地震勘探的分辨率

合集下载

浅谈高分辨率地震勘探的应用

浅谈高分辨率地震勘探的应用

浅谈高分辨率地震勘探的应用一、前言目前来说,地震方法是在进行水温、工程、环境、地址调查的主要的勘察方法,这种方法的工作原理主要是通过在人工方面进行地震波的运动学和动力学的激发的方法用来解决在地质上的难题。

这种方法在生产运用的过程中非常的常见,所以我们需要进行深入的研究。

我们在进行地震方法研究的时候,首先要知道这种方法的主要工作原理是利用地震波,地震波会通过人工爆破产生,当地震波在传播到地下遇到了底层的界面的时候,就会按照波所产生的反射和折射原路返回到产生地震波的地方,这些返回的地震波会被我们在不同位置上所放置的验波器所接收,从而在机器中被记录,这些所记录的数据是呈现出一个规律的,所记录的数据再由我们进行处理,得到的资料可以用在我们需要的勘测地质的方面,方便我们在地质方面的生产活动。

在以往的进行高分辨率在地震勘探中的使用越来越频繁,几乎成为了地质勘探的主要的工具,在进行基岩的起伏和含水层等各种不同的地下构造的时候,积累了很多的经验。

而矿井地质的工作上却很少用高分辨率解决煤矿中的问题,在煤矿的生产过程中,几乎还是使用传统的解决方法进行煤矿生产的问题。

但是由于最近煤矿的生产对于矿井地质的工作的要求可以说是越来越严格,传统的工作方式已经无法满足我们对于生产上的需求,怎样将高分辨率运用在矿井的工作中,提高矿井工作的效率是当今矿井地质工作的当务之急。

二、高分辨率地震勘探原理和方法地震在我们的日常生活中并不陌生,仅仅几年的时间就发生了大大小小十几起的地震时间,从汶山地震到玉树地震,地震似乎是我们生活中的随处可见的,然而高分辨率地震勘探原理就是利用这种地震波,所谓地震波就是利用爆炸或者是其它的人工方法使地面发生震动,这种震动就是通过波的形式向各个方向进行传播,这种波就是我们所说的地震波。

波在同一种介质中可以以相同的速度进行传播,但是地下岩层由各种各样不同的性质组成,这也就造成了这种地震波碰到他们的界面的时候会发生反射和折射,由于这种反射和折射就造成了有一部分的波返回到地面上,这种回到地面上的波可以通过验波器接收并且总结各种数据资料。

高分辨率地震勘探综述 (2)

高分辨率地震勘探综述 (2)

高分辨率地震勘探综述摘要高分辨率是地震勘探的一个重要研究方向,涉及地震数据采集、处理和解释等各个方面。

在回顾高分辨率地震勘探发展历程及存在问题的基础上,重点阐述了高分辨率的评价机制,并对近年来发展的高分辨率方法原理及应用实例进行了详细介绍。

高分辨率是一个系统工程,实际生产中的各个环节都有可能对分辨率造成影响,因此,高分辨率不仅仅局限于某个单独的技术,需要同时发展采集、处理和解释各方面的技术,尤其是借鉴交叉学科的新方法。

关键词:采集;处理;解释;高分辨率;评价机制1 概述1.1 高分辨率勘探的目的及技术发展历程地震勘探是一种应用地震波在地下介质中的传播来对地下地质构造和岩性进行测量的技术,经过近一个世纪的发展,该方法已经成为最有成效的油气勘探物探方法。

纵观地震勘探的发展历程,高分辨率一直是科研、生产的重点和难点。

诚然,高分辨率地震勘探是一个系统工程,从地震资料采集、处理到解释,每一个环节都对分辨率有着重要的影响。

虽然采集、处理和解释分属不同的环节,考量高分辨率的角度也有所不同,但三者是有机联系的。

首先,野外地震数据的采集质量直接关系着地震勘探的成败,只有在采集质量得到保证的前提下,处理技术(诸如静校正、拓频和压噪技术等)才有发挥的空间,而地震处理得到的剖面又是解释的基础,解释成果则是高分辨率地震勘探的最终目标,三者环环相扣,紧密联系;其次,采集、处理和解释的方法也是相互影响和促进的,例如,采集观测方式的改变有可能对处理方法或参数提出新的要求(如可控震源采集对处理提出了谐波压制的要求等),解释方法的突破也有可能对处理提出新的标准(如A VO解释技术要求处理方法具有高保真度等)。

在阐述高分辨率地震勘探之前,有必要先介绍一下分辨率的概念及主要影响因素。

地震勘探分辨率是基于地震测量技术对地下构造进行空间测量的精度描述,在反射波地震勘探中可以概括如下:可分辨的最小地质体的厚度或最窄地质体的宽度,前者称为垂(纵)向分辨率,后者称为横向分辨率[1-2]。

地震勘探原理

地震勘探原理
不同。
如: 10—40Hz B=30 R=4 胖 20—80Hz B=60 R=4 瘦,分辨率高 Knapp指出,倍频程一样,波形一样时,还是瘦的子波分辨率高,因此分辨率不
能用倍频程来衡量,只能用绝对频宽来衡量。相对频宽决定了子波的振动相位数,如
图14,零相位子波当相对频宽低于1个倍频程时,连续相位迅速增多。 (3)视频率(主频) 通 频 带 的 中 心 频 率 f c 决 定 了 视 频 率 f p ( 或 称 主 频 ) , 即 f p f c 1 2 ( f 2 f 1 ) 。
子波延续长度很长,在常规的两三千米勘探深度上,一个地震子波大概 至少要振两三下,时间延续度长达100—200ms(折合约为150—300m),压 缩成一个振动相位,则也往往要长达50—80ms(折合约为75—120m左右) 。两个波严格地可分辨,子波的包络互相分开。
5
2.不太严格的分辨率定义
垂 向 分 辨 率 ( 时 间 分 辨 率 ) : tRt2.31f f: 地 震 子 波 视 频 率 ( 主 频 )
Survey 测量——实测炮点及检波点的坐标(高程)
Pre-processing 预处理——作好静校正
Q-comp. 大地吸收补偿
Deconvolution 反褶积——仪器反褶积(反组合反熠积)
——不能采用单道反褶积
——两步法统计反褶积(地表一致性反褶积)
Vel. Anal. & NMO Rasid. statics 速度分析,动校正,自动剩余静校正
Impedance Inversion 反演成波阻抗或积分地震道
Interpretation 解释——层位标定、砂层追踪及厚度推算等等
4
二、分辨率的基本概念
1. 严格的分辨率定义

高分辨率勘探

高分辨率勘探
广义S变换重构重构高分 辨率地震剖面
图5、左图为原始地震剖面频谱;右图为广义S变换重构高分 辨率地震剖面的频谱
3、反Q滤波 反Q滤波是一种补偿大地吸收衰减效应的技术 , 它不仅可以 补偿振幅衰减和频率损失 , 而且还可以改善记录的相位特性, 从而改善同相轴的连续性 , 提高弱反射波的能量和地震资料 的信噪比及分辨率。
1.3 相关排序叠加 在地震资料处理中, 如果CDP道集中各道的噪音水平相差过大, 叠 加过程中, 噪音背景大的个别道不能起到提高信噪比的作用, 反而影 响叠加效果。 这种情况下, 就可以应用相关排序的方法, 控制质量较差的道不参与 叠加。
1.4 相干高精度叠加
该方法用于对经过静校正、动校正后的CMP道集记录或水平叠加 后的资料作相关性高精度叠加处理。 1.5 相位校正技术 由于反褶积的不稳定性, 一般都要对子波的相位特性作一定的假设。 但实际资料由于受剩余相位、有限时长等影响,很难满足假设条件, 都将对反褶积的效果产生影响, 进而影响输出子波的相位, 因此要对 叠后剖面作相位校正处理。
图一、利用前面所述的处理方法在准噶尔盆地大沙漠区的高分辨率三维地震勘 探方法攻关中取得了很好的效果。左图为常规剖面,右图为高分辨率剖面。
2、几种地震资料处理中提高分辨 率的方法
在地震资料的采集上,为了获取复杂地区或复杂勘探条件下高精度、 高分辨率资料。宽方位、长排列、高密度、高叠加的观测系统设 计思想,优化采集设计的照明技术,多分量多节点的采集技术,可控 震源技术以及低噪声的震源和仪器的研制,使得地震采集所获取的 原始数据的质量得到了很大的提高。 这里对以下几种方法进行讲述:
( 1 ) 在地震勘探研究和应用中,将目前普遍采用的以绝对值表示 分辨能力的概念称为分辨力,将以相对值表示分辨能力的概念统 称为分辨率。

地震纵横分辨率大小的影响因素

地震纵横分辨率大小的影响因素

地震分辨率
水平分辨率:
☻利用地震资料,在横向上能分辨地 质体的最小宽度( Fresnel带)
Fresnel带定量的定义
T0、T1相差半个周期
T0
T1
• 某点周围各点传播 时间与最短传播时 间小于半个周期的 范围称为Fresnel带 • T0=2h/v • T1 =T0+T/2 • =2h/v+T/2 • =2(h+Tv/4)/v • =2(h+ /4)/v
地震分辨率
R.E.Sheriff(1985):
• 从地震数据中能提取多少地质细节,
归根到底受地震分辨率的限制; • 分辨率是指识别出多于一个地震反射
的能力;
• 分辨率可划分为垂向和水平分辨率。
地震分辨率
垂向分辨率(1/4波长):
两个振幅相同、极性相反的尖脉冲间距趋 近于四分之一波长时,两者相长干涉,而 不能分辨。
R
r
三维偏移使第 一菲涅尔带由 大圆(半径为R) 变为小圆(半 径为r)
双程时间
半径
速度 频率
480 2.0 20 3000
确定菲涅耳带大小诺模图
Fresnel 带几点说明
T0、T1相差半个周期
T0
T1
☻与频率/波长有关 ☻与反射深度有关 ☻它是三维概念
Fresnel 带几点说明
R—第一菲涅尔带 半径(未做偏移) y 二维偏移使其 成为以R、r为 长、短半轴的 椭圆。 x
椭圆(长轴R,短 轴r)做了二维偏 移的结果 r- 做了三维偏移的 第一菲涅尔带半径
☻ 波长=速度 / 频率
随着埋深加大,波长加长,分辨率降低
地震分辨率
垂向分辨率: 1/4波长= 1/4速度 / 频率

提高地震勘探分辨率

提高地震勘探分辨率

李庆忠院士给出一个不十分严格的垂向分辨能力的计算公式
时间分 辨力
t
1 2.3 f
厚度分 辨力
z vt
2 4.6
影响分辨率的因素
1、地质因素: 岩石的吸收(品质因子Q)响.层间反射、簿
互层结构、反射界面形状深度等
2、地震子波:延续长度、频带宽度、相位特性和相位 数
目、能量及其稳定性等
3、波场特征:波的干涉、旅行路径、传播速度、反射与折
分辨率的定义始终不十分确切,日常工作中常采用指标是:
视频率多少周 频带多宽
用这个指标遇到的问题是:
1、数值不好确定 2、指标与分辨率不能完全等同,高分辨率数据一定具有好
的指标,但高指标不一定是高分辨率数据
反褶积是处理提高分辨率的主要手段,但要做好反褶积,实现 反褶积的目的是一件很不容易的事:
1、子波往往是非最小相位的 2、子波特性是时变的,反褶积假设时不变 3、记录中有噪声,反褶积因子估算,受噪声强度影响 4、反射系数序列白噪假设难以满足,反褶积使反射系数趋
噪声影响反褶积效果
信号保真去噪
压噪对原始信噪比有要求 CMP叠加对原始数据信噪比最低要求与覆盖次数有关
S 1
N
M
信号高频成份衰减
f t
At A0e Q
Ag 0.65
r
ftபைடு நூலகம்
eQ
A2
rS
Ag为面波能量,A2为反射信号高频分量能量,rs为面波 沿地表传播距离,r反射信号传播距离
水平分辨率(横向分辨率)
第一 第二 Fresnel带 三维概念 偏移
影响横向分辨率的因素
未偏移和偏移数据上存在噪声 偏移处理的精度 地震成像的广义空间分辨率 原始数据采集限定

地震波分辨率的分类研究及偏移对分辨率的影响

地震波分辨率的分类研究及偏移对分辨率的影响

地震波分辨率的分类研究及偏移对分辨率的影响
钱荣钧
【期刊名称】《石油地球物理勘探》
【年(卷),期】2010(045)002
【摘要】地震波的分辨率一直是地震勘探技术研究的重要课题,而自偏移技术问世以来,它对分辨率的影响也一直是本领域最重要的研究内容.本文通过对目前分辨率的分类、定义及在计算方法上存在的问题进行分析,把地震分辨率分为法向分辨率和空间分辨率,并给出计算空间分辨率的方法.法向分辨率是分辨反射界面间隔的能力;而空间分辨率是分辨地质体大小和间隔的能力,不应是横向上分辨反射界面间隔的能力.空间分辨率应当用菲涅耳带而不是地震波横向上的波数来衡量.偏移技术是通过缩小菲涅耳带而并非压缩空间子波来提高空间分辨率.文中还给出了非零炮检距菲涅耳带的计算方法.
【总页数】8页(P306-313)
【作者】钱荣钧
【作者单位】中国石油东方地球物理公司,河北涿州,072751
【正文语种】中文
【相关文献】
1.频率域高分辨率地震波阻抗直接反演方法研究 [J], 王静波;陈祖庆;蒋福友;苏建龙
2.在高保真条件下同时提高信噪比和分辨率问题的研究:噪声对分辨率的影响 [J], 刘学伟;李衍达
3.利用高分辨率影像验证低分辨率遥感数据的分类精度研究 [J], 黄婷;师庆三;师庆东;阿斯姆古丽·阿纳耶提
4.计算机视频降分辨率算法的图像偏移研究 [J], 袁莉;王铁滨;齐铁
5.Sagnac型干涉成像光谱仪中棱镜偏移量对光谱分辨率影响的讨论 [J], 李苏宁;朱日宏;李建欣;王琰
因版权原因,仅展示原文概要,查看原文内容请购买。

高分辨率地震技术在煤田构造勘查中的应用

高分辨率地震技术在煤田构造勘查中的应用

高分辨率地震技术在煤田构造勘查中的应用查明煤田地质构造是矿山开发的前提,对于保障矿山安全生产具有重要意义。

介绍了高分辨率地震技术原理,从地震波激发、接收及观测系统三方面对地震勘探实施进行了研究。

根据地震勘探结果,可以方便的进行断层、陷落柱、褶曲解译。

高分辨率地震是煤田地质勘探的主要手段,在节约勘查成本缩短勘查周期的同时提高了勘查精度。

标签:高分辨率地震煤田地质构造勘探在煤矿开采时,如果对构造的勘探程度不足,极有可能造成煤柱留设不合理,引发水害等,不利于煤矿矿井的安全生产和可持续发展。

探明煤矿的地质构造情况是煤矿开发利用的前提。

随着地震勘探技术的发展,高分辨率地震在煤田构造勘查中得到了广泛的应用,已经成为保障煤矿建设、生产、安全的重要技术方法。

利用高分辨率地震技术,结合构造精细解译,探明了某煤矿的断层、褶曲、陷落柱的分布情况。

1高分辨率地震技术1.1高分辨率地震技术介绍地震技术即在地面人为措施激发地震波,通过研究地震波在地层、煤层中的传播特征,反演查明地下地质构造的方法,属于物探技术的范畴。

目前地震勘探已经在采煤工作面布设、井筒、巷道建设工程中得到了广泛的应用,可以方便的解译煤田断层、褶曲、陷落柱等构造。

1.2地震勘探的实施1.2.1地震波的激发地表的地形地貌对地震影响较大。

需要根据地表的不同条件,采取最合适的成孔技术,保证激发井满足地震勘探设计要求。

根据以往的地震勘探经验,地震激发老地层最好,古近系、新近系地层次之,第四系砂层、砾石层及黄土层较差。

初至折射校正要求能量强、反应清楚,选择单炮初至波激发层位需要满足以下条件,即“避干就湿,避碎就整,避陡就缓,避高就低,避土就岩”。

激发采用高爆速成型炸药。

潜水位较浅时采用单井激发,激发井深度在潜水面下3-5m;无潜水位或者较深时,选择在速度较高或潮湿的地层中激发;在基岩出露区域可以使用浅井组合激发的方法。

1.2.2地震波的接收根据以往的试验情况,地震激发的P波频率较低,高频率的检波器不适合本区地震地质条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地震勘探分辨率
反射界面真正空间位置确定
第三节 地震勘探分辨率 一、分辨率的定义与分辨率极限 二、影响分辨率的主要因素 三、提高分辨率的途径
第三节 地震勘探分辨率
一、分辨率的定义与分辨率极限
1、分辨率的定义 分辨能力(resolving power )是指区分两个靠近物体的 能力。度量分辨能力强弱的两种表示:一是距离表示, 分辨的垂向距离或横向范围越小,则分辨能力越强; 二是时间表示,在地震时间剖面上,相邻地层时间间 隔dt 越小,则分辨能力越强。 定义:时间间隔dt 的倒数为分辨率(resolution) 。 垂向分辨率是指沿地层垂直方向所能分辨的最薄地 层厚度。 横向分辨率是指横向上所能分辨的最小地质体的宽 度。
野外常规施工经脉冲反褶积后的水平叠加剖面
野外常规施工经两步法反褶积后的水平叠加剖面
提高分辨率的途径之三 幅谱不变, 只改变子波的相位谱,使非零相位子波转化 为零相位子波。这是因为在相同振幅谱条件 下,所有不同相位特征的子波中,零相位子 波的分辨率最高,而且零相位子波的主极值 正好对应于反射界面的位置。
3
10 15 35 150 800 1000 2000 2000
第四系砂土、粘土
第四系含水砂、土
600
1050
4.55
15.59
第四系上部 第四系下部 上第三系N 下第三系上部E3 下第三系下部E2 E1—EK过渡层
1800 2000 2300 2800 3500 4500
51.02 64.33 87.48 134.86 220.33 383.0
提高分辨率的途径之四 : 做好地震偏移归位处理
• 1、偏移归位主要提高横向分辨率; • 2、偏移的方法很多,如绕射扫描偏移、波动方程偏 移(有限差分法、Kirchhoff 积分法、频率~波数域法、 有限元法等);叠前、叠后偏移;二维、三维偏移;时 间、深度偏移; • 3、时间偏移与深度偏移的本质区别是:The terms depth and time are used to distinguish those algorithms that handle lateral velocity variations and properly bend rays (depth migration) from those that do not (time migration).
第三节 地震勘探分辨率
y
(a)
偏移前后菲涅尔带范围的变化:(a)偏移前菲涅尔带 范围;(b)测线x方向偏移后范围;(c)测线y方向偏 移后范围;(d)三维偏移后范围。
提高分辨率的途径之五:提高 速度分析的精度
• 1、从分辨率定量表达式中可知,速度对纵、 横分辨率都有影响,速度分析精度的增加, 可改进动校正、偏移成像及层速度计算的质 量,进而提高了地震资料的分辨率; • 2、速度场的研究越来越被人们所重视,变 速成图、叠前深度偏移、油藏模拟等都要利 用。
提高分辨率的途径之六:采用 井间地震等新方法、新技术
井间地震示意图
界 面
透 射 波
直达波
反射波
井间地震技术的突出 优点是避开了表层的影 响;震源和接收器就在 介质中;可观测到多种类 型的波;井间地震资料 与地面地震资料联合使 用可减少反演过程中的 多解性。反VSP技术也 有类似的优越性。
第三节 地震勘探分辨率
2 0 0 Fn
R a / S ( f )df ; am 为子波的最大振幅 0
t s 2 m 2
Fn
Fn 为 Nyquest 为率;S(f)为振幅为;θ(f)为相位为
为于零相位子波:0 R 1
f s
第三节 地震勘探分辨率
二、影响分辨率的主要因素
• 1.子波的频率成分:=V/F; h≥/4 • 2.子波的频带宽度Fb或延续时间d:Fb增加或 d减小,分辨率提高; • 3.子波的相位特征:从Widess公式得以证实; • 4.信噪比:S/N>2,分辨率较高; • 5.偏移成像的精度:与横向分辨率有关; • 6.岩石的吸收作用:振幅随旅行时增加而呈指 数规律衰减;吸收具有选频作用; • 7.表层影响:低速层的衰减很严重。
信号及噪音在各个频率成分中的比例
新疆依南地区
胜利商河地区
地震剖面的信噪比影响了分辨率
回转波
图a 水平叠加时间剖面
图b 偏移叠加时间剖面
深度(米)
0~2
厚度(米)
2
地层及岩性
第四系表土、松砂、 壤土
层速度(m/s)
Q值
1.48
360
2~5
5~15 0~15 15~50 50~200 200~1000 1000~2000 2000~4000 4000~6000
第三节 地震勘探分辨率
三、提高分辨率的途径
• • • • • • 1、选择合适的野外采集参数 2、采用反褶积或反演的方法 3、进行子波处理 4、做好地震偏移归位处理 5、提高速度分析的精度 6、采用井间地震等新方法、新技术
提高分辨率的途径之一 :选择合 适的野外采集参数
• 1、胜利油田的四小二高:小药量、小井深激发、 小组合基距、小偏移距和高覆盖次数、高信噪 比接收。 • 2、大庆油田的四高四小一降低:高采样率、高 宽频带接收、高覆盖次数、高自然频率检波器; 小药量、小道距、小组合基距、小偏移距;降 低环境噪音。 • 3、克服高分辨率勘探中的误区:唯武器论、评 价野外记录质量的标准、小药量、组合、地面 耦合等; • 4、做好信号与噪音强度分析、降低高频环境噪 音。
提高分辨率的途径之二 :采用反 褶积或反演的方法
• 1、信噪比与分辨率往往是一对矛盾,提高 分辨率通常会降低信噪比。 • 2、反褶积和反演的方法很多,通常选用多 道反褶积方法和居于模型的反演方法。 • 3、在S/N<2的地区,提高S/N为主攻方向; 在S/N>2的地区,提高分辨率为主要目标; 在S/N>4的地区,可略微损失些S/N而设法提 高分辨率。
横 向 分 辨 率 问 题
2
AB=t/2*V =(T/2)/2*V =T*V/4= /4
h
B
菲涅尔带半径
OA h / 2 / 16
第三节 地震勘探分辨率
影响横向分辨率的主要因素: 1. 偏移孔径 (Aperture) - 这是决定横向分辨率的主要因素。通常偏移孔径越宽 , 可展现的地层倾角越陡 ,横向可分辨的距离越小 ,即横向 分辨率越高。 2.几何路径 (Geometry) -零偏移距道集横 向分辨率最高。 3.覆盖次数 (Fold) -多次覆盖可减少噪 音 ,进而可改进分辨率。4.采样率 (Sampling)-采样率越 小对分辨率的改进越有利。实践证明,采样率的不同对 合成空间子波宽度的影响几乎为零,但对偏移噪音有较 大的影响,采样率越小偏移噪音的压制效果越好。
同极性与反极性双脉冲的分辨率
第三节 地震勘探分辨率
• 2、分辨率的极限 • (1) Rayleigh准则:两子波到达时差t≥T/2 可分 辨; • (2) Ricker 准则:两子波到达时间差t≥(子波 主极值两侧的两个最大陡度点的间距 ) 可分辨; • (3) Widess 准则: t<T/4或h在/8与/4之间, 合成波形的振幅与 t 近似成正比,可用合成 波形的振幅信息来估算薄层厚度,这一工作称 之为薄层解释原理。
Rayleigh准则和Ricker准则 基本子波与导数 图中( a )基本子波 ; ( b )两子波到达时间差较小 , 不 能分辨;(c)时间差达到Ricker极限;(d)时间差达到 Rayleigh极限;(e)时间差较大,易分辨。
第三节 地震勘探分辨率
Widess 准则 ; ( a )两个子波到达时间差小于 1/4 视周期,阴影部分表示两者之差;(b)表明两子波 之差形成的合成波形与子波时间导数一致。
测井 井间地震 VSP 地面地震
30m
30m 30
m
测井、井间地震、VSP、地面地震资料垂向分辨率对比
第三节 地震勘探分辨率
变井源距的三维 VSP观测方式,地 面或海面上炮点的 布置方式多种多样, 如规则网格、环状、 放射状等。
第三节 地震勘探分辨率
综合的多角 度3DVSP数 据体显示
第三节 地震勘探分辨率
前三个影响因素的小结:
• 1.子波的带宽不变,若子波的主频增加或减小, 则分辨率不变; • 2.子波的主频不变,带宽增加或减小,则分辨 率亦增加或减小; • 3.换言之:带宽不变,若主频的增加或减小, 则倍频程减小或增加、相位数增加或减小, 分辨率都不变;倍频程不变,则相位数不变, 若主频增加或减小,则带宽亦增加或减小, 使分辨率随之增加或减小。倍频程OCT= [lg(f2/f1)]/(lg2);如5、10、20为2个倍频程, 20、40、80也是2个倍频程。
楔 形 地 质 模 型 的 地 震 响 应
下图为已知基本子波与同极性双脉冲和反极性双脉冲的 褶积结果,图中 r为基本子波主峰值两侧转折点间的时 差; R为基本子波波峰到波谷的时差;为双脉冲之 间的时差。当 >>R时,两个脉冲能很好地分开;当 <r或<R时,两个脉冲就不能分辨了。
关于分辨率极限的小结
• 1 、上述三准则的适用条件是 :零相位子波; 子波的相位数少,主极值大而明显; • 2 、 Widess 准则是目前地震勘探中普遍采用 的分辨率极限,且为利用振幅信息研究薄层 厚度提供了理论依据; • 3 、薄层解释原理:在时间~振幅曲线上, 当h</4时,时差关系无法区分薄层顶底, 但合成波形的振幅与时间厚度 t近似成正比, 确定其线性函数关系,并经已知井厚度信息 的标定,实现薄层厚度估计。
在此把以上讨 论的影响分辨 率的三个因素 再综合考虑如 下,即在零相 位子波情况下, 子波的振幅谱 与分辨率有如 下关系,参见 左图。 分辨率与带宽、主频的关系; 图中 B 为频谱的绝对宽度,即 B=f2-f1 ; R=f2/f1为频谱的相对宽度
相关文档
最新文档