根式与分数指数幂的互化
根式与分数指数幂

练习
1)整数指数幂是如何定义的?有何规定? a n = a×a×a× ……×a n 个a a0=1
1 a
n
( n ∈ N *)
(a≠0)
a
n
(a 0, n N
3
(2)
3
( m n)
2
3
2
(a b) 4
(3)
( m n) ( m n)
4
( m n) 3
(4)
p q ( p 0)
6 5
5
( m n)
2
p q2
3
学生板演
3、求下列各式的值: (1) (3) (
2
27 3
25 4
3 2
(2)
4
2
81
93
)
(4) 2 3 3 1.5 6 12
a b
n n
3)根式又是如何定义的?有那些规定? 如果一个数的平方等于 a ,则这个数叫做 a 的平方根;
如果一个数的立方等于 a ,则这个数叫做 a 的立方根;
如果一个数的 n 次方等于 a ,则这个数叫做 a 的 n 次方根;
根指数
n
Байду номын сангаас
a
根式
被开方数
a>0
4) n a n 的运算结果如何?
当 n 为奇数时,n a n = a ;
*
)
2)整数指数幂有那些运算性质?
(1)a m ×a n = a m + n (2)( a m ) n = a m × n
指数与指数幂的运算

34)=(
2
)-3
=
27
81
3
38
例3:用分数指数幂表示下列各式(式中a>0)
(1)a2 a (2)a3 3 a2 (3) a a
解( : 1)a2
a
a2
1
a2
2 1
a2
5
a2
(2)a3 3
a2
2
a3 a3
3 2
a 3
11
a3
(3)a a
1
aa2
(a112)12
a
3 4
例题讲解
一、根式与分数指数幂的互化
成立的x的范围.
解: (x 2)(x2 4) ( x 2)2 x 2
x 2 x 2.
x 2 x 2 ( x 2) x 2.
则有
x
2
0,
或
x 2 0, | x 2 | x
2.
x
2, 或
x x
2, 2≥
即
0.
x
2,
或x
≥
2.
所以x的取值范围是
x 2, 或x ≥ 2.
回顾初中知识,根式是如何定义的?有那些规定?
①如果一个数的平方等于a,则这个数叫做 a的平方根.
22=4 (-2)2=4
2,-2叫4的平方根.
②如果一个数的立方等于a,则这个数叫做a 的立方根.
23=8 (-2)3=-8
2叫8的立方根. -2叫-8的立方根.
24=16
(-2)4=16
2,-2叫16的4次方根;
24=16 (-2)4=16
(-2)5=-32 27=128
16的4次方根是±2.
-32的5次方根是-2. 2是128的7次方根.
指数运算知识解读-高一数学(人教A版2019必修一)

专题4.1 指数运算(知识解读)【学习目标】1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。
【知识点梳理】知识点1:整数指数幂1、正整数指数幂的定义:n n a aaa aaa =个,其中,n N *∈2、正整数指数幂的运算法则: ①m n m n a a a +⋅=(,m n N *∈)②m n m n a a a -÷=(0a ≠,m n >,,m n N *∈)③()m n mna a=(,m n N *∈)④()mm mab a b =(m N *∈)⑤()mm m a a b b=(0b ≠m N *∈)知识点2:根式1、n 次根式定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中1n >,且n N *∈.特别的:①当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数.这时,a 的n 次②当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数.这时,正数a 的正的n 次方表示,叫做a 的n 次算术根;负的n 次方根用符号表示.正的n 次方根与负的n 次方根可以合并写成0a >). ③负数没有偶次方根;④0的任何次方根都是00= 2、根式:n 叫做根指数,a 叫做被开方数.中,注意:①1n >,n N *∈②当n 为奇数时,n a 对任意a R ∈都有意义 ③当n 为偶数时,n a 只有当0a ≥时才有意义. 3、()n n a 与n n a 的区别:①当n 为奇数时,()n n a a =(a R ∈) ②当n 为偶数时,()n n a a =(0a ≥) ③当n 为奇数时,且1n >,n n a a = ④n 为偶数时,且1n >,,0||,0nna a a a a a ≥⎧==⎨-<⎩知识点3:分式指数幂1、正数的正分数指数幂的意义是mnm n a a=(0a >,,m n N *∈,1n >)于是,在条件0a >,,m n N *∈,1n >下,根式都可以写成分数指数幂的形式.2、正数的负分数指数幂的意义与负整数指数幂的意义相仿,我们规定,11mnm nmna a a-==(0a >,,m n N *∈,1n >).3、0的正分数指数幂等于0,0的负分数指数幂没有意义.知识点4:有理数指数幂①r s r s a a a +=(0a >,,r s Q ∈) ②()r srsa a =(0a >,,r s Q ∈)③()r r rab a b =(0a >,0b >r Q ∈)知识点5:无理数指数幂①r s r s a a a +=(0a >,,r s R ∈) ②()r srsa a =(0a >,,r s R ∈) ③()rr rab a b =(0a >,0b >r R ∈)【典例分析】【考点1根式的概念及意义求参】【典例1】(2022·全国·高一课时练习)已知481x =,那么x 等于( ) A .3B .3-C .3-或3D .不存在【变式1】(2022·江苏·泰州中学高一阶段练习)已知75x =,则x 的值为( )A B C .D .【典例2】(1)(2021·a 的取值范围是( )A .1[,)2+∞B .1(,]2-∞C .11[,]22-D .R(2)(2021·全国高一专题练习)若34(12)x --有意义,则实数x 的取值范围为( ) A .1(,]2-∞B .1(,)2-∞C .11(,)22-D .11[,]22-【变式2-1】(多选)(2021·全国高一课时练习)若n N ∈,a R ∈,则下列四个式子中有意义的是( )A BC D【变式2-2】(2021·全国高一专题练习)已知a ∈R ,n ∈N *,给出四个式子:②________.(只填式子的序号即可)【考点2 根式的形式化简】【典例2】(2021·2,结果是( ) A .6x ―6B .―6x +6C .―4D .4【变式2-1】(2021·的结果是________.【变式2-2】(2022·青海西宁·高一期末)若a ,b =,则a b +等于( ) A .10-B .10C .2-D .2【变式2-3】(2021·上海高一专题练习)求下列各式的值.(1(2(3(4【考点3 根式与分数指数幂的互化】【典例3】(2021·上海高一专题练习)将下列根式化成有理数指数幂的形式:(1a >0);(2x >0);(3)23-⎝⎭(b >0).【变式3-1】(2022·江苏·扬中市第二高级中学高一开学考试)化简2531433(2)(3)(4)a b a b a b -----⋅-÷(,0)a b >得A .232b -B .232bC .7332b -D .7332b【变式3-2】(2022·湖南·高一课时练习(理))化简(式中字母都是正数):(1)211511336622263a b a b a b ⎛⎫⎛⎫⎛⎫-÷- ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭;【考点4 分数指数幂的运算性质化简求值】【典例4】(2021·全国高一课时练习)化简下列各式:(1(2)12133113344x y z x y z ---⎛⎫⎛⎫⋅⋅⋅⋅⋅ ⎪ ⎪⎝⎭⎝⎭;(3)214⎛⎫⎪⎝⎭+13-0(1.03)×⎛ ⎝⎭. 【变式4-1】(2021·全国)计算112313824527-⎛⎫⎛⎫⎛⎫---= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭__________;若0x >,则13131142422223234x x x x x -⎛⎫⎛⎫⎛⎫+---= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭_________. 【变式4-2】(2021·全国高一课时练习(理))(05934.-⎛⎫--=⎪⎝⎭________.【变式4-3】(2022·江苏·10.7525316(4)---÷+. .【考点5 整体代换法求分数指数幂】【典例5】(2022·江苏·3=,求下列各式的值: (1)1a a -+; (2)22a a -+; (3)11122a a a a--+-.【变式5-1】(2021·全国)若3x xa a-+=,则3322x xxxa a a a --+=+________. 【变式5-2】(2021·全国高一课时练习)已知11x x --=,其中0x >,求122121x x x x x x x---+-的值.【变式5-3】(2021·江西高安中学高一月考)计算:(141210.252-⎛⎫+⨯ ⎪⎝⎭;(2)已知:11223x x-+=,求22123x x x x --+-+-的值.专题4.1 指数运算(知识解读)【学习目标】1.理解n 次方根、根式、分数指数幂的概念;2.正确运用根式运算性质和有理指数幂的运算性质;3.培养学生认识、接受新事物和用联系观点看问题的能力。
2021-22学年上海高一下沪教新版期末重难点复习专题4:幂与指数常考题专练(解析版)

【期末宝典】专题4:幂与指数常考题专练(解析版)一、单选题1.下列各式中成立的一项( )A .7177n n m m ⎛⎫= ⎪⎝⎭B .C ()34x y =+ D =【标准答案】D 【思路点拨】利用指数幂的运算性质、根式与分数指数幂的互化可判断各选项的正误. 【精准解析】对于A 选项,()7177n n m n m m --⎛⎫=⋅= ⎪⎝⎭,A 选项错误;对于B 1431233===≠B 选项错误;对于C 选项,()34x y =+≠C 选项错误;对于D 12123333⎛⎫= ⎪⎝⎭D 选项正确. 故选:D.2.141681-⎛⎫= ⎪⎝⎭( )A .32-B .23-C .32 D .23【标准答案】C 【思路点拨】试卷第2页,共18页根据指数幂的运算性质可解得结果. 【精准解析】1141441622381332⎛⎫-⨯-- ⎪⎝⎭⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:C.30)x >的结果是( )A .xB .2xC .1 D【标准答案】A 【思路点拨】将指数转化为分数指数幂,再根据指数幂的运算法则即可求解. 【精准解析】2112132123616x x x x x x +-⋅====, 故选:A4.计算:2332(27)9--⨯=( )A .3-B .13-C .3D .13【标准答案】D 【思路点拨】利用指数运算化简求得表达式的值. 【精准解析】 原式()()()233223323113333933--⎡⎤=-⨯=-⨯=⨯=⎣⎦.故选:D5.在n ①N *,a ①R 时各式子有意义的是( ) A .①① B .①① C .①①① D .①①①【标准答案】B 【思路点拨】由21(4)n +-<0知②无意义;当a <0时,a 5<0,②无意义,即可得出选项. 【精准解析】由2(4)n ->0知②有意义;由21(4)n +-<0知②无意义;②中开奇数次方根,所以有意义;当a <0时,a 5<0,此时②无意义. 故选:B .63,x=则x =( )A .279 B .273C .239D .233【标准答案】A 【思路点拨】利用根式与分数指数幂之间的互化即可求解. 【精准解析】3x ,得343x x =,即743x =,所以427739x ==.故选:A7⋅=( )AB .5C .D .25【标准答案】C【思路点拨】利用指数幂的运算性质求解即可【精准解析】⋅2⎡⎢⎥⎣⎦==故选:C8.将85-化成分数指数幂为()A.415x B.415x-C.13x-D.25x 【标准答案】A【思路点拨】直接根据根式和指数幂的关系计算即可.【精准解析】8818()551425315x x--⨯--⎛⎫=⎪⎝⎭⎝⎭⎝⎭==,故选:A.9.碳14的半衰期为5 730年,那么碳14的年衰变率为()A.15730B.25 730C.1573012⎛⎫⎪⎝⎭D.1573014【标准答案】C【思路点拨】设碳14的年衰变率为m,原有量为1,则 5 73012m=,解方程即可得答案.试卷第4页,共18页【精准解析】设碳14的年衰变率为m ,原有量为1,则 5 73012m=,解得1573012m ⎛⎫= ⎪⎝⎭,所以碳14的年衰变率为1573012⎛⎫ ⎪⎝⎭.故选:C.10.若14a <)A B C .D .【标准答案】B 【思路点拨】由题知410a -<,进而根据指数幂化简即可. 【精准解析】因为14a <,所以410a -<= 故选:B.二、填空题11.(2021·上海·高一期末)对于正数a 可以用有理数指数幂的形式表示为__________. 【标准答案】78a 【思路点拨】将根式转化为有理数指数幂,应用指数幂的运算性质,即可得有理指数幂的形式.【精准解析】71118222[()]a a a a=⋅⋅=.故答案为:78a12.(2021·()0pa a=>,则p=___________.【标准答案】524【思路点拨】利用根式与指数幂的运算可求得p的值.【精准解析】a >,则111542324pa a a+⎛⎫==⎪⎝⎭,因此,524p=.故答案为:524.13.(2021·上海宝山·高一期末)代数式x⎛⎪⎪⎝⎭x>0)可化简为________.【标准答案】x【思路点拨】利用分数指数幂与根式的运算性质求解【精准解析】解:因为0x>,所以35352222x x x x x--+⎛⋅==⎪⎪⎝⎭,故答案为:x试卷第6页,共18页14.(2021·上海金山·高一期末)已知0x >,化简(3x ________.【标准答案】7x 【思路点拨】由幂的运算法则即可求解. 【精准解析】 解:因为0x >,所以由幂的运算法则得((33927=x xx x -==,故答案为:7x .15=a 的取值范围为________.【标准答案】12a ≤【思路点拨】根据根式的性质进行化简,判断即可. 【精准解析】2112a a =-=-,因为2112a a -=-,故210a -≤,所以12a ≤. 故答案为:12a ≤. 16.下列关系式中,根式与有理数指数幂的互化正确的是________(只填序号).①()()120;x x =->()130;y y =<试卷第8页,共18页①)340;x x ->①)13=0.x x -> 【标准答案】② 【思路点拨】利用根式与分数指数幂的互化即可求解. 【精准解析】对于②,()120x x ->,故②错误; 对于②,当y <0130,0y <,故②错误;对于②,)340x x -=>,故②正确;对于②,13x -,故②错误. 故答案为:②.17.化简:2132111136251528x y x y x y --=⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭__________. 【标准答案】2316x 【思路点拨】按照指数的运算性质计算即可. 【精准解析】原式2121111133322668525x y -+-+--+=⨯⨯02316x y =2316x =. 故答案为:2316x .180=,则()2019yx =__________.【标准答案】-1 【思路点拨】根据题目条件推出1x =-,3y =-,再计算()2019yx 的值.【精准解析】0,130x y +++=,因为10x +≥,30+≥y ,所以由130x y +++=,得10x +=,30y +=, 解得1x =-,3y =-. 所以()2019201911x =-=-,()()3201911yx -=-=-.故答案为:1-.19.(2021·上海闵行·高一期末)已知0a >,0b >,化简:22315166242()()3a b a b a b =-________ 【标准答案】166b - 【思路点拨】直接利用指数幂的运算性质化简求值即可. 【精准解析】0a >,0b >,则22115112321036266615166243466223a b a b a b b a b a b ----⎛⎫=⨯-⋅⋅=-=- ⎪⎛⎫⎛⎫⎝⎭- ⎪⎪⎝⎭⎝⎭.试卷第10页,共18页故答案为:166b -.20.(2020·上海南汇中学高一期末)已知函数()2x g x =,若0a >,0b >,且()()2g a g b =,则ab 的取值范围是________. 【标准答案】10,4⎛⎤⎥⎝⎦【思路点拨】根据()()2g a g b =可得1a b +=,再将ab 化为关于a 的二次函数,利用二次函数知识可求得结果. 【精准解析】依题意可得222a b ⋅=,即22a b +=,所以1a b +=, 所以10b a =->,所以01a <<,所以2211(1)()24ab a a a a a =-=-+=--+1(0,]4∈.故答案为:10,4⎛⎤⎥⎝⎦三、解答题 21.化简下列各式: (15;(26;(3【标准答案】(1)-4;(2)4;(3)当x ≥-2时,原式=x +2,当x <-2时,原式=-x -2. 【思路点拨】(1)利用有理数指数幂的运算性质以及有理数指数幂与根式的互化对各个关系式化简即可求解;(2利用有理数指数幂的运算性质以及有理数指数幂与根式的互化对各个关系式化简即可求解;(3)利用有理数指数幂的运算性质以及有理数指数幂与根式的互化分情况化简即可求解. 【精准解析】(1)原式=(-2)+(-2)=-4. (2)原式=|-2|+2=2+2=4.(3)原式=|x +2|=2,2,2, 2.x x x x +≥-⎧⎨--<-⎩22.用有理数指数幂的形式表示下列各式(a >0,b >0).(1)a(2(3)2(42;(5;(6【标准答案】(1)52a ;(2)136a ;(3)7362a b ;(4)76a ;(5)23a -;(6)11463a b -. 【思路点拨】将根式转化为分数指数幂结合指数的运算性质逐一计算即可. 【精准解析】(1)原式=11522222a a a a +⋅==. (2)原式=22313333262a a a a +⋅==.试卷第12页,共18页(3)原式=2217133333262222a a b a b a b +⋅==. (4)原式=557-2-2666a a a a ⋅==. (5)原式=23a -.(6)原式11463a b -.23.(2020·上海市洋泾中学高一期中)已知实数x 满足210x mx -+=,求: (1)22x x -+(用m 表示); (2)1x x --(用m 表示).【标准答案】(1)22m-;(2)【思路点拨】(1)由210x mx -+=得211x m x x x+==+,再两边平方可得结果;(2)根据1x x--=.【精准解析】(1)由210x mx -+=知0x ≠,所以211x m x x x +==+,所以221m x x ⎛⎫=+ ⎪⎝⎭2212x x =++,所以2222x x m -+=-.(2)由(1)2222x x m -+=-, 所以1x x--===【名师指导】关键点点睛:第(2)问根据1xx --=.24.(2020·上海·高一单元测试)(1)计算:013134210.064160.258-⎛⎫--++ ⎪⎝⎭;(2)已知13x x -+=,求44x x --的值. 【标准答案】(1)10;(2) ± 【思路点拨】(1)利用指数运算性质即可得出.(2)由13x x -+=平方得227x x -+=,进而得4447x x -=+,再利用()22244245xx x x ---=-+=即可得出.【精准解析】 (1)原式511181022==-++= (2)由13x x -+= 得227x x -+= ②4447x x -=+②()22244245x x x x ---=-+=即22x x --=±【名师指导】本题考查了指数运算性质、乘法公式及其变形,考查了推理能力与计算能力,属于基础题.25.(2020·上海·高一单元测试)(①)计算:()162164200849-⎛⎫-⨯-- ⎪⎝⎭(①111133420,0)a b a b a b ->>⎛⎫⎪⎝⎭试卷第14页,共18页【标准答案】(②)100;(②)ab【思路点拨】(I )利用根式和指数运算公式化简所求表达式. (II )利用根式和指数运算公式化简所求表达式. 【精准解析】(②)原式1222372341427711004⎡⎤⎛⎫=⨯-⨯-=⨯--=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. (②)原式11123223323111111212633311233a b a b a a b ab b ab a b +-++----⎛⎫⎛⎫⋅ ⎪ ⎪⎝⎭⎝⎭====. 【名师指导】本小题主要考查根式和指数运算,考查化归与转化的数学思想方法,考查运算求解能力,属于基础题. 26.化简下列各式(1)()1620.251648202049-⎛⎫-⋅- ⎪⎝⎭(2)11420,0a b a b >>⎛⎫ ⎪⎝⎭【标准答案】(1)98;(2)ab.【思路点拨】(1)首先将根式化为分数指数幂的形式,再利用分数指数幂的运算法则化简求值;(2)将根式化简为分数指数幂,再按照分数指数幂的运算公式化简. 【精准解析】(1)原式1111324472342814⎛⎫=⨯-⨯-⨯- ⎪⎝⎭()144277281 =⨯--⨯-10872198=---=;(2)原式()1110812232233354331127272333333a ba b aba b ab ab b a a b a b-⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦====⋅⋅【名师指导】关键点点睛:本题的关键是第二问,理解根式如何化简为分数指数幂的形式.27(3a=-成立的实数a的取值范围.【标准答案】[-3,3]【思路点拨】a==-成立,即可得出3030aa-≤⎧⎨+≥⎩,解得即可.【精准解析】a==-要使(3a a--成立,需3030aa-≤⎧⎨+≥⎩,解得a②[-3,3].【名师指导】本题考查了根式的运算性质,考查了推理能力与计算能力,属于中档题.28.计算下列各式:试卷第16页,共18页(1)()1020.52312220.0154--⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭;(2)20.53207103720.12392748π--⎛⎫⎛⎫++-+⎪ ⎪⎝⎭⎝⎭; (322.551030.064π-⎡⎤⎛⎫⎢⎥- ⎪⎢⎥⎝⎭⎣⎦;(4))0x ⎛> ⎪ ⎪⎝⎭;(5)()21113322156630,0.13a b a b a b a b ⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭>> 【标准答案】(1)1615;(2)100;(3)3;(4)2x ;(5)9a -. 【思路点拨】利用根式与分数指数幂的互化,根式的性质,指数幂的运算性质计算求值. 【精准解析】(1)原式()1122221412116110129431015-⎛⎫=+⨯-=+⨯-= ⎪⎝⎭. (2)原式()12232125273710396448--⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭5937100331648=++-+100=. (3)原式()1315270.4128-⎛⎫=-- ⎪⎝⎭5350.51222=-++-3=.(4)原式31222x x x =⋅=. (5)原式21111532623699a b a +-+-=-=-.29.将下列根式化成有理数指数幂的形式:(1a >0);(2(x >0);(3)23-⎝⎭(b >0).【标准答案】(1)34a ;(2)35x -;(3)19b . 【思路点拨】(1)原式=1322a ⎛⎫⎪⎝⎭=34a .(2)原式19351x ⎛⎫ ⎪⎝⎭=35x -. (3)原式=213243b --⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦=19b . 【精准解析】(1)原式1322a ⎛⎫ ⎪⎝⎭=34a . (2)原式=19351x ⎛⎫ ⎪⎝⎭=351x =35x -. (3)原式=213243b --⎡⎤⎛⎫⎢⎥ ⎪⎢⎥⎝⎭⎢⎥⎣⎦=212343b ⎛⎫-⨯⨯- ⎪⎝⎭=19b . 30.已知x+x -1=4,其中0<x <1,求221x x --的值. 【标准答案】-试卷第18页,共18页【思路点拨】由题求出x -x -1=-12x +12x -. 【精准解析】因为x+x -1=4,所以12()x x -+=x 2+x -2+2=16,即x 2+x -2=14,则12()x x --=x 2+x -2-2=12.因为0<x <1,所以x<x -1,所以x -x -1=-21122x x -⎛⎫+= ⎪⎝⎭x+x -1+2=6, 故12x +12x -,所以()()112211224=1x x x xx x x x ----⨯-+--==-+。
高中数学人教A版必修1《指数与指数幂的运算——根式与分数指数幂的互化》PPT

我们可以先来考虑这样的问题:
(1)当生物死亡了5 730, 5 730×2, 5 730×3,…年后, 它体内碳14的含量P分别为原来的多少?
1 , (1)2, (1)3, .
22
2
(2)由以上的实例来推断关系式是
P
(1)5
t 730
.
2
考古学家根据上式可以知道, 生物死亡t年后,体
内碳14的含量P的值.
m
a n
1
m
(a 0, m, n N*,且n 1)
an
0的正分数指数幂等于0,0的负分数指数幂没有意义.
课本59页 习题2.1 A 组 第1题
下列根式能写成分数指数幂的形式吗?
2
3 a2 a 3 (a>0)
1
b b2Байду номын сангаас
5
4 c5 c 4
(b>0) (c>0)
根式的被开方数 的指数不能被根 指数整除
探究点1 正数的分数指数幂是不是都可以用根式来表示呢?
我们规定正数的正分数指数幂的意义是:
m
a n n am (a 0, m, n N*,且n 1)
. (1) 5 25 2 , 3 (2)3 2
结论:an开奇次方根,则有 n an a.
. (2) 32 3 , (3)2 3
(3)2 3
. (3) 4 24 2 , 4 (2)4 2
4 (2)4 2
结论:an开偶次方根,则有 n an | a | .
归纳总结: 根式的运算性质 ⑴当n为任意正整数时,( )n=a. ⑵当n为奇数时, =a;
是一个负数;0的奇次方根是0. 2.正数的偶次方根有两个,且互为相反数;负数
4.1.1n次方根与分数指数幂课件(人教版)

④ 0的任何次方根都是0.记作:n 0 0.
学习目标
新课讲授
课堂总结
思考:为什么负数没有偶次方根?
因为在实数的定义里,两个数的偶次方根结果是非负数,即任意 实数的偶次方是非负数.
学习目标
新课讲授
课堂总结
式子 n a 叫做根式,这里n叫做根指数 ,a叫做被开方数.
根指数
被开方数
学习目标
新课讲授
课堂总结
①当n是奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数.
这时,a的n次方根用符号 n a 表示.例如 5 32 2, 5 32 2, 3 a6 a2.
②当n是偶数时,正数的n次方根有两个,这两个数互为相反数.正数a的正
的n次方根用符号 n a 表示,负的n次方根用符号n a表示.两者也可以合 并写成 n a (a 0) .例如 4 16 2, 4 16 2, 4 16 2.
(2)在对根式进行化简时,若被开方数中含有字母参数,则要注意字母参数的 取值范围,即确定 n an 中a的正负,再结合n的奇偶性给出正确结果.
学习目标
新课讲授
课堂总结
知识点2:分数指数幂
视察以下式子,试总结出规律(a>0):
10
210 (25 )2 25 2 2 ;
12
3 312 3 (34 )3 34 3 3 ;
学习目标
新课讲授
课堂总结
练一练
11
化简 (1 a)[(a 1)2(a)2 ]2.
1
解:由 (a)2 有意义,可知-a≥0,故a≤0,
11
所以 (1 a)[(a 1)2(a)2 ]2
1
11
(1 a)[(a 1)2]2[(a)2 ]2
中职数学第一册第4单指数、对数函数教案

二、合作讨论,构建新知
(一)、探究:
已知x n=a,填写下表并回答问题:
a 4 8 16 32 64 128 256 512 1024 n 2 3 4 5 6 7 8 9 10
二、合作讨论,构建新知
1、如果某种生物分裂次数为
分裂次数
细胞个数
二、合作讨论,构建新知
1、探究:
某种细胞在分裂过程中,分裂次数与分裂后得到的细胞个数之间的函数关系式为y=2x,那么该细胞在经过多少次分裂后得到的细胞
()0,+∞.
因为24x ->.
一、常用对数Nlg及自然对数Nln 例:求下列各对数值(精确到0.0001)(1)4.1lg (2)5
2
lg (3)7.0ln (4ln 二、一般底的对数Nalog
例:求下列各对数值(精确到0.0001)
(1)8.5log115 (2)7log2
(3)699log(4)3.10log9
4
三、问题解决
在解决实际问题中,有时用到式子)为正整数,,,1(acbacabx,那么如何求未知
数x呢?
例:已知83.0)501(400x,求x(精确到0.01)。
27
.25
.0lg)483.0lg()483.0lg(5.0lg,
483.05.083
.0)501(400
xxxxx用计算器求得:两边取对数,解:
四、课堂小结
谈谈你在本节课的收获
y x为这种候鸟在飞行过程中耗氧量的单位数。
(1)该种候鸟的耗氧量是。
n次方根与分数指数幂

4.1 指 数4.1.1 n 次方根与分数指数幂学习目标 1.理解n 次方根、n 次根式的概念.2.能正确运用根式运算性质化简、求值.3.学会根式与分数指数幂之间的相互转化.知识点一 n 次方根、n 次根式 1.a 的n 次方根的定义一般地,如果x n =a ,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *. 2.a 的n 次方根的表示n 的奇偶性 a 的n 次方根的表示符号a 的取值范围n 为奇数 naa ∈R n 为偶数±na[0,+∞)3.根式式子na 叫做根式,这里n 叫做根指数,a 叫做被开方数. 知识点二 根式的性质 1.n0=0(n ∈N *,且n >1).2.(n a )n =a (a ≥0,n ∈N *,且n >1). 3.na n =a (n 为大于1的奇数).4.na n =|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0(n 为大于1的偶数).知识点三 分数指数幂的意义分数指数幂正分数指数幂规定:m na =na m (a >0,m ,n ∈N *,且n >1) 负分数指数幂 规定:1m nm naa-==1na m(a >0,m ,n ∈N *,且n >1)0的分数指数幂0的正分数指数幂等于0,0的负分数指数幂无意义知识点四 有理数指数幂的运算性质整数指数幂的运算性质,可以推广到有理数指数幂,即: (1)a r a s =a r +s (a >0,r ,s ∈Q ); (2)(a r )s =a rs (a >0,r ,s ∈Q ); (3)(ab )r =a r b r (a >0,b >0,r ∈Q ).1.当n ∈N *时,(n-3)n 都有意义.( × )2.()()634222.-=-( × )3.a 2·12a =a .( × ) 4.分数指数幂m na 可以理解为mn个a 相乘.( × )一、n 次方根的概念例1 (1)若81的平方根为a ,-8的立方根为b ,则a +b =________. 答案 7或-11解析 81的平方根为-9或9, 即a =-9或9,-8的立方根为-2,即b =-2, ∴a +b =-11或7.(2)若4x -2有意义,求实数x 的取值范围.解 ∵4x -2有意义,∴x -2≥0, ∴x ≥2,即x 的取值范围是[2,+∞).反思感悟 (1)方根个数:正数的偶次方根有两个且互为相反数,任意实数的奇次方根只有一个.(2)符号:根式na 的符号由根指数n 的奇偶性及被开方数a 的符号共同确定.①当n 为偶数,且a ≥0时,na 为非负实数;②当n 为奇数时,na 的符号与a 的符号一致. 跟踪训练1 (1)已知x 7=8,则x 等于( ) A .2 2 B.78 C .-78 D .±78 答案 B解析 因为7为奇数,8的7次方根只有一个78.(2)若42x +5有意义,则x 的取值范围是________;若52x +5有意义,则x 的取值范围是________. 答案 ⎣⎡⎭⎫-52,+∞ R 二、利用根式的性质化简或求值 例2 化简: (1)4(3-π)4; (2)(a -b )2(a >b );(3)(a -1)2+(1-a )2+3(1-a )3. 考点 根式的化简题点 根据根式的意义进行化简解 (1)4(3-π)4=|3-π|=π-3.(2)∵a >b ,∴(a -b )2=|a -b |=a -b .(3)由题意知a -1≥0,即a ≥1.原式=a -1+|1-a |+1-a =a -1+a -1+1-a =a -1.反思感悟 (1)n 为奇数时⎝⎛⎭⎫n a n =na n=a ,a 为任意实数.(2)n 为偶数时,a ≥0,⎝⎛⎭⎫na n 才有意义,且⎝⎛⎭⎫na n =a ;而a 为任意实数时n a n均有意义,且na n =|a |.跟踪训练2 化简: (1)7(-2)7; (2)4(3a -3)4(a ≤1); (3)3a 3+4(1-a )4.考点 根式的化简题点 根据根式的意义进行化简解 (1)7(-2)7=-2.(2)∵a ≤1,∴4(3a -3)4=|3a -3|=3|a -1|=3-3a .(3)3a 3+4(1-a )4=a +|1-a |=⎩⎪⎨⎪⎧1,a ≤1,2a -1,a >1.三、根式与分数指数幂的互化例3 (1)下列根式与分数指数幂的互化正确的是( ) A .-x =()12x -(x >0) B.6y 2=13y (y <0)C .34x-=4⎝⎛⎭⎫1x 3(x >0) D .13x-=-3x (x ≠0)答案 C解析 -x =12x -(x >0);6y 2=126(||)y =13y -(y <0);31344()xx --==4⎝⎛⎭⎫1x 3(x >0); 11331xx -⎛⎫= ⎪⎝⎭=31x(x ≠0). (2)将下列根式化成分数指数幂的形式(其中a >0,b >0). ①3a ·4a ; ②a a a ;③(3a )2·ab 3.解 ①3a ·4a =1173412;a a a ⋅= ②原式=17118824;a a a a ⋅⋅=③原式=21713336222.a a b a b ⎛⎫⋅⋅= ⎪⎝⎭反思感悟 根式与分数指数幂的互化(1)根指数化为分数指数的分母,被开方数(式)的指数化为分数指数的分子.(2)在具体计算时,如果底数相同,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.跟踪训练3 把下列根式表示为分数指数幂的形式,把分数指数幂表示为根式的形式: (1)34()a b --(a >b ); (2)3(x -1)5;(3)13a 2; (4)37().a b -解 (1)34()a b --=14(a -b )3;(2)3(x -1)5=53(1);x - (3)13a 2=23;a -(4)37()a b -=7(a -b )3.1.已知(a -b )2=a -b ,则( ) A .a >b B .a ≥b C .a <b D .a ≤b答案 B 解析(a -b )2=|a -b |=a -b ,所以a -b ≥0,所以a ≥b ,故选B.2.在①4(-4)2n ;②4(-4)2n +1,③5a 4,④4a 5中,n ∈N *,a ∈R 时各式子有意义的是( )A .①②B .①③C .①②③④D .①②④答案 B3.化简3-a ·6a 的结果为( ) A .-a B .--a C.-a D.a 考点 根式与分数指数幂的互化 题点 根式化为分数指数幂 答案 A 解析 显然a ≥0.∴3-a ·6a =1111136362a a aa +-⋅=-=-=-a .4.⎝⎛⎭⎫12-1-4·(-2)-3+⎝⎛⎭⎫140-129-=________.答案196解析 原式=2-4×⎝⎛⎭⎫-18+1-13 =2+12+1-13=196.5.化简(1-a )2·41(a -1)3=________. 答案 4a -1解析 要使原式有意义,则a -1>0.(1-a )2·4⎝ ⎛⎭⎪⎫1a -13=|1-a |·34(1)a -- =(a -1)·34(1)a --=14(1)a -=4a -1.1.知识清单:(1)n 次方根的概念、表示及性质. (2)根式的性质.(3)根式与分数指数幂的互化. 2.常见误区:(1)根式中根指数要求n >1且n ∈N *.(2)对于na ,当n 为偶数时,a ≥0.1.已知m 10=2,则m 等于( ) A.102 B .-102 C.210 D .±102考点 n 次方根及根式概念 题点 n 次方根及根式概念 答案 D解析 ∵m 10=2,∴m 是2的10次方根.又∵10是偶数,∴2的10次方根有两个,且互为相反数. ∴m =±102.故选D. 2.若2<a <3,化简(2-a )2+4(3-a )4的结果是( )A .5-2aB .2a -5C .1D .-1 考点 根式的化简 题点 条件根式的化简答案 C解析 ∵2<a <3,∴a -2>0,a -3<0, ∴(2-a )2+4(3-a )4=|2-a |+|3-a |=a -2+3-a =1.3.下列各式既符合分数指数幂的定义,值又相等的是( ) A .()131-和()261- B .0-2和120 C .122和144 D .324-和⎝⎛⎭⎫12-3答案 C解析 选项A 中,()131-和()261-均符合分数指数幂的定义,但()131-=3-1=-1,()261-=6(-1)2=1,故A 不满足题意;选项B 中,0的负指数幂没有意义,故B 不满足题意; 选项D 中,324-和⎝⎛⎭⎫12-3虽符合分数指数幂的定义,但值不相等,故D 不满足题意;选项C 中,122=2,144=422=122=2,满足题意. 故选C.4.⎝⎛⎭⎫1120-(1-0.5-2)÷23278⎛⎫ ⎪⎝⎭的值为( ) A .-13 B.13 C.43 D.73答案 D解析 原式=1-(1-22)÷⎝⎛⎭⎫322=1-(-3)×49=73.故选D. 5.设a >0,将a 2a ·3a 2表示成分数指数幂的形式,其结果是( )A .12a B .56a C .76a D .32a 答案 C解析a 2a ·3a 2=22=25132a a⨯=a 2·56a-=526a-=76a .6.若x ≠0,则|x |-x 2+x 2|x |=________. 答案 1解析 ∵x ≠0,∴原式=|x |-|x |+|x ||x |=1.7.若x 2+2x +1+y 2+6y +9=0,则(x 2 019)y =________. 答案 -1 解析 因为x 2+2x +1+y 2+6y +9=0,所以(x +1)2+(y +3)2=|x +1|+|y +3|=0,所以x =-1,y =-3.所以(x 2 019)y =[(-1)2 019]-3=(-1)-3=-1.8.614-3338+30.125的值为________. 答案 32解析 原式=⎝⎛⎭⎫522-3⎝⎛⎭⎫323+3⎝⎛⎭⎫123=52-32+12=32. 9.计算下列各式的值. (1)12121;(2)126449-⎛⎫⎪⎝⎭;(3)3410000-;(4)2312527-⎛⎫⎪⎝⎭.解 (1)11 (2)78 (3)11 000 (4)92510.计算:(1)481×923;(2)23×33×63; (3)549-321027+30.125-1; (4)3(-8)3+4(3-2)4-3(2-3)3. 考点 根式的化简题点 根据根式的意义进行化简解 (1)原式=434×321232⨯⨯=43243+=43143=763.(2)原式=2×123×133×163=2×1112363++=6.(3)原式=499-36427+3⎝⎛⎭⎫18-1 =73-43+2=3. (4)原式=-8+|3-2|-(2-3) =-8+2-3-2+ 3 =-8.11.已知二次函数f (x )=ax 2+bx +0.1的图象如图所示,则4(a -b )4的值为( )A .a +bB .-(a +b )C .a -bD .b -a答案 D解析 由题图知f (-1)=a -b +0.1<0, ∴a -b <0.∴4(a -b )4=|a -b |=-(a -b )=b -a .12.若代数式2x -1+2-x 有意义,则4x 2-4x +1+24(x -2)4=________.答案 3 解析 ∵2x -1+2-x 有意义,∴⎩⎪⎨⎪⎧2x -1≥0,2-x ≥0,即⎩⎪⎨⎪⎧x ≥12,x ≤2,∴12≤x ≤2.∴4x 2-4x +1+24(x -2)4 =(2x -1)2+24(x -2)4=|2x -1|+2|x -2|=2x -1+2(2-x )=3.13.计算:3⎝⎛⎭⎫19-293·(32+3)+(3)4-(2)4(3-2)0=________. 答案 4 解析 原式=1-23·(32+3)+9-41=(1-2)(1+2)+5=4.14.若x -1+4x +y =0,则x =________,x 2 019+y 2 020=________. 答案 1 2解析 依题意有⎩⎪⎨⎪⎧x -1=0,x +y =0,得x =1,y =-1, ∴x 2 019+y 2 020=2.15.设f (x )=x 2-4,若0<a ≤1,则f ⎝⎛⎭⎫a +1a =________. 考点 根式的化简题点 条件根式的化简答案 1a-a 解析 f ⎝⎛⎭⎫a +1a =⎝⎛⎭⎫a +1a 2-4=a 2+1a 2-2 =⎝⎛⎭⎫a -1a 2=⎪⎪⎪⎪a -1a , 因为0<a ≤1,所以a ≤1a, 故f ⎝⎛⎭⎫a +1a =1a-a . 16.已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0,求a -b a +b的值. 解 因为a ,b 是方程x 2-6x +4=0的两根,所以⎩⎪⎨⎪⎧ a +b =6,ab =4, 因为a >b ,⎝ ⎛⎭⎪⎫a -b a +b 2=a +b -2ab a +b +2ab =6-246+24=210=15, 所以a -b a +b =15=55.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根式与分数指数幂的互化(一)
一.标教学目
1.知识与技能
①初步了解指数幂和指数函数;
②通过类比平方根、立方根,认识n次方根,进而初步理解根式的概念.
2.过程与方法
会求或化简根指数为正整数的根式。
3.情感.态度与价值观
通过具体的情景,引发学生思考,激发求知欲,培养学生对数学的情感。
二.重点
利用n次方根式性质化简n次方根式。
三.难点
指数幂的含义与根式互化
四、教学过程设计
(一)教学基本流程
(二)教学情景
1.本章学习引导
问题1:给出化石图片,归纳出函数关系式。
设计意图:引导同学对本章内容有一个概括性的认识,并大致清楚学习的目标和方法.问题2:对于a n,当n是正整数时的意义我们已经知道;当n是有理数时,它的意义又是什么呢?
设计意图:引导同学建立与根式的联系.
2.概念的引入
问题3:我们知道,如果x2=a,那么x叫做a的平方根(2次方根);如果x3=a,那么x 叫做a的立方根(3次方根).请问:
(1)你由此想到,还有哪些方根?
(2)你能否根据上述定义,给你所说的这些方根进行定义?
设计意图:通过回顾平方根和立方根,让同学在已有认知基础上,与同类概念进行比较,通过类比得到对新概念的认识方法上的启发,并为领会新概念找到一个固着点,从而引出n 次方根的定义.以此促进概括,明确n次方根概念的内涵,进而准确把握此概念.师生活动:为了帮助同学进行类比,可以将平方根和立方根的定义上下对齐写在黑板上,然后让同学将类比出的定义写在它们的下面.
3.概念的形成
问题4:根据平方根和立方根的定义,我们可以举例,例如,由于(±2)2=4,所以±2就是4的平方根;由于23=8,所以2就是8的立方根.类似地,请根据你所给出的其他方根的定义,举出相应的例子.
设计意图:当n较大时,同学举例困难了,于是引入n次方根的表示.
师生活动:可引导同学类比平方根和立方根的表示,给出n次方根的表示:
(1)我们知道,4的平方根是±2,可以表示为±4=±2;8的立方根是2,可以表
=-2.那么类似地,16的4次方根怎样表示为38=2;-8的立方根是-2,可以表示为38
示?32的5次方根怎样表示?-32的5次方根怎样表示?a的n次方根又怎样表示?
(2)从上述例子中我们是否能看出什么规律?也就是:
n是奇数时,正数a的n次方根有几个?是正数,负数,还是零?怎样表示?负数a的n次方根有几个?是正数,负数,还是零?怎样表示?
n是偶数时,正数a的n次方根有几个?是正数,负数,还是零?怎样表示?
(3)负数有没有偶次方根?
(4)0的n次方根是多少?可以怎样表示?
4.概念的明确
问题5:请把前面学习的内容归纳一下,什么叫n 次方根?如何表示? 设计意图:让同学明确n 次方根的概念.
师生活动:为了让同学进一步明确n 次方根的概念,可提出下列问题: (1)当n 为奇数时,(n a )n
= ;当n 为偶数时,(n a )n
= .举例说明.
(2)当n 为奇数时,n n a = ;当n 为偶数时,n
n a = .举例说明. 5.概念的表示
前面用来表示a 的n 次方根的式子n a ,我们把它叫做根式,读作n 次根号下a (其中
a 一般读作根号a ),其中n 叫做根指数,a 叫做被开方数.当根指数为n 时,又把n a 叫
做n 次根式.
6.概念的巩固和应用 例1:求下列各式的值:
(1)33)8(-; (2)44)π3(-; (3)2
10-)(.(4))()2b a b a >-(
设计意图:通过应用概念解决问题,推进同学对概念本质的理解. 师生活动:为了进一步推动同学对概念理解的深化,提出下列变式题组 下列各式中,不正确的序号是
3
3-53-3-43-3-33-3-22
16)1(4451055554====±=)()()()()()())((
2,求下列各式的值
[]
6
25)4()32()3()3()232
-12
1
245---()(
例2:填空:
(1)在412345462)3(,,,)2(+---n n a a 这四个式子中,无意义的是( ) (2)若131692-=+-a a a ,则a 的取值范围是( )
(3)已知a,b,c 为三角形的三边,则=----+c a b c b a 2
)(( ) 7.小结
我们今天主要学习了与根式有关的哪些内容? 8.作业 9.板书设计
教学反思
1.由于本节课的教学内容不仅涉及根式的定义,还涉及其表示和性质,后续内容还涉及其运算,所以对根式概念的定位应该是理解层次.而本小节教科书之后将不再专门介绍根式,所以本节课务求初步理解根式概念,而在下节课的根式运算中逐步达到真正的理解.
2.在与平方根、立方根比较的过程中,可以进一步学习类比的思想方法,提高同学的思维水平.并在推广与化归的过程中,形成根式的知识链.。