227x x x x x x ---+-+++;(2)设128x y +=,993y x -=,求x y +的值.4.(1)化简:()314211113643,01645x y x y x y x y ---->⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭;(2)计算:11026188100-⎛⎫⨯+ ⎪⎝⎭.5.求解下列问题:(1)证明:log 1log log a a ab x b x =+.(2)已知333pa qb rc ==,且1111a b c ++=.求证:()11112223333pa qb rc p q r ++=++.6.求下列各式的值:;()3,3x ∈-. 7.计算下列各式: (1)()1020.52312220.0154--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭; (2)20.53207103720.12392748π--⎛⎫⎛⎫++-+ ⎪ ⎪⎝⎭⎝⎭;(322.551030.064π-⎡⎤⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦;(4))0x ⎛> ⎪⎝⎭;(5)()21113322156630,0.13a b a b a b a b ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭>>8.化简求值:(1)4133222333814a a b b a a ⎛- ÷ +⎝⎭;(2)48lg 2(log 3log 3)lg 3+⨯.9.中国茶文化博大精深.茶水的口感与茶叶的类型和水的温度有关.经验表明,某种绿茶用85℃的水泡制,再等到茶水温度降至60℃时饮用,可以产生最佳口感.经过研究发现,在25℃室温下,设茶水温度从85℃开始,经过x 分钟后的温度为y ℃,则满足25x y ka =+(k ∈R ,01a <<,0x ≥).(1)求实数k 的值;(2)经过测试知0.9227a =,求在25℃室温下,刚泡好的85℃的茶水大约需要放置多长时间才能产生最佳饮用口感(结果精确到1分钟).(参考数据:lg70.8451≈,lg12 1.0792≈,lg 0.92270.0349≈-)10.计算求值(1)()3620189-⎛⎫--- ⎪⎝⎭;(2)221lg lg2log 24log log 32+++;(3)已知623a b ==,求11a b-的值.11.定义域均为R 的奇函数()f x 与偶函数()g x 满足()()10x f x g x +=.(1)求函数()f x 与()g x 的解析式;(2)证明:1212()()2()2x x g x g x g ++≥; (3)试用1()f x ,2()f x ,1()g x ,2()g x 表示12()f x x -与12()g x x +.12.已知函数x y a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,记()2xx a f x a =+. (1)求a 的值;(2)求证:()()1f x f x +-为定值;(3)求12200201201201f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值.二、单选题13.已知函数()()ln ,0,e ,0,x x x f x x -⎧-<=⎨≥⎩,则()()e f f -=( ) A .e -B .0C .1eD .114.85-化成分数指数幂为( ) A .12x B .415x C .415x - D .25x三、填空题15.若01b a <<<,b p a =,a q b =,b r b =,则__________.(用>连接)16.已知17a a+=,则1122a a -+=______. 17.一种药在病人血液中的量保持1000mg 以上才有疗效,而低于500mg 病人就有危险.现给某病人静脉注射了这种药2000mg ,如果药在血液中以每小时10%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过______小时内向病人的血液补充这种药,才能保持疗效.(附:lg 20.3010≈,lg30.4771≈,精确到0.1h )参考答案:1.6【分析】先将根指数幂转化成分数指数幂的形式,在按照分数指数幂的运算法则进行计算即可. 【详解】解:原式()()111111111123323623623323223236-+++-=⨯⨯⨯⨯⨯=⨯=⨯=. 故答案为:62.(1)6 (2)312532(3)232 (4)12【分析】(1)利用指数幂的运算性质即可求解;(2)利用指数幂的运算性质即可求解;(3)将根式转化为分数指数幂,再利用幂的运算性质即可求解;(4)利用指数幂的运算性质即可求解.(1) 解:()1122122266663⨯===;(2) 解:552252252555316412522232⨯⎡⎤⎛⎫⎛⎫⎛⎫====⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎛⎫⎥⎦⎝⎣ ⎪⎭; (3)()()11310112105223133113333222222⨯⨯-⨯⎡⎤⎢⎥⎣⎦==== (4)解:()11411112162222222-----===⨯=⨯⨯=. 3.(1)4;(2)27【分析】(1)对11223x x -+=两边平方,求出17x x -+=,再对此式两边平方,化简可得2247x x -+=,从而代入可求结果,(2)将等式两边化为同底数幂的形式,然后可得关于,x y 的方程组,求出,x y 的值,从而可求得x y +的值【详解】(1)因为11223x x -+=,所以211229x x -⎛⎫+= ⎪⎝⎭,所以129x x -++=,所以17x x -+=,所以()2127x x -+=,即22249x x -++=,所以2247x x -+=, 所以22111227477473x x x x x x ---+--==++++. (2)因为128x y +=,所以()3122y x +=,即()31x y =+.又993y x -=,所以2933y x -=,即29y x =-,由3(1)29x y y x =+⎧⎨=-⎩,解得216x y =⎧⎨=⎩, 故x y +的值为27.4.(1)10y -;(2)3【分析】(1)分数指数幂的运算法则进行计算;(2)分数指数幂与根式运算法则进行计算.【详解】(1)原式14223431310310x y y x y ---==--. (2)原式())()111113226210018210018210183--⎡⎤=--+=-+=+-=⎣⎦. 5.(1)证明见解析(2)证明见解析【分析】(1)结合换底公式以及对数运算证得等式成立.(2)令333pa qb rc k ===,结合指数运算,通过证明等式左边=右边=13k 来证得等式成立.(1) 左边1log log log log 1log 1log log log a x x a a ab x x x a ab ab b x aab =====+=右边 (2)令333pa qb rc k ===,则2k pa a =,2k qb b=,2k rc c =, 所以()1132223k k k pa qb rca b c ⎛⎫++=++= ⎪⎝⎭1133111k k a b c ⎡⎤⎛⎫++= ⎪⎢⎥⎝⎭⎣⎦, 1111111133333333333111k k k p q r k k a b c a b c ⎛⎫⎛⎫⎛⎫⎛⎫++=++=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以()12223pa qb rc ++=111333p q r ++. 6.(1)-2(3)π3-(4)22,31,4,1 3.x x x ---<≤⎧⎨-<<⎩【分析】根据根式与分数指数幂的转化化简求值即可.(1)2=-(2)=(3)3ππ3-=-(4)原式13x x ==--+,当31-<≤x 时,原式()1322x x x =--+=--;当13x <<时,原式()134x x =--+=-.因此,原式22,31,4,1 3.x x x ---<≤⎧=⎨-<<⎩7.(1)1615;(2)100;(3)3;(4)2x ;(5)9a -. 【分析】利用根式与分数指数幂的互化,根式的性质,指数幂的运算性质计算求值.【详解】(1)原式()1122221412116110129431015-⎛⎫=+⨯-=+⨯-= ⎪⎝⎭. (2)原式()12232125273710396448--⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭5937100331648=++-+100=. (3)原式()1315270.4128-⎛⎫=-- ⎪⎝⎭5350.51222=-++-3=. (4)原式31222x x x =⋅=.(5)原式21111532623699a b a +-+-=-=-.8.(1)2a (2)56【分析】(1)结合指数幂的运算公式以及立方差公式化简整理即可求出结果;(2)结合对数的换底公式化简整理即可求出结果.(1) 原式()1133211223333381242a a b b a b a b a a ⎛⎫- ⎪=÷- ⎪ ⎪++⎝⎭3311133311533621121333362242a a b a b a a b a b a a ⎡⎤⎛⎫⎛⎫⎢⎥- ⎪ ⎪⎢⎥⎝⎭⎝⎭-⎣⎦=÷⨯++ 111211211533333333362112133336(2)(24)242a a b a a b b a b a a b a b a a -++-=÷⨯++ 5445162336616aa a a a +-=⋅==451366a +-=2a =,(2) 原式lg3lg3lg2115()2lg23lg2lg3236=+⨯=+=.9.(1)60(2)大约需要放置7分钟才能产生最佳饮用口感【分析】(1)直接由0x =时,85y =代入求解即可;(2)将60y =代入函数关系式,再结合对数的运算性质求解即可.(1)依题意,当0x =时,85y =,所以08525k a =⋅+,解得60k =, 所以实数k 的值是60.(2)由(1)知,当0.9227a =时,600.922725x y =⨯+,当60y =时,600.92272560x ⨯+=,即70.922712x =, 两边取对数,得lg0.9227lg7lg12x =-, 所以lg 7lg120.8451 1.07927lg 0.92270.0349x --=≈≈-. 所以刚泡好的85℃的茶水大约需要放置7分钟才能产生最佳饮用口感.10.(1)44 (2)92(3)1【分析】(1)由指数的运算法则计算(2)由对数的运算法则计算(3)将指数式转化为对数式后计算(1)()33622023218323172271449-⨯⎛⎫---=⨯--=--= ⎪⎝⎭;(2)221lg lg 2log 24log log 32+++ ()32232lg 2lg 2log 38log 3log 3=-++⨯+-2239log 33log 322=++-=;(3)6log 3a =,2log 3b =, 则31log 6a =,31log 2b=; 所以33311log 6log 2log 31a b-=-==. 11.(1)11()(10)210x xf x =-,11()(10)210x xg x =+ (2)证明见解析 (3)121212()()()()()f x x f x g x g x f x -=-,121212()()()()()g x x g x g x f x f x +=+【分析】(1)由题意可得:()()10x f x g x +=,再根据函数的奇偶性可得:()()10()()x f x g x f x g x --+-==-+,进而结合两个式子求出两个函数的解析式. (2)由(1)可得12()()g x g x +的表达式,再利用基本不等式把12()()g x g x +进行化简整理即可得到答案. (3)由(1)可得1()f x 、2()f x 、1()g x 、2()g x 、12()f x x -与12()g x x +的表达式与结构特征,进而可求(1)解:()()10x f x g x +=℃()()10x f x g x -∴-+-=,()f x 为奇函数,()g x 为偶函数()()f x f x ∴-=-,()()g x g x -=()()10x f x g x -∴-+=℃由℃,℃解得11()(10)210x x f x =-,11()(10)210x x g x =+. (2) 解:1212121111()()(10)(10)221010x x x x g x g x +=+++ 1212121211111111(1010)()210102222210101010x x x x x x x x =+++≥⨯+⨯ 121212221102()210x x x x x x g +++=+=,当且仅当121010x x =,即12x x =时取等号; 所以1212()()2()2x x g x g x g ++≥ (3)解:11()(10)210x x f x =-,11()(10)210x x g x =+. 12121211()(10)210x x x x f x x --∴-=- 122111010()21010x x x x =- 1212121221122112110101110101(10)(10)44101010101010x x x x x x x x x x x x x x x x ++++=+----+- 12121212111111(10)(10)(10)(10)4410101010x x x x x x x x =-+-+- 1212()()()()f x g x g x f x =-121212111()(10)2210x x x x g x x +++=+⋅ 121211111010221010x x x x +⋅⋅⋅= 12121212111111(10)(10)(10)(10)4410101010x x x x x x x x =--+++. 1212()()()()g x g x f x f x =+即121212()()()()()f x x f x g x g x f x -=-,121212()()()()()g x x g x g x f x f x +=+;12.(1)4a =(2)证明见解析(3)100【分析】(1)函数x y a =在[]1,2上单调,得到220a a +=,排除5a =-,得到答案.(2)()442xx f x =+,代入数据计算得到()()11f x f x +-=,得到证明. (3)根据()()11f x f x +-=,两两组合计算得到答案.(1)解:因为函数x y a =(0a >且1a ≠)在[]1,2上的最大值与最小值之和为20,且函数x y a =(0a >且1a ≠)在[]1,2上单调,所以当1x =和2x =时,函数x y a =(0a >且1a ≠)在[]1,2上取得最值,即220a a +=,解得4a =或5a =-(舍去),所以4a =.(2)解:由(1)知,4a =,所以()442xx f x =+,故()()11444411424242424x x x x x x xf x f x --+-=+=+=++++⋅. (3)解:由(2)知,()()11f x f x +-=, 因为12001201201+=,21191201201+=,,1001011201201+=, 所以12200201201201f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 12001192012012020121f f f f ⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+++++ ⎪ ⎪ ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦1001011100100201201f f ⎡⎤⎛⎫⎛⎫+=⨯= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦. 13.C【分析】直接代值计算即可.【详解】()e ln e=1f -=,则()()()1e 1e f f f --== 故选:C.14.B【分析】直接化根式为分数指数幂,即可得出答案.【详解】解:8855--=⎝⎭ 885145615x x ---⎛⎫=== ⎪⎝⎭⎝⎭.故选:B.15.p r q >>【分析】利用幂函数和指数函数的单调性比较大小即可【详解】解:因为01b <<,所以函数b y x =在(0,)+∞上为增函数, 因为01b a <<<,所以011b b b b a <<<=,即01r p <<<, 因为01b <<,所以函数x y b =在R 上为减函数,因为01b a <<<,所以01b a b b b b >>>,即1b q r <<<,所以p r q >>,故答案为:p r q >>16.3【分析】根据指数幂的运算即可求解.【详解】由17a a+=,可得0a >,11220a a -+>,11223a a -∴+==. 故答案为:317.6.6【分析】写出血液中药物含量关于时间的关系式,解不等式求出答案.【详解】设x h 后血液中的药物量为y mg , 则有()020001100x y =-, 令1000y ≥得:lg 20.3010 6.612lg 3120.4771x ≤≈≈--⨯ 故从现在起经过6.6h 内向病人的血液补充这种药,才能保持疗效. 故答案为:6.6。
高一数学指数函数知识点及练习题(含答案)

+⎩ + 指数函数2.1.1 指数与指数幂的运算〔1〕根式的概念 ①如果 xn= a , a ∈ R , x ∈ R , n > 1,且 n ∈ N ,那么 x 叫做 a 的 n 次方根.当 n 是奇数时,a 的 n 次 方根用符号 n a 表示;当 n 是偶数时,正数 a 的正的 n 次方根用符号 n a 表示,负的 n 次方根用符号 - na表示;0 的 n 次方根是 0;负数 a 没有 n 次方根.②式子 n a 叫做根式,这里 n 叫做根指数, a 叫做被开方数.当 n 为奇数时, a 为任意实数;当 n 为偶数时, a ≥ 0 .nnn n⎧a (a ≥ 0)③根式的性质:( a ) = a ;当 n 为奇数时, a = a ;当 n 为偶数时,=| a |= ⎨-a .(a < 0)〔2〕分数指数幂的概念m①正数的正分数指数幂的意义是: a n= n a m(a > 0, m , n ∈ N , 且 n > 1) .0 的正分数指数幂等于 0.②- m1 m1正数的负分数指数幂的意义是: an= ( ) n = n ( )m (a > 0, m , n ∈ N + , 且 n > 1) .0 的负分数指a a数幂没有意义. 注意口诀:底数取倒数,指数取相反数. 〔3〕分数指数幂的运算性质①a r ⋅ a s = a r +s (a > 0,r , s ∈ R )②(a r )s = a rs (a > 0, r , s ∈ R )③(ab )r = a r b r (a > 0, b > 0, r ∈ R )2.1.2 指数函数及其性质〔4〕指数函数 函数名称 指数函数定义函数 y = a(a > 0 且 a ≠ 1)叫做指数函数图象a > 10 < a < 1y = 1 yOy = ax(0, 1)xy = a xy = 1Oy( 0 , 1 )x定义域 R值域 〔0,+∞〕过定点 图象过定点〔0,1〕,即当 x=0 时,y=1.奇偶性 非奇非偶单调性在 R 上是增函数在 R 上是减函数函数值的变化情况y >1(x >0), y=1(x=0), 0<y <1(x <0)y >1(x <0), y=1(x=0), 0<y <1(x >0)a 变化对图象影响在第一象限内, a 越大图象越高,越靠近 y 轴; 在第二象限内, a 越大图象越低,越靠近 x 轴.在第一象限内, a 越小图象越高,越靠近 y 轴; 在第二象限内, a 越小图象越低,越靠近 x 轴.n a n39 1 + 5 1 ± 5 12.1 指数函数练习1.以下各式中成立的一项〔〕A . ( n )7 = n 7m 7mB . 12(-3)4 =C . 4x 3+ y 33(x + y )4D .=2 11 1 1 1 52.化简(a 3 b 2)(-3a 2 b 3) ÷ ( 3a 6b 6 )的结果〔〕A . 6aB . - aC . - 9aD . 9a23.设指数函数 f (x ) = a x(a > 0, a ≠ 1) ,那么以下等式中不正确的选项是〔 〕A .f (x +y )=f(x )·f (y )B . f 〔x - y 〕=f (x )f ( y )C . f (nx ) = [ f (x )]n(n ∈ Q )- 1D . f (xy )n= [ f (x )]n·[ f ( y )]n(n ∈ N + )4.函数 y = (x - 5)0+ (x - 2)2A .{x | x ≠ 5, x ≠ 2} C .{x | x > 5}〔〕B .{x | x > 2}D .{x | 2 < x < 5或x > 5}5.假设指数函数 y = a x在[-1,1]上的最大值与最小值的差是1,那么底数a 等于 〔〕A .B . 2 2C .D .2 26.当 a ≠ 0 时,函数 y = ax + b 和 y = b ax的图象只可能是〔〕7.函数 f (x ) = 2-|x |的值域是〔 〕A . (0,1]B . (0,1)⎧⎪2- x- 1, x ≤ 0 C . (0,+∞)D .R8.函数 f (x ) = ⎨ 1 ,满足 f (x ) > 1的 x 的取值范围⎪⎩x 2 , x > 0〔 〕A . (-1,1)B . (-1,+∞)C .{x | x > 0或x < -2}D .{x | x > 1或x < -1}9.函数 y = ( 1 ) 2- x 2 + x +2 得单调递增区间是〔 〕11A . [-1, ]2B . (-∞,-1]C . [2,+∞)D . [ 2,2]3 - 33 3- 1 + 5 5 ± 1⎩ x e x - e - x10. f (x ) =,那么以下正确的选项是 〔 〕2A .奇函数,在 R 上为增函数B .偶函数,在 R 上为增函数C .奇函数,在 R 上为减函数D .偶函数,在 R 上为减函数11.函数 f (x )的定义域是〔1,2〕,那么函数 f (2 x) 的定义域是 .12.当 a >0 且 a ≠1 时,函数 f (x )=a x -2-3 必过定点 .三、解答题:13.求函数 y = 1的定义域.5 x -1 - 114.假设a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.函数 f (x ) =a x - 1 a x + 1(a >1).〔1〕判断函数f (x )的奇偶性;〔2〕证明f (x )在(-∞,+∞)上是增函数.16.函数 f(x)=a x (a>0,且 a ≠1)在区间[1,2]上的最大值比最小值大 a,求 a 的值. 2参考答案一、DCDDDAAD D A二、11.(0,1);12.(2,-2);三、13. 解:要使函数有意义必须:⎧x - 1 ≠ 0⎧x ≠ 1⎪x ⇒⎨ ≠ 0 ⎩ x - 1⎨x ≠ 0∴定义域为: {x x ∈ R 且x ≠ 0, x ≠ 1}⎪1 a +1 a +12 14. 解: a r + br⎛ a ⎫r⎛ b ⎫r,其中 0 < a < 1,0 < b < 1.= ⎪ c rc + ⎪c ⎝ ⎭ ⎝ ⎭ 当r >1时,⎛ a ⎫ r ⎛ b ⎫r a b ,所以a r+b r <c r ;⎪ + ⎪ < + = 1⎝ c ⎭ ⎝ c ⎭ c c当 r <1 时,⎛ a ⎫r⎛ b ⎫ra b,所以 a r +b r >c r . ⎪ + ⎪ > + = 1 ⎝ c ⎭ ⎝ c ⎭ c c15.解:(1)是奇函数.(2) x <x ,a x 1 -1 a x2 -1 。
指数运算复习练习题复习过程

指数运算复习练习题2.1.1指数与指数幂的运算练习题1、有理数指数幂的分类(1)正整数指数幂()n na a a a a n N *=⋅⋅⋅⋅∈64748L 个; (2)零指数幂)0(10≠=a a ;(3)负整数指数幂()10,n n a a n N a-*=≠∈(4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。
2、有理数指数幂的性质(1)()0,,m n m na a aa m n Q ==>∈ (2)()()0,,nm mn a a a m n Q =>∈(3)()()0,0,mm m ab a b a b m Q =>>∈知能点2:无理数指数幂若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。
知能点3:根式1、根式的定义:一般地,如果a x n=,那么x 叫做a 的n 次方根,其中()*∈>N n n ,1,na 叫做根式,n 叫做根指数,a 叫被开方数。
2(1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则⎩⎨⎧<-≥==00a aa aa a nn ;(3)负数没有偶次方根; (4)零的任何次方根都是零。
3、我们规定:(1))0,,,1m na a m n Nn *=>∈>; (2))10,,,1m nm naa m n N n a-*==>∈>1、用根式的形式表示下列各式)0(>a(1)51a = (2)34a = (3)35a -= (4)32a -=2、用分数指数幂的形式表示下列各式:(1)34y x = (2))0(2>=m mm(3)85-⎝⎭=(4= (5= ; (6)a a a = ; (7) =•a a 2 (8)=•323a a (9)=a a (10) =356q p 3、求下列各式的值(1)238= ;(2)12100-= ; (3)31()4-= ;(4)3416()81-=(5)3227= ;(6)23)4936(= ;(7)23)425(-= ;(8)2325=(9)122[(]-= (10)(1221⎡⎤⎢⎥⎣⎦= (11)=32644.化简(1)=••1274331aa a (2)=÷•654323a a a (3)=÷-•a a a 9)(34323(4)322aa a •= (5)3163)278(--b a = 5.计算(1)43512525÷- (2)(3)210319)41()2(4)21(----+-⋅- (4)()5.0212001.04122432-⎪⎭⎫⎝⎛⋅+⎪⎭⎫ ⎝⎛--6.解下列方程(1)1318x -= (2)151243=-x (3)422240x x --=7.(1).已知11223a a-+=,求下列各式的值(1)1a a -+= ;(2)22a a -+=(2)若11225x x -+=,则21x x+的值是(3).若13a a -+=,求下列各式的值:(1)1122a a -+= ;(2)22a a -+= ;。
指数(分数指数幂)

a = a a > 0, m, n ∈ N , 且n > 1
n m *Βιβλιοθήκη m n()
3、正数的负分数指数幂的意义是: 正数的负分数指数幂的意义是:
a
− m n
=
1 a
m n
(a > 0 , m , n ∈ N
*
,且 n > 1
)
4、0的正分数指数幂等于0,0的负分数指数幂 的正分数指数幂等于0 没有意义,为什么 没有意义 为什么? 为什么
性质: 性质:(整数指数幂的运算性质对于有理指 数幂也同样适用) 数幂也同样适用)
( a > 0, r , s ∈ Q ) a a =a r s rs ( a > 0, r , s ∈ Q ) (a ) = a r r s (ab) = a a (a > 0, b > 0, r ∈ Q )
r s
r+s
温故而知新
1.根式的运算性质: 1.根式的运算性质: 根式的运算性质
1)( a ) =
n n
a
a, n为奇数 2) a = a ,n为偶数
n n
温故而知新
2.整数指数幂的概念 .
n n个 n个a
a = a ⋅4⋅ a4 a(n ∈ N *) 1a 2L 3
零的零次幂没有意义
a = 1( a ≠ 0)
n
5
a a
10
= a = a (a > 0)
2
10 5
3
12
=a =a
4
2 3
12 3
(a > 0)
1 2 4 5 5 4
3
a = a (a > 0 ); b = b (b > 0 ); c = c (c > 0 );
指数函数知识点及其习题附答案

〖〗指数函数2.1.1指数与指数幂的运算(1)根式的概念 ①若是,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n当n 是偶数时,正数a 的正的n次方根用符号n次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n 为偶数时,(0)|| (0) a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,mm nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没成心义. 注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈ ③()(0,0,)r r r ab a b a b r R =>>∈2.1.2指数函数及其性质(4指数函数练习1.以下各式中成立的一项( )A .7177)(m n mn =B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果( )A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,那么以劣等式中不正确的选项是( )A .f (x +y )=f(x )·f (y )B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数210)2()5(--+-=x x y( )A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.假设指数函数xa y =在[-1,1]上的最大值与最小值的差是1,那么底数a 等于 ( )A .251+ B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ( )7.函数||2)(x x f -=的值域是( ) A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,知足1)(>x f 的x 的取值范围( )A .)1,1(-B . ),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或 9.函数22)21(++-=x x y 得单调递增区间是( ) A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[ 10.已知2)(xx e e x f --=,那么以下正确的选项是( )A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数11.已知函数f (x )的概念域是(1,2),那么函数)2(x f 的概念域是 . 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点 . 三、解答题: 13.求函数y x x =--1511的概念域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判定函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大a 2,求a 的值.指数函数练习参考答案一、DCDDD AAD D A二、11.(0,1); 12.(2,-2); 三、13. 解:要使函数成心义必需:x x x x x -≠-≠⎧⎨⎪⎩⎪⇒≠≠⎧⎨⎩101010∴概念域为:{}x x R x x ∈≠≠且01,14. 解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,因此a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,因此a r +b r >c r .15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。
指数与指数运算基础知识+经典练习题

指数与指数运算基础知识+经典练习题指数与指数运算基础知识+经典练题知识梳理:1、根式1)n次方根的定义一般地,如果$x=a^n$,那么$x$叫做$a$的$n$次方根。
当$n$为奇数时,正数的$n$次方根是一个正数,负数的$n$次方根是一个负数,这时,$a$的$n$次方根用符号$\sqrt[n]{a}$表示。
当$n$为偶数时,正数的$n$次方根有两个,这两个数互为相反数,这时正数$a$的$n$次方根用符号$\pm\sqrt[n]{a}$表示。
注:负数没有偶次方根。
任何数的任何次方根都是唯一的,记作$\sqrt[n]{a}$。
2)根式式子$\sqrt[n]{a}$叫做根式,这里$n$叫根指数,$a$叫做被开方数。
注:①$(\sqrt[n]{a})^n=a$②当$n$为奇数时,$\sqrt[n]{a^n}=a$;当$n$为偶数时,$\sqrt[n]{a^n}=|a|$,即$\sqrt[2]{a^2}=|a|$,$a>0$时,$\sqrt[2]{a^2}=a$,$a<0$时,$\sqrt[2]{a^2}=-a$。
2、分数指数幂1)正数的正分数指数幂的意义是$a^m$。
2)正数的负分数指数幂的意义是$\dfrac{1}{a^m}$。
dfrac{a^n}{a^m}=a^{n-m}$,$(a>0,m,n\in N^*,n>1)$。
dfrac{1}{a^n}=a^{-n}$。
3)$a^{\frac{m}{n}}=\sqrt[n]{a^m}$,$\dfrac{1}{a^{\frac{m}{n}}}=\sqrt[n]{\dfrac{1}{a^m}}$。
注:的正分数指数幂等于1,的负分数指数幂没有意义。
3、实数幂的运算性质1)$a^a=a$。
a^r)^s=a^{rs}$,$(a>0,r,s\in Q)$。
2)$(a^{-r})^s=\dfrac{1}{a^{rs}}$,$(a>0,r,s\in Q)$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数指数幂1.下列命题中,正确命题的个数是__________. ①na n =a ②若a ∈R ,则(a 2-a +1)0=1③3x 4+y 3=x 43+y ④3-5=6(-5)22.下列根式、分数指数幂的互化中,正确的序号是__________.①-x =(-x)12(x ≠0) ②x x =x 34 ③x -13=-3x ④3x·4x =x 112 ⑤(x y )-34=4(y x )3(xy ≠0) ⑥6y 2=y 13(y<0) 3.若a =2,b =3,c =-2,则(a c )b =__________. 4.根式a a 的分数指数幂形式为__________. 5.4(-25)2=__________. 6.2-(2k +1)-2-(2k -1)+2-2k的化简结果是__________.7.(1)设α,β是方程2x 2+3x +1=0的两个根,则(14)α+β=__________.(2)若10x =3,10y =4,则10x -12y =__________.8.(1)求下列各式的值:①2723;②(614)12;③(49)-32.(2)解方程:①x -3=18;②x =914.9.求下列各式的值: (1)(0.027)23+(12527)13-(279)0.5;(2)(13)12+3·(3-2)-1-(11764)14-(333)34-(13)-1.10.已知a 12+a -12=4,求a +a -1的值.11.化简下列各式: (1)5x -23y12(-14x -1y 12)(-56x 13y -16);(2)m +m -1+2m -12+m12.12.[(-2)2]-12的值是__________.13.化简(36a 9)4·(63a 9)4的结果是__________.14.以下各式,化简正确的个数是__________. ①a 25a -13a -115=1 ②(a 6b -9)-23=a -4b 6③(-x 14y -13)(x -12y 23)(-x 14y 23)=y④-15a 12b 13c -3425a -12b 13c54=-35ac15.(2010山东德州模拟,4改编)如果a 3=3,a 10=384,则a 3[(a 10a 3)17]n 等于__________.16.化简3(a -b )3+(a -2b )2的结果是__________. 17.下列结论中,正确的序号是__________. ①当a<0时,(a 2)32=a 3②na n =|a|(n>1且n ∈N *)③函数y =(x -2)12-(3x -7)0的定义域是(2,+∞)④若100a =5,10b =2,则2a +b =118.(1)若a =(2+3)-1,b =(2-3)-1,则(a +1)-2+(b +1)-2的值是__________.(2)若x >0,y >0,且x(x +y)=3y(x +5y),则2x +2xy +3yx -xy +y 的值是__________.19.已知a =2 0091n -2 009-1n2(n ∈N *),则(a 2+1+a)n 的值是__________.20.若S =(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12),那么S 等于__________.21.先化简,再求值:(1)a 2·5a 310a 7·a,其中a =8-53;(2)a 3x +a -3xa x +a -x ,其中a 2x =5.22.(易错题)计算:(1)(235)0+2-2·(214)-12-(0.01)0.5;(2)(279)0.5+0.1-2+(21027)-23-3π0+3748;(3)(0.008 1)-14-[3×(78)0]-1×[81-0.25+(338)-13]-12-10×0.02713.23.已知x 12+x -12=3,求x 32+x -32+2x 2+x -2+3的值.24.化简下列各式:(1)x -2+y -2x -23+y -23-x -2-y -2x -23-y -23;(2)a 43-8a 13b a 23+23ab +4b 23÷(1-23b a )×3a.答案与解析基础巩固1.1 ∵n a n =⎩⎪⎨⎪⎧a ,当n 为奇数时,|a|,当n 为偶数时,∴①不正确;∵a ∈R ,且a 2-a +1=(a -12)2+34≠0,∴②正确;∵x 4+y 3为多项式,∴③不正确;④中左边为负,右边为正显然不正确.∴只有②正确.2.②⑤ ①-x =-x 12,∴①错;②x x =(x x)12=(x·x 12)12=(x 32)12=x 34,∴②对;③x -13=1x 13=13x ,∴③错;④3x·4x =x 13·x 14=x 13+14=x 712,∴④错;⑤(x y )-34=(y x )34=4(y x)3,∴⑤对;⑥6y 2=|y|13=-y 13(y<0),∴⑥错.∴②⑤正确. 3.164 (a c )b =a bc =23×(-2)=2-6=126=164. 4.a 32 a a =a·a 12=a1+12=a 32.5.5 4(-25)2=4252=454=5. 6.-2-(2k +1)∵2-(2k +1)-2-(2k -1)+2-2k=2-2k·2-1-2-2k·21+2-2k=(12-2+1)·2-2k =-12·2-2k=-2-(2k +1).7.(1)8 (2)32 (1)由根与系数的关系,得α+β=-32,∴(14)α+β=(14)-32=(2-2)-32=23=8. (2)∵10x =3,10y =4,∴10x -12y =10x ÷1012y =10x ÷(10y )12=3÷412=32.8.解:(1)①2723=(33)23=33×23=32=9.②(614)12=(254)12=[(52)2]12=(52)2×12=52.③(49)-32=(23)2×(-32) =(23)-3=(32)3=278. (2)①∵x -3=18=2-3,∴x =2.②∵x =914,∴(x)2=(914)2=912.∴x =(32)12=3.9.解:(1)原式=(0.33)23+(12527)13-(259)12=9100+53-53=9100.(2)原式=3-12+33-2-(8164)14-(3-23)34-31=33+3(3+2)-[4(34)4]14-3-12-3=33+3+6-2·34-33-3 =6-342.10.解:∵a 12+a -12=4.∴两边平方,得a +a -1+2=16. ∴a +a -1=14.11.解:(1)原式=245×5×x -23+1-13×y 12-12+16=24x 0y 16=24y 16;(2)原式=(m 12)2+2m 12·m -12+(m -12)2m -12+m12=(m 12+m -12)2m 12+m -12=m 12+m -12.能力提升12.22 原式=2-12=12=22. 13.a 4原式=(3a 96)4·(6a 93)4=(a 32×13)4·(a3×16)4=(a 12)4·(a 12)4=a 2·a 2=a 4. 14.3 由分数指数幂的运算法则知①②③正确;对④,∵左边=-35a 12+12b 13-13c -34-54=-35a 1b 0c -2=-35ac -2≠右边,∴④错误.15.3·2n 原式=3·[(3843)17]n =3·[(128)17]n =3·(27×17)n =3·2n .16.b 或2a -3b 原式=a -b +|a -2b|=⎩⎪⎨⎪⎧ a -b +2b -a ,a <2b a -b +a -2b ,a ≥2b =⎩⎪⎨⎪⎧b ,a <2b ,2a -3b ,a ≥2b.17.④ ①中,当a <0时,(a 2)32=[(a 2)12]3=(|a|)3=(-a)3=-a 3,∴①不正确;当a <0,n 为奇数时,na n =a , ∴②不正确;③中,有⎩⎪⎨⎪⎧x -2≥0,3x -7≠0,即x ≥2且x ≠73,故定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a =5,10b =2,∴102a =5,10b =2,102a ×10b =10. ∴2a +b =1.∴④正确.18.(1)23 (2)3 (1)a =12+3=2-3,b =12-3=2+3,∴(a +1)-2+(b +1)-2=(3-3)-2+(3+3)-2=1(3-3)2+1(3+3)2=(3+3)2+(3-3)2(3-3)2·(3+3)2=32+2·3·3+3+32-2·3·3+3[(3-3)(3+3)]2=2×9+6(9-3)2=2436=23.(2)由已知条件,可得(x)2-2xy -15(y)2=0, ∴x +3y =0或x -5y =0. ∵x >0,y >0,∴x =5y ,x =25y.∴原式=50y +225y 2+3y25y -25y 2+y=50y +10y +3y 25y -5y +y =63y21y=3.19.2 009 ∵a =2 0091n -2 009-1n2,∴a 2+1=1+2 0092n +2 009-2n-24=(2 0091n )2+2+(2 009-1n)24=(2 0091n +2 009-1n 2)2.∴a 2+1+a=2 0091n +2 009-1n 2+2 0091n -2 009-1n2=2 0091n.∴(a 2+1+a)n =(2 0091n )n =2 009.20.12(1-2-132)-1 原式=(1-2-132)(1+2-132)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-116)(1+2-116)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-18)(1+2-18)(1+2-14)(1+2-12)1-2-132=(1-2-14)(1+2-14)(1+2-12)1-2-132=(1-2-12)(1+2-12)1-2-132=1-2-11-2-132=12(1-2-132)-1. 21.解:(1)原式=a2+35-710-12=a 75=(8-53)75=8-73=(23)-73=2-7=1128.(2)原式=(a x )3+(a -x )3a x +a -x=(a x +a -x )(a 2x -a x ·a -x +a -2x)a x +a -x=a 2x -1+a-2x =5-1+15=415.22.解:(1)原式=1+14·(49)12-(1100)12=1+14×23-(110)2×12=1+16-110=1115.(2)原式=(259)12+(110)-2+(6427)-23-3×1+3748=53+100+(43)-2-3+3748 =53+100+916-3+3748=100. (3)原式=[(0.3)4]-14-3-1×[(34)-14+(278)-13]-12-10×[(0.3)3]13=0.3-1-13[3-1+(32)-1]-12-10×0.3=103-13(13+23)-12-3=103-13-3=0.23.解:∵x 12+x -12=3,∴(x 12+x -12)2=9.∴x +x -1=7.∴原式=(x 12)3+(x -12)3+2x 2+x -2+3 =(x 12+x -12)(x -1+x -1)+2(x +x -1)2-2+3 =3×(7-1)+272-2+3=25. 拓展探究24.解:(1)原式=(x -23)3+(y -23)3x -23+y -23-(x -23)3-(y -23)3x -23-y -23=(x -23)2-x -23·y -23+(y -23)2-(x-23)2-x -23·y -23-(y -23)2=-2(xy)-23. (2)原式=a 13[(a 13)3-(2b 13)3]a 23+2a 13b 13+(2b 13)2÷(1-2b 13a 13)×a 13=a 13(a 13-2b 13)[a 23+2a 13b 13+(2b 13)2]a 23+2a 13b 13+(2b 13)2÷a 13-2b 13a 13×a 13=a 13(a 13-2b 13)·11×a 13a 13-2b 13×a 13=a 13·a 13·a13=a.。