人教版高一根式和分数指数幂运算练习(含答案)

合集下载

人教A版(2019)高中数学必修第一册4.1.1n次方根与分数指数幂课时训练

人教A版(2019)高中数学必修第一册4.1.1n次方根与分数指数幂课时训练
24.原式
分析:先化简集合 ,再对所求式子化简成含绝对值的式,进而对 进行讨论去绝对值.
解答:原式 .

当 时,原式 ;
当 时,原式 .
∴原式
点评:本题考查一元二次不等式的求解、配方法、去绝对值的方法,考查分类讨论思想,考查逻辑推理能力和运算求解能力.
故答案为:0或2(a-b).
点评:本题考查了根式的化简,需掌握根式的性质,属于基础题.
12.
分析:由实数指数幂的运算法则,准确运算,即可求解.
解答:由 有意义,可得 ,即 ,
所以 .
故答案为: .
点评:本题主要考查了实数指数幂的运算的化简、求值,其中解答中熟记实数指数幂的运算法则,准确运算是解答的关键,着重考查运算与求解能力.
21.(1)41;(2)
分析:(1)直接由分数指数幂的运算性质化简即可.
(2)先化简所求,再代入x,y求值.
解答:(1) =36+9-5+1=41;
(2) ,
将 代入得 .
点评:本题考查了分数指数幂的运算性质,根式的化简,考查了推理能力与运算能力,属于基础题.
22.(1) ;(2) .
分析:(1)利用根式的性质可得出结果;
对于A中,式子 中,实数 的取值为 ,所以 总有意义;
对于B中,式子 中,实数 的取值为 ,所以 总有意义;
对于C中,式子 中,实数 的取值为 ,所以 可能没有意义;
对于D中式子 中,实数 的取值为 ,所以 总有意义.
故选:C.
点评:本题主要考查了实数指数幂的运算性质及其应用,其中解答中熟记实数指数幂的性质,求得各项式子有意义的条件是解答的关键,着重考查推理能力.
点评:本题考查同底数幂的乘法运算,适当变形是解题关键,属于基础题.

(完整版)指数与指数幂的运算习题(含答案),推荐文档

(完整版)指数与指数幂的运算习题(含答案),推荐文档

2 2 2 ⎝ ⎝ ⎭⎭指数与指数幂的运算 习题(含答案)一、单选题1.已知 x ,y 为正实数,则 A . 2lnx+lny =2lnx +2lny B . 2ln (x+y )=2lnx •2lny C . 2lnx•lny =2lnx +2lnyD . 2ln (xy )=2lnx •2lny12.化简[( ‒ 2)6]2 ‒ ( ‒ 1)0的结果为A . −9B . 7C . −10D . 93. 若 > 0,且 , 为整数,则下列各式中正确的是A . a m ÷ a n = anB . a m ⋅ a n = a mnC . () =+D . 1 ÷ a n = a 0 ‒ n4. 若 a >1,b >0,且 a b +a -b =2,则 a b -a -b 的值为( )A .B . 2 或-2C . -2D . 25.3‒ 27的值为(). A.9B. ‒ 9C.‒ 3D.3a 3x + a ‒ 3x26.若 = A . 2 ‒ 1 C . 2 + 1‒ 1,则 a x + a ‒ x 等于B . 2 ‒ 2 D . + 1log 3x , x > 0 ⎛ ⎛ 1 ⎫⎫7.已知函数 f (x )= { 2x , x ≤ 0,则 f f 9 ⎪⎪ 等于( )A . 4B . - 1 41C . -4D . 4 18.设 a = log 3,b = 20.3, c = log 2 ,则( )3A . a > b > cB . a > c > bC . c > a > b (1)9.设 y 1=40.9,y 2=80.48,y 3= 2 -1.5,则( ) A . y 3>y 1>y 2 B . y 2>y 1>y 3 C . y 1>y 2>y 3 D . y 1>y 3>y 2 10.有下列各式:D . b > a > c2 2n a n 3 x4+ y 36 (-5)2m ‒ 2n4 163 x3 x 227 - - ① = a ;②若 a ∈R ,则(a 2-a +1)0=1;4③ = x 3+ y ;④ 35 = .其中正确的个数是( ) A . 0 B . 1 C . 2D .311.化简(a 2-2+a -2)÷(a 2-a -2)的结果为( ) A . 1B . -1C .a 2 -1a 2 +1a 2 +1D .a 2 -112. 下列各式计算正确的是( )A . (-1)0=1B . 21a 2·a 2=a2 1 1 C . 43=8D . a 3÷ a - 3= a 313. 已知a m =4,a n =3,则 的值为( )2A.33B. 6 C . 2D . 2二、填空题化简 ⋅(x > 0) 的结果是.14.x ⋅ 15. 设函数 f (x ) = a x + (k -1)a -x + k 2 ( a > 0, a ≠ 1 )是定义域为 R 的奇函数.(1) 求 k 值;(2) 若 f (1) > 0 ,求使不等式 f (x 2 + x ) + f (t - 2x ) > 0 恒成立的t 的取值范围;(3)若 f (1) = 3 ,设 g (x ) = a 2x + a -2x - 2mf (x ) , g (x ) 在[1, +∞) 上的最小值为-1,2求m 的值.12⎛ 1 ⎫ - 16.计算: 83 ÷ ⎪ = .⎝ 4 ⎭ ⎛ 8 ⎫- 13 - ⎛ - 3 ⎫0+ =17. log 3 +⎝ 125 ⎪⎭ .⎝ 5 ⎪⎭2 518. (2a -3b 3 ) ⋅ (-3a -1b ) ÷ (4a -4b 3)(a > 0, b > 0) =.19.若2x + 2-x = 5 ,则8x + 8-x =.6 x23 a - 33 b- ⎛ 8 9 2 ( ‒ 8) (3) ;20. 0.064 13- - 1 ⎫0 + ⎡(-2)3 ⎤- 34 +16 ⎪ ⎣ ⎦⎝ ⎭- 34 + 0.0112 =⎛ 1 ⎫0 21. 计算: lg4 + lg25 + - ⎪ ⎝ ⎭=.22. 直线y = 2a 与函数 y = a x -1 (a > 0且a ≠ 1)的图象有且仅有两个公共点,则实数 a 的取值范围是.1 + log 12 - (0.7)0+ 0.25-1 =。

人教版高一数学必修1第16课时分数指数幂与幂的运算(含解析)

人教版高一数学必修1第16课时分数指数幂与幂的运算(含解析)
解析:原式=2 · · · ·…· =2 ·…· =2 =2- .
13.(15分)设 的整数部分为x,小数部分为y,求x2+ xy+ 的值.
解:因为 = = =2+ ,
所以x=2,y= .
原式=22+ ·2· + =4+7- + +1=12.
=2-4× +10(2+ )-10
=21.
(3)(7+4 ) -81 +32 -2× + × -1
=[(2+ )2] -(34) +(25) -2×(2-3) +2 ×(22)
=2+ - +8-8+2
=4.
11.(13分)已知x +x =3,计算:
(1)x-x-1;
(2) .
解:(1)将x +x =3两边平方,得x+x-1+2=32,即x+x-1=7,
0的正分数指数幂等于0,
0的负分数指数幂没有意义.
2.有理指数幂的性质.
课时作业
(时间:45分钟,满分:90分)
一、选择题(本大题共6小题,每小题5分,共30分)
1.把根式 改写成分数指数幂的形式为()
A.(a-b) B.(a-b)
C.a -b D.a -b
答案:A
解析:原式=[(a-b)-2] =(a-b) .故选A.
∵ =(x3+y3) ≠(x+y) ,∴C错;
∵ = =3 ,∴D正确,故选D.
4.式子 (a>0)经过计算可得()
A.aB.-
C. D.
答案:D
解析:原式= =a =a = .
5.设x,y,z∈R,xyz≠0,且4x=6y=144z,则()
A. = + B. = +
C. = + D. = +
答案:D
答案:1
解析:设ax=by=cz=k,则k>0,a=k ,b=k ,c=k ,因此abc=k k k =k =k0=1.

高一数学指数与指数幂的计算题及答案解析

高一数学指数与指数幂的计算题及答案解析
高一数学指数与指数幂的计算题(二) 1.下列各式正确的是( ) A. -3 2=-3 B.4a4=a C.22=2 D.a0=1 解析:选C.根据根式的性质可知C正确. 4a4=|a|,a0=1条件为a≠0,故A,B,D错. 2.若(x-5)0有意义,则x的取值范围是( ) A.x>5 B.x=5 C.x<5 D.x≠5 解析:选D.∵(x-5)0有意义, ∴x-5≠0,即x≠5. 3.若xy≠0,那么等式 4x2y3=-2xyy成立的条件是( ) A.x>0,y>0 B.x>0,y<0 C.x<0,y>0 D.x<0,y<0 解析:选C.由y可知y>0,又∵x2=|x|, ∴当x<0时,x2=-x. 4.计算 2n+1 2• 12 2n+14n•8-2(n∈N*)的结果为( ) A.164 B.22n+5
(4)如果对于函数定义域内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函 数又不是偶函数,称为非奇非偶函数。
(1)指数函数的定义域为所有实数的集合,这里的前提是a大于0,对于a不大于0的情况,则必然使得 函数的定义域不存在连续的区间,因此我们不予考虑。
(2)指数函数的值域为大于0的实数集合。 (3)函数图形都是下凹的。 (4)a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。 (5)可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分 别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递 增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。 (6)函数总是在某一个方向上无限趋向于X轴,永不相交。 (7)函数总是通过(0,1)这点。 (8)显然指数函数无界。 奇偶性

根式和分数指数幂的互化及其化简运算专题含答案

根式和分数指数幂的互化及其化简运算专题含答案

根式和分数指数幂的互化及其化简运算专题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 下列各式中正确的一个是( ) A.(n m)7=n 7m 17 B.√(−3)412=√−33C.√x 3+y 34=(x +y )34 D.√354=3542. 设a >0,将2√a⋅√a 2表示成分数指数幂,其结果是( )A.a 12B.a 56C.a 76D.a 323. 当 √2−x 有意义时,化简 √x 2−4x +4−√x 2−6x +9的结果是( ) A.2x −5 B.−2x −1 C.−1 D.5−2x4. 化简(√a −1)2+√(1−a)2+√(1−a)33的结果是( ) A.1−a B.2(1−a) C.a −1 D.2(a −1)5. 化简√(x +3)2−√(x −3)33得( ) A.6 B.2x C.6或−2x D.6或2x 或−2x6. 化简(√√a 963)4⋅(√√a 936)4的结果为( ) A.a 16 B.a 8 C.a 4 D.a 27. 若x <13,则√9x 2−6x +1等于( ) A.3x −1 B.1−3xC.(1−3x)2D.非以上答案8. 若n <m <0,则√m 2+2mn +n 2−√m 2−2mn +n 2等于( ) A.2m B.2n C.−2m D.−2n9. √m ⋅√m 3⋅√m 4⋅=( )A.1B.m 12C.m 13D.m10. 下列各式成立的是( ) A.√m 2+n 23=(m +n)23 B.(ba)2=a 12b 12C.√(−3)26=(−3)13 D.√√43=21311. 已知正数a ,b 满足√9a×√27b=3,则ab 的最小值为( ) A.6 B.12 C.18 D.2412. 已知a >0,则√a 13√a 12√a 化为( )A.a 712 B.a 512C.a 56D.a 1313. (614)−12=( )A.32B.23C.25D.5214. 若2<a <3,化简√(2−a)2+√(3−a)44的结果是( ) A.5−2a B.2a −5 C.1 D.−115. 已知 a >0 √a 23=( )A.a 12B.a 32C.a 23D.a 1316. 设a >0,将2√a⋅√a 2表示成分数指数幂,其结果是( )A.a 12B.a 56C.a 76D.a 3217. 化简√√ab 23⋅a 3b 2√b 3⋅(a 16b 12)4(a ,b 为正数)的结果是( )A.baB.abC.abD.a 2b18. 当x ∈(−∞, 2)时,√(x −2)2+√(x −1)33的值为( ) A.2x −3 B.1 C.−1 D.−2x +319. 已知x 12+x −12=5,则 x 2+1x的值为( )A.5B.23C.25D.2720.(√a⋅√a 35)9(√a 45)3⋅(√a 2⋅√a 5)43(√a 2⋅√a 3)2的值为( )A.1B.a 2C.a 3D.以上答案均不正确21. 已知x +x −1=3,则x 32+x −32值为( ) A.±4√5 B.2√5C.4√5D.−4√522. 设a =√(−8)33,b =√(−10)2,则a +b =( ) A.−18 B.18 C.−2 D.223. 已知,,则________.24. 已知 x +x −1=3,则x 2+x −2=________; x 12+x −12=________.25. 已知x +x −1=3,则x 2+x −2=________;x −x −1=________.26. 计算(√23×√3)6+√2√2)43−4×(1649)−12−√24×80.25−(−2013)0=________.27. 已知x +x −1=3,则x 32+x −32值为________.28. 化简√a 72⋅√a −33÷√√a −83⋅√a 153÷√√a −3⋅√a −13=________.29. 已知x +y =12,xy =9,且x <y ,则x 12−y 12x 12+y 12=________.30. 先化简,再求值:,其中.31. 计算(1)√8+√32−√24(2)√12÷√27×√1832. 求下列各式的值: (1)0.001−13−(78)0+1634+(√2⋅√33)6.(2)设 x 12+x −12=3,求x +x −1 的值.33. 已知a <b <0,n >1,n ∈N ∗,化简 √(a −b)n n+√(a +b)n n.34. (1)计算4x 14(−3x 14y −13)÷[−6(x −12y −23)]; 34. (2)√m ⋅√m 3⋅√m 4⋅.35. 化简下列各式(1)√11+6√2+√11−6√2(2)√a 2b 2√ab3(a 14b 12)a−13b13(a >0b >0)36. 解答.(1)求值:√(−27)23+√(2−π)2+√(4−π)44;(2)计算:2x −13(12x 13+x −23)x ;(3)计算:(x 12+2y 14)(x 12−2y 14)÷y −12.37. 化简求值: (1)√254+(√π)0−2−1;(2)(2a 23b 12)(−6a 12b 13)÷(−3a 16b 56). 38. 设x =√3−2,y =√3+2,求代数式x 2+xy+y 2x+y的值.39.(1)求值: (√23×√3)6+(−2020)0−4×(1649)−12+√(3−π)44;(2)已知√a −√a=4,求值:a 12+a −12.40. 化简或求值. b √a 3⋅√ab 3a √b 2√ab3>0,b >0);(2)(214)12+0.1−2−(278)13+π0.参考答案与试题解析根式和分数指数幂的互化及其化简运算专题含答案一、 选择题 (本题共计 22 小题 ,每题 3 分 ,共计66分 ) 1.【答案】 D【考点】根式与分数指数幂的互化及其化简运算 【解析】正确计算各选项,得出答案. 【解答】解:A ,(n m)7=n 7m −7,故A 错误;B ,√(−3)412=√3412=3412=313=√33,故B 错误; C ,√x 3+y 34=(x 3+y 3)14,故C 错误;D ,√354=354,故D 正确.故选D . 2. 【答案】 C【考点】根式与分数指数幂的互化及其化简运算 【解析】由根式与分数指数幂的互化规则所给的根式化简即可将其表示成分数指数幂,求得其结果选出正确选项. 【解答】 解:由题意2√a⋅√a 2=2√a⋅a 23=a 2a 56=a 76.故选C . 3.【答案】 C【考点】根式与分数指数幂的互化及其化简运算 【解析】 此题暂无解析 【解答】解:当 √2−x 有意义时,x ≤2.√x 2−4x +4−√x 2−6x +9=|x −2|−|x −3|=2−x +x −3=−1. 故选C . 4.【答案】 C【考点】根式与分数指数幂的互化及其化简运算 【解析】 此题暂无解析 【解答】解:∵ √a −1 有意义, ∴ a −1≥0,即a ≥1.∴ (√a −1)2+√(1−a)2+√(1−a)33=(a −1)+|1−a|+(1−a)=(a −1)+(a −1)+(1−a)=a −1. 故选C . 5.【答案】 C【考点】根式与分数指数幂的互化及其化简运算 【解析】化简√(x +3)2−√(x −3)33=|x +3|−(x −3)={6,x ≥−3−2x,x <−3.【解答】解:√(x +3)2−√(x −3)33=|x +3|−(x −3)={6,x ≥−3−2x,x <−3,故选C . 6. 【答案】 C【考点】根式与分数指数幂的互化及其化简运算 【解析】由根式和分数指数幂的关系,将式子化为分数指数幂形式,再由指数的运算法则求解即可. 【解答】解:(√√a 963)4⋅(√√a 936)4=a 9×16×13×4a 9×13×16×4=a 4 故选C 7.【答案】 B【考点】根式与分数指数幂的互化及其化简运算 【解析】利用|a|={a,a ≥0−a,a <0及其乘法公式即可得出.【解答】解:∵ x <13,∴ 1−3x >0.则√9x 2−6x +1=√(1−3x)2=1−3x . 故选:B . 8.【答案】 C【考点】根式与分数指数幂的互化及其化简运算 【解析】利用乘法公式与根式的运算性质即可得出. 【解答】解:原式=|m +n|−|m −n|, ∵ n <m <0,∴ m +n <0,m −n >0,∴ 原式=−(m +n)−(m −n)=−2m . 故选:C . 9.【答案】 A【考点】根式与分数指数幂的互化及其化简运算 【解析】将根式化为分数指数幂的形式,从而计算. 【解答】解:√m ⋅√m 3⋅√m 4⋅=m 12⋅m 13⋅m 14⋅m−56⋅m −14=m (12+13+14−56−14) =m 0=1, 故选A . 10.【答案】 D【考点】根式与分数指数幂的互化及其化简运算 【解析】利用指数幂的运算法则即可得出. 【解答】解:A .∵ (m +n)23=√(m +n)23,因此不正确; B.(ba )2=b 2⋅a −2,因此不正确; C .∵√(−3)26=√326=313,因此不正确;D.√√43=223×12=213,正确.11.【答案】 D【考点】基本不等式及其应用根式与分数指数幂的互化及其化简运算 【解析】 此题暂无解析 【解答】解:√9a×√27b=32a +3b=3,即2a +3b =1,∴ ab =3a +2b ≥2√6ab ,解得ab ≥24,当且仅当3a =2b ,即a =4,b =6时,等号成立. 故选D . 12.【答案】 B【考点】根式与分数指数幂的互化及其化简运算 【解析】 此题暂无解析 【解答】解:√a 13√a 12√a=√a 13√a 12⋅a 12 =√a 13⋅a 12=a 12×56=a 512. 故选B . 13. 【答案】 C【考点】根式与分数指数幂的互化及其化简运算 有理数指数幂的化简求值 【解析】【解答】 解:原式=(254)−12=√425=25.故选C . 14.【答案】 C【考点】根式与分数指数幂的互化及其化简运算 【解析】由根式的意义知√x n n=|x|,n 为偶数时,利用此式进行化简即可. 【解答】解:√(2−a)2+√(3−a)44=|2−a|+|3−a|, 因为2<a <3,所以上式=a −2+3−a =1. 故选C. 15. 【答案】 D【考点】根式与分数指数幂的互化及其化简运算 【解析】 此题暂无解析 【解答】 √a 23=a a 23=1a 23−1=a 13.故选D . 16.【答案】 C【考点】根式与分数指数幂的互化及其化简运算 【解析】化根式为分数指数幂,然后利用有理指数幂的运算化简求值. 【解答】 解:2√a⋅√a 2=a 2√a ⋅a 23=a 2√a 1+23=2√a 53=a 2a 56=a 76. 故选C . 17. 【答案】 C【考点】根式与分数指数幂的互化及其化简运算 【解析】 此题暂无解析 【解答】 解:原式=[(ab 2)13⋅a 3⋅b 2]12b 13⋅a 23⋅b 2=a 16+32−23b 13+1−13−2=ab.故选C . 18. 【答案】 B【考点】根式与分数指数幂的互化及其化简运算 【解析】根据根式与分数指数幂的运算法则进行化简即可. 【解答】解:∵ x ∈(−∞, 2)时,x −2<0;∴ √(x −2)2+√(x −1)33=|x −2|+(x −1) =−(x −2)+(x −1) =1.故选:B . 19.【答案】 B【考点】根式与分数指数幂的互化及其化简运算 【解析】根据指数幂的运算法则进行求值即可. 【解答】 解:∵ x 12+x−12=5,∴ 平方得x +2+x −1=25, 即x +x −1=23,∵x2+1x =x+1x=x+x−1,∴x2+1x=23,故选:B.20.【答案】D【考点】根式与分数指数幂的互化及其化简运算【解析】根据根式与分数指数幂的互化进行化简运算即可.【解答】解:原式=a 45×3˙⋅(a2⋅a12)23˙=a125a125⋅a2215a53=a−15,即原式的值为a−15.故选D.21.【答案】B【考点】根式与分数指数幂的互化及其化简运算【解析】由x+x−1=3,得x12+x−12=√5.所以x32+x−32=(x12+x−12)(x+x−1−1)=2√5.【解答】解:∵x+x−1=3,∴x12+x−12=√(x12+x−12)2=√x+x−1+2=√5.∴x32+x−32=(x12+x−12)(x+x−1−1)=2√5.故选B.22.【答案】D【考点】根式与分数指数幂的互化及其化简运算【解析】直接利用有理指数幂的运算性质化简求值.【解答】解:a=√(−8)33=−8,b=√(−10)2=10,则a+b=−8+10=2.故选:D.二、填空题(本题共计 7 小题,每题 3 分,共计21分)23.【答案】23【考点】顺序结构的应用根式与分数指数幂的互化及其化简运算指数式、对数式的综合比较【解析】」利用指数及指数幂的运算律求解.【解答】10∘=210−=3,10−r=10−10∘=23故答案为:2324.【答案】7,√5【考点】有理数指数幂的化简求值根式与分数指数幂的互化及其化简运算分数指数幂【解析】此题暂无解析【解答】解:因为x+x−1=3,所以(x+x−1)2=9,即x2+x−2+2=9,所以x2+x−2=7;∵(x12+x−12)2=x+2+x−1=5,∴x12+x−12=√5.故答案为:7;√5.25.【答案】7,±√5【考点】有理数指数幂根式与分数指数幂的互化及其化简运算【解析】(1)把已知条件平方,再化简即可得解【解答】解:∵(x+x−1)2=x2+x−2+2=9,∴x2+x−2=9−2=7,∴x2+x−2=7,(x −x −1)2=x 2+x −2−2=7−2=5, ∴ x −x −1=±√5. 故答案为:7;±√5. 26.【答案】 100【考点】根式与分数指数幂的互化及其化简运算 有理数指数幂【解析】利用分数指数幂的运算性质即可得出. 【解答】解:原式=22×33+(234)43−4×(47)2×(−12)−214+34−1=108+2−7−2−1 =100.故答案为:100. 27. 【答案】2√5【考点】根式与分数指数幂的互化及其化简运算 【解析】利用完全平方公式和立方差公式即可得出. 【解答】解:∵ (x 12+x −12)2=x +x −1+2=3+2=5, 又∵ x 12+x −12>0,∴ x 12+x −12=√5. ∴ x 32+x−32=(x 12+x −12)(x +x −1−1)=√5(3−1)=2√5.故答案为:2√5. 28. 【答案】a 16【考点】根式与分数指数幂的互化及其化简运算 【解析】本题先将根式化成指数幂的形式,再利用负指数将除转化为乘,然后利用指数运算的法则计算,得到本题的解. 【解答】解:原式=√a 72⋅a −323÷√a −83⋅a 153÷√a −32⋅a −123=√a 23÷√a 73÷√a −23=a 23÷a 76÷a−23=a 16.故答案为:a 1 6.29.【答案】−√3 3【考点】根式与分数指数幂的互化及其化简运算【解析】由题设形式与条件的形式知,需要利用完全平方差公式与完全平方和公式构造出题设中的分子与分母的形式,求值【解答】解:由题设0<x<y∵xy=9,∴√xy=3∴x+y−2√xy=(x12−y12)2=12−6=6x+y+2√xy=(x 12+y12)2=12+6=18∴x12−y12=−√6,x12+y12=3√2∴x 12−y12x 12+y12=√63√2=−√33故答案为:−√33三、解答题(本题共计 11 小题,每题 10 分,共计110分)30.【答案】、x−13、Ex+2′2【考点】运用诱导公式化简求值根式与分数指数幂的互化及其化简运算有理数指数幂【解析】先将除法变为乘法,再约分,再同分化简.然后再将x=√2−2代入求解.【解答】原式=x+2x ×x2(x+2)2−x−2(x+2)(x−2)=xx+2−1x+2=x−1x+2再将x=√2−2代入得:√2−2−1√2−2+2=√2√2=1−3√2231.【答案】【考点】有理数指数幂的化简求值根式与分数指数幂的互化及其化简运算 【解析】 此题暂无解析 【解答】 此题暂无解答 32. 【答案】解:(1)原式 =(0.1)3×(−13)−1+24×34+(212)6⋅(313)6=10−1+8+8×9=89.(2)∵ x 12+x −12=3,∴ x +x−1=(x 12+x −12)2−2=32−2=7.【考点】根式与分数指数幂的互化及其化简运算 【解析】 此题暂无解析 【解答】解:(1)原式 =(0.1)3×(−13)−1+24×34+(212)6⋅(313)6=10−1+8+8×9=89.(2)∵ x 12+x −12=3, ∴ x +x −1=(x 12+x −12)2−2=32−2=7.33.【答案】解:∵ a <b <0,∴ a −b <0,a +b <0. 当n 是奇数时,原式 =(a −b)+(a +b)=2a ;当n 是偶数时,原式= |a −b|+|a +b|=(b −a)+(−a −b)=−2a . ∴ √(a −b)n n+√(a +b)n n={2a,n 为奇数,−2a,n 为偶数.【考点】根式与分数指数幂的互化及其化简运算 【解析】 此题暂无解析 【解答】解:∵ a <b <0,∴ a −b <0,a +b <0. 当n 是奇数时,原式 =(a −b)+(a +b)=2a ;当n 是偶数时,原式= |a −b|+|a +b|=(b −a)+(−a −b)=−2a . ∴ √(a −b)n n+√(a +b)n n={2a,n 为奇数,−2a,n 为偶数.34.【答案】解:(1)4x 14(−3x 14y −13)÷[−6(x −12y −23)] =4×(−3)÷(−6)x 14+14−(−12)y −13−(−23)=2xy 13; (2)√m ⋅√m 3⋅√m 4⋅=m 12+13+14m 56+14=m 1312m 1312=1.【考点】根式与分数指数幂的互化及其化简运算 【解析】(1)先把系数运算,再利用有理指数幂的运算性质化简得答案; (2)化根式为分数指数幂,再由有理指数幂的运算性质化简得答案. 【解答】解:(1)4x 14(−3x 14y −13)÷[−6(x −12y −23)] =4×(−3)÷(−6)x14+14−(−12)y−13−(−23)=2xy 13; (2)√m ⋅√m 3⋅√m 4⋅=m 12+13+14m 56+14=m 1312m 1312=1.35. 【答案】解:(1)原式=√9+2√18+2+√9−2√18+2 =√9+√2+√9−√2 =6. (2)原式=(a2+13b 2+13)12a 14−13b 12+13=a 76+112b 76−56=a 53b 13.【考点】根式与分数指数幂的互化及其化简运算 【解析】 (1)(2)利用指数幂的运算法则、乘法公式即可得出. 【解答】解:(1)原式=√9+2√18+2+√9−2√18+2 =√9+√2+√9−√2 =6. (2)原式=(a2+13b 2+13)12a 14−13b 12+13=a76+112b76−56=a 53b 13.36. 【答案】解:(1)√(−27)23+√(2−π)2+√(4−π)44=32+π−2+4−π=9−2+4=11.(2)2x −13(12x 13+x −23)x=(1+2x −1)x =x +2.(3)(x 12+2y 14)(x 12−2y 14)÷y −12=(x −4y 12)y 12=x √y −4y.【考点】根式与分数指数幂的互化及其化简运算 分数指数幂 【解析】解:(1)√(−27)23+√(2−π)2+√(4−π)24=32+π−2+4−π=9−2+4=11(2)2x −13(12x 13+x −23)x =(1+2x −1)x =x +2.(3)(x 12+2y 14)(x 12−2y 14)÷y −12=(x −4y 12)y 12=x √y −4y. 【解答】解:(1)√(−27)23+√(2−π)2+√(4−π)44=32+π−2+4−π=9−2+4=11.(2)2x −13(12x 13+x −23)x=(1+2x −1)x =x +2. (3)(x 12+2y 14)(x 12−2y 14)÷y −12 =(x −4y 12)y 12=x √y −4y.37. 【答案】解:(1)原式=52+1−12=3.(2)原式=[2×(−6)÷(−3)]a 23+12−16 b 12+13−56 =4ab 0 =4a .【考点】有理数指数幂的化简求值根式与分数指数幂的互化及其化简运算 【解析】 无 无 【解答】解:(1)原式=52+1−12=3. (2)原式=[2×(−6)÷(−3)]a 23+12−16 b12+13−56=4ab 0 =4a .38. 【答案】 解:∵ x =√3−2=−√3−2,y =√3+2=2−√3,∴ x +y =−2√3,xy =−1, ∴x 2+xy+y 2x+y=(x+y)2−xyx+y=√3)2−2√3=−13√36. 【考点】根式与分数指数幂的互化及其化简运算 【解析】首先化简x ,y ,再化简原式,最后代入计算即可. 【解答】 解:∵ x =√3−2=−√3−2,y =√3+2=2−√3,∴ x +y =−2√3,xy =−1, ∴ x 2+xy+y 2x+y=(x+y)2−xyx+y=√3)2−2√3=−13√36. 39. 【答案】解:(1) 原式=(213×312)6+1−4×(74)(−2)×(−12)+|3−π|=22×33+1−4×74+π−3=99+π. (2)∵ √a −√a=4,∴ a 12−a −12=4, ∴ (a 12−a −12)2=16, ∴ a +a −1=18,∴ (a 12+a −12)2=a +a −1+2=20. ∵ a 12+a −12>0, ∴ a 12+a−12=2√5.【考点】有理数指数幂的化简求值根式与分数指数幂的互化及其化简运算 【解析】(1)将根式转化为分数指数幂进行求解即可; (2)将已知条件两边平方,得到a +a −1=18,再代入(a 12+a −12)2=a +a −1+2=20,即可求解.【解答】解:(1) 原式=(213×312)6+1−4×(74)(−2)×(−12)+|3−π|=22×33+1−4×74+π−3=99+π. (2)∵ √a −√a=4,∴ a 12−a −12=4, ∴ (a 12−a −12)2=16, ∴ a +a −1=18,∴ (a 12+a −12)2=a +a −1+2=20. ∵ a 12+a −12>0, ∴ a 12+a −12=2√5. 40. 【答案】 解:(1)原式=b(a 3(ab)13)12a(b 2(ab)12)13=b×a 32a×b 23=a 12b 13; (2)原式 =(94)12+(110)−2−[(32)3]13+1=32+100−32+1=101.【考点】有理数指数幂的化简求值根式与分数指数幂的互化及其化简运算【解析】(1)利用根式与分数指数幂的运算性质化简运算即可;(2)根式与分数指数幂的运算性质先进行分式指数幂的运算,再化简即可. 【解答】 解:(1)原式=b(a 3(ab)13)12a(b 2(ab)12)13=b×a 32a×b 23=a 12b 13; (2)原式 =(94)12+(110)−2−[(32)3]13+1=32+100−32+1=101.。

高一数学上册 指数函数知识点及练习题含答案

高一数学上册 指数函数知识点及练习题含答案

课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。

高一数学上册 指数函数知识点及练习题含答案

高一数学上册 指数函数知识点及练习题含答案

课时4指数函数一. 指数与指数幂的运算(1)根式的概念 ①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n表示;当n 是偶数时,正数a 的正的nn次方根用符号0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a =;当na =;当n(0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r r ab a b a b r R =>>∈二.指数函数及其性质(4)指数函数a 变化对图象影响在第一象限内,a 越大图象越高,越靠近y 轴; 在第二象限内,a 越大图象越低,越靠近x 轴. 在第一象限内,a 越小图象越高,越靠近y 轴; 在第二象限内,a 越小图象越低,越靠近x 轴.三.例题分析1.设a 、b 满足0<a<b<1,下列不等式中正确的是(C) A.a a <a b B.b a <b b C.a a <b a D.b b <a b解析:A 、B 不符合底数在(0,1)之间的单调性;C 、D 指数相同,底小值小.故选C. 2.若0<a<1,则函数y=a x 与y=(a-1)x 2的图象可能是(D)解析:当0<a<1时,y=a x为减函数,a-1<0,所以y=(a-1)x 2开口向下,故选D.3.设指数函数f(x)=a x (a>0且a ≠1),则下列等式中不正确的是(D) A.f(x+y)=f(x)f(y)B.f(x-y)=)()(y f x f C.f(nx)=[f(x)]n D.f [(xy)n ]=[f(x)]n [f(y)]n (n ∈N *) 解析:易知A 、B 、C 都正确. 对于D,f [(xy)n]=a(xy)n,而[f(x)]n·[f(y)]n=(a x )n·(a y)n=anx+ny,一般情况下D 不成立.4.设a=31)43(-,b=41)34(-,c=43)23(-,则a 、b 、c 的大小关系是(B)A.c<a<bB.c<b<aC.b<a<cD.b<c<a解析:a=413131)34()34()43(>=-=b,b=434141)23()278()34(-=>=c.∴a>b>c.5.设f(x)=4x -2x+1,则f -1(0)=______1____________. 解析:令f -1(0)=a,则f(a)=0即有4a-2·2a=0.2a·(2a-2)=0,而2a>0,∴2a=2得a=1.6.函数y=a x-3+4(a>0且a ≠1)的反函数的图象恒过定点______(5,3)____________.解析:因y=a x的图象恒过定点(0,1),向右平移3个单位,向上平移4个单位得到y=a x-3+4的图象,易知恒过定点(3,5).故其反函数过定点(5,3).7.已知函数f(x)=xx xx --+-10101010.证明f(x)在R 上是增函数.证明:∵f(x)=1101101010101022+-=+---x x xx x x , 设x 1<x 2∈R ,则f(x 1)-f(x 2)=)110)(110()1010(21101101101101010101010101010212122112222111122222222++-=+--+-=+--+-----x x x x x x x x x x x x x x x x . ∵y=10x 是增函数, ∴21221010x x -<0. 而1210x +1>0,2210x +1>0, 故当x 1<x 2时,f(x 1)-f(x 2)<0, 即f(x 1)<f(x 2). 所以f(x)是增函数.8.若定义运算a ⊗b=⎩⎨⎧<≥,,,,b a a b a b 则函数f(x)=3x ⊗3-x 的值域为(A)A.(0,1]B.[1,+∞)C.(0,+∞)D.(-∞,+∞)解析:当3x ≥3-x ,即x ≥0时,f(x)=3-x ∈(0,1];当3x<3-x,即x<0时,f(x)=3x∈(0,1).∴f(x)=⎩⎨⎧<≥-,0,3,0,3x x x x 值域为(0,1).9.函数y=a x 与y=-a -x (a>0,a ≠1)的图象(C) A.关于x 轴对称B.关于y 轴对称 C.关于原点对称D.关于直线y=-x 对称解析:可利用函数图象的对称性来判断两图象的关系.10.当x ∈[-1,1]时,函数f(x)=3x -2的值域为_______[-35,1]___________. 解析:f(x)在[-1,1]上单调递增.11.设有两个命题:(1)关于x 的不等式x 2+2ax+4>0对一切x ∈R 恒成立;(2)函数f(x)=-(5-2a)x 是减函数.若命题(1)和(2)中有且仅有一个是真命题,则实数a 的取值范围是_______(-∞,-2)__________.解析:(1)为真命题⇔Δ=(2a)2-16<0⇔-2<a<2.(2)为真命题⇔5-2a>1⇔a<2.若(1)假(2)真,则a ∈(-∞,-2].若(1)真(2)假,则a ∈(-2,2)∩[2,+∞]=∅. 故a 的取值范围为(-∞,-2).12.求函数y=4-x -2-x +1,x ∈[-3,2]的最大值和最小值. 解:设2-x =t,由x ∈[-3,2]得t ∈[41,8],于是y=t 2-t+1=(t-21)2+43.当t=21时,y 有最小值43.这时x=1.当t=8时,y 有最大值57.这时x=-3. 13.已知关于x 的方程2a 2x-2-7a x-1+3=0有一个根是2,求a 的值和方程其余的根. 解:∵2是方程2a 2x-2-9a x-1+4=0的根,将x=2代入方程解得a=21或a=4. (1)当a=21时,原方程化为2·(21)2x-2-9(21)x-1+4=0.① 令y=(21)x-1,方程①变为2y 2-9y+4=0, 解得y 1=4,y 2=21.∴(21)x-1=4⇒x=-1,(21)x-1=21⇒x=2. (2)当a=4时,原方程化为2·42x-2-9·4x-1+4=0.② 令t=4x-1,则方程②变为2t 2-9t+4=0.解得t 1=4,t 2=21. ∴4x-1=4⇒x=2, 4x-1=21⇒x=-21. 故方程另外两根是当a=21时,x=-1; 当a=4时,x=-21. 14.函数y=243)31(x x -+-的单调递增区间是(D) A.[1,2]B.[2,3]C.(-∞,2]D.[2,+∞)解析:因为y=3x2-4x+3,又y=3t 单调递增,t=x 2-4x+3在x∈[2,+∞)上递增,故所求的递增区间为[2,+∞).15.已知f(x)=3x-b (2≤x ≤4,b 为常数)的图象经过点(2,1),则F(x)=f 2(x)-2f(x)的值域为(B) A.[-1,+∞)B.[-1,63) C.[0,+∞)D.(0,63]解析:由f(2)=1,得32-b =1,b=2,f(x)=3x-2. ∴F(x)=[f(x)-1]2-1=(3x-2-1)2-1. 令t=3x-2,2≤x≤4.∴g(t)=(t -1)2-1,t∈[1,9]. ∴所求值域为[-1,63].2.1指数函数练习1.下列各式中成立的一项()A .7177)(m n mn= B .31243)3(-=-C .43433)(y x y x +=+D .3339=2.化简)31()3)((656131212132b a b a b a ÷-的结果()A .a 6B .a -C .a 9-D .29a3.设指数函数)1,0()(≠>=a a a x f x ,则下列等式中不正确的是() A .f (x +y )=f(x )·f (y ) B .)()(y f x f y x f =-)( C .)()]([)(Q n x f nx f n∈=D .)()]([·)]([)(+∈=N n y f x f xy f n n n4.函数21)2()5(--+-=x x y()A .}2,5|{≠≠x x xB .}2|{>x xC .}5|{>x xD .}552|{><<x x x 或5.若指数函数x a y =在[-1,1]上的最大值与最小值的差是1,则底数a 等于 ()A .251+B .251+- C .251± D .215± 6.当a ≠0时,函数y ax b =+和y b ax =的图象只可能是 ()7.函数||2)(x x f -=的值域是()A .]1,0(B .)1,0(C .),0(+∞D .R8.函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,满足1)(>x f 的x 的取值范围 ()A .)1,1(-B .),1(+∞-C .}20|{-<>x x x 或D .}11|{-<>x x x 或9.函数22)21(++-=x x y 得单调递增区间是 ()A .]21,1[-B .]1,(--∞C .),2[+∞D .]2,21[10.已知2)(xx e e x f --=,则下列正确的是 ()A .奇函数,在R 上为增函数B .偶函数,在R 上为增函数C .奇函数,在R 上为减函数D .偶函数,在R 上为减函数 11.已知函数f (x )的定义域是(1,2),则函数)2(x f 的定义域是. 12.当a >0且a ≠1时,函数f (x )=a x -2-3必过定点. 三、解答题:13.求函数y x x =--1511的定义域.14.若a >0,b >0,且a +b =c ,求证:(1)当r >1时,a r +b r <c r ;(2)当r <1时,a r +b r >c r .15.已知函数11)(+-=x x a a x f (a >1).(1)判断函数f (x )的奇偶性;(2)证明f (x )在(-∞,+∞)上是增函数.16.函数f(x)=a x(a>0,且a ≠1)在区间[1,2]上的最大值比最小值大,求a 的值.参考答案一、DCDDDAADDA二、11.(0,1);12.(2,-2); 三、13.解:要使函数有意义必须:∴定义域为:{}x x R x x ∈≠≠且01,14.解:rrrrr c b c a c b a ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+,其中10,10<<<<cbc a . 当r >1时,1=+<⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr,所以a r +b r <c r; 当r <1时,1=+>⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛c b c a c b c a rr ,所以a r +b r >c r . 15.解:(1)是奇函数.(2)设x 1<x 2,则1111)()(221121+--+-=-x x x x a a a a x f x f 。

高一数学,指数函数、对数函数、幂函数练习含答案

高一数学,指数函数、对数函数、幂函数练习含答案

分数指数幂 1、用根式的形式表示下列各式)0(>a (1)51a = (2)32a- =2、用分数指数幂的形式表示下列各式: (1)34y x = (2))0(2>=m mm3、求下列各式的值 (1)2325= (2)32254-⎛⎫⎪⎝⎭=4、解下列方程 (1)1318x - = (2)151243=-x分数指数幂(第9份)答案12、33222,x y m3、(1)125 (2)81254、(1)512 (2)16指数函数(第10份)1、下列函数是指数函数的是(填序号)(1)x y 4=(2)4x y =(3)xy )4(-=(4)24x y =。

2、函数)1,0(12≠>=-a a a y x 的图象必过定点。

3、若指数函数xa y )12(+=在R 上是增函数,XX 数a 的取值X 围。

4、如果指数函数xa x f )1()(-=是R 上的单调减函数,那么a 取值X 围是() A 、2<a B 、2>a C 、21<<a D 、10<<a5、下列关系中,正确的是()A 、5131)21()21(> B 、2.01.022> C 、2.01.022--> D 、115311()()22- - >6、比较下列各组数大小:(1)0.53.1 2.33.1(2)0.323-⎛⎫ ⎪⎝⎭0.2423-⎛⎫ ⎪⎝⎭(3) 2.52.3-0.10.2-7、函数xx f 10)(=在区间[1-,2]上的最大值为,最小值为。

函数xx f 1.0)(=在区间[1-,2]上的最大值为,最小值为。

8、求满足下列条件的实数x 的X 围: (1)82>x (2)2.05<x9、已知下列不等式,试比较n m ,的大小:(1)nm22<(2)n m 2.02.0<(3))10(<<<a a an m10、若指数函数)1,0(≠>=a a a y x的图象经过点)2,1(-,求该函数的表达式并指出它的定义域、值域和单调区间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

根式和分数指数幂
例1 求使等式(a -3)(a 2
-9)=(3-a )a +3成立的实数a 的取值范围. 解
(a -3)(a 2-9)=(a -3)2(a +3)
=|a -3|a +3, 要使|a -3|
a +3=(3-a )
a +3成立, 需⎩⎪⎨⎪⎧
a -3≤0,a +3≥0,
解得a ∈[-3,3]. 跟踪训练1 若a 2-2a +1=a -1,求
a 的取值范围.
解 ∵
a 2-2a +1=|a -1|=a -1,
∴a -1≥0,∴a ≥1. 例2 化简:
(1)4
(3-π)4; (2)(a -b )2(a >b );
(3)(a -1)2+(1-a )2+3
(1-a )3.
解 (1)
4
(3-π)4=|3-π|=π-3. (2)(a -b )2=|a -b |=a -b .
(3)由题意知a -1≥0,即a ≥1.
原式=a -1+|1-a |+1-a =a -1+a -1+1-a =a -1. 跟踪训练2 求下列各式的值:
(1)7
(-2)7; (2)4
(3a -3)4(a ≤1); (3)3
a 3+4
(1-a )4. 解 (1)
7
(-2)7=-2. (2)
4
(3a -3)4=|3a -3|=3|a -1|=3-3a .
(3)
3
a 3+
4
(1-a )4=a +|1-a |=
⎩⎪⎨
⎪⎧
1,a ≤1,
2a -1,a >1.
例3 设-3<x <3,求x 2-2x +1-x 2+6x +9的值.
解 原式=
(x -1)2-
(x +3)2=|x -1|-|x +3|,
∵-3<x <3,
∴当-3<x <1时,原式=-(x -1)-(x +3)=-2x -2; 当1≤x <3时,原式=(x -1)-(x +3)=-4.
∴原式=⎩⎪⎨⎪⎧
-2x -2,-3<x <1,
-4,1≤x <3.
1.已知x 5=6,则x 等于( )
A. 6
B.5
6 C .-5
6 D .±5
6 答案 B
2.m 是实数,则下列式子中可能没有意义的是( ) A.4
m 2 B.3
m C.6
m D.5
-m 答案 C
3.(42)4运算的结果是( )
A .2
B .-2
C .±2
D .不确定 答案 A
4.3
-8的值是________. 答案 -2
5.(a -b )2+5
(a -b )5的值是________. 答案 0或2(a -b )
解析
(a -b )2
+5
(a -b )5
=|a -b |+(a -b )=⎩⎪⎨⎪⎧
0,a ≤b ,
2(a -b ),a >b .
例1 用根式的形式表示下列各式(x >0).
25
(1);x 53
(2).x -
解 (1) 2
5
x =5
x 2. (2)53
x
-

13
x 5
.
跟踪训练1 用根式表示213
2
x y -
(x >0,y >0).

221
3
3
2
12
1x
y y x
-
=
⋅=
例2 把下列根式化成分数指数幂的形式,其中a >0,b >0.
(1)
5
a 6; (2)1
3
a 2
; (3)
4
b 3
a 2
; (4)(-a )6.

6
5.
a
=
2
3
2
3
1
.
a
a
-
==
(3)4b3
a2
1
3213
34
4424
2
.
b
b a a a
a
--
⎛⎫
===

⎝⎭
6
3
2.
a a
===
跟踪训练2把下列根式化成分数指数幂:
(1) 682;(2) a a(a>0);(3)b3·3b2;(4)
1
3
x(5x2)2
.

1
77
6
212
(2)2;
===
313
224
();
a a ====
(3)
211
3333;
b b b b
=⋅=
3
5
913
535
11
.
()
x
x x
-======
例3计算下列各式(式中字母都是正数):
(1)
1
0.5
2
3
3
177
(0.027)2;
1259
-
⎛⎫⎛⎫
+-
⎪ ⎪
⎝⎭⎝⎭

1
0.5
2
3
3
177
(0.027)2
1259
-
⎛⎫⎛⎫
+-
⎪ ⎪
⎝⎭⎝⎭
=(30.027)2+3125
27
-25
9
=0.09+5
3
-5
3

0.09.
(2)
2115
11
3366
22
(2)(6)(3);
a b a b a b
-÷-
解原式=
211115
326236
[2(6)(3)]44.
a b ab a
+-+-
⨯÷
--==
(3)
1
11
22
2
.
m m
m m
-
-
++
+

11
11
12
22
22
1111
2222
2()
.
m m m m
m m
m m m m
-
-
-
--
+++
==+
++
跟踪训练3(1)
化简:
1
3
0.256
17
8;
86
-
⎛⎫⎛⎫
⨯-+
⎪ ⎪
⎝⎭⎝⎭
解 原式=1
111131(1)()
36623
3
344244
8
1(2)2(2)(3)22
23112.-⨯-+⨯+⨯+⨯=+++=
(2)化简:213
2
111136
2
5;1546x y
x y x y ---⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭
解 2121111
3
2
(1)()33226
111136
2
565(4)51546x y x y
x y x y -⎛⎫
----
--- ⎪⎝⎭
--⎛⎫
=⨯-⨯-⨯⨯ ⎪⎛⎫⎛⎫⎝⎭-- ⎪ ⎪⎝⎭⎝⎭
110
6
6
2424.x y y ==
(3)已知112
2
5,x x -+=求x 2+1
x 的值.
解 由1
12
2
5,x x
-+=两边同时平方得x +2+x -1=25,整理,得x +x -1=23,
则有x 2+1x
=23.
例4 已知a >0,b >0,且a b =b a ,b =9a ,求a 的值.
解 方法一 ∵a >0,b >0,又a b =b a ,
1
119
()()(9),a b a b
b
b
a b a b a a ∴=⇒=⇒=
818299
93a a a ∴=⇒=⇒=
方法二 ∵a b =b a ,b =9a ,∴a 9a =(9a )a ,
即(a 9)a =(9a )a ,∴a 9=9a ,a 8=9,a =4
3.
跟踪训练4 已知67x =27,603y =81,求3x -4
y 的值.
解 由67x
=33,3673,x =得由603y
=81,46033,y
=得
433
y x
-∴=60367=9=32,∴4y -3x =2,故3x -4
y
=-2. 1.化简23
8的值为( )
A .2
B .4
C .6
D .8 答案 B 2.12
25
-等于( )
A .25 B.125 C .5 D.1
5
答案 D
3.下列根式与分数指数幂的互化正确的是( ) A .-x =12
()(0)x x ->
B.6
y 2=13
(0)y y <
C .3
4
0)x
x -=>
D .13
0)x
x -
=≠
答案 C
4.(
3
6
a 9)4=________.
答案 a 2
5.计算1
22-⨯________.
答案 16。

相关文档
最新文档