高中数学等差数列题型总结

高中数学等差数列题型总结
高中数学等差数列题型总结

一、等差数列

1、数列的概念

例1.根据数列前4项,写出它的通项公式:

(1)1,3,5,7……;(2)2212-,2313-,2414-,2515-;(3)11*2-,12*3

,13*4-,1

4*5。

解析:(1)n a =21n -; (2)n a = 2(1)11n n +-+; (3)n a = (1)(1)

n

n n -+。

如(1)已知*2()156

n n

a n N n =∈+,则在数列{}n a 的最大项为__ ;

(2)数列}{n a 的通项为1

+=bn an

a n ,其中

b a ,均为正数,则n a 与1+n a 的大小关系为___;

(3)已知数列{}n a 中,2n

a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围;

2、等差数列的判断方法:定义法1(n n

a a d d +-=为常数)

或11(2)n n n n a a a a n +--=-≥。 例2.设S n 是数列{a n }的前n 项和,且S n =n 2

,则{a n }是( ) A.等比数列,但不是等差数列 B.等差数列,但不是等比数列 C.等差数列,而且也是等比数列 D.既非等比数列又非等差数列

答案:B ;解法一:a n

=???≥-==????≥-=-)2( 12)

1( 1)

2( )1( 11n n n a n S S n S n n n ,∴a n

=2n -1(n ∈N )

又a n +1

-a n

=2为常数,1

21

21-+=

+n n a a n n ≠常数,∴{a n

}是等差数列,但不是等比数列. 解法二:如果一个数列的和是一个没有常数项的关于n 的二次函数,则这个数列一定是等差数列。 练一练:设{}n a 是等差数列,求证:以b n =n

a a a n

+++Λ21 *n N ∈为通项公式的数列{}n b 为等差数列。

3、等差数列的通项:1(1)n

a a n d =+-或()n m a a n m d =+-。

4、等差数列的前n 和:1()2n n

n a a S +=

,1(1)

2

n n n S na d -=+。

例3:等差数列{a n }的前n 项和记为S n ,若a 2+a 4+a 15的值是一个确定的常数,则数列{a n }中也为常数的项是( ) A .S 7 B .S 8 C .S 13

D .S 15

解析:设a 2+a 4+a 15=p (常数),∴3a 1+18d =p ,解a 7=13p .∴S 13=13×(a 1+a 13)2=13a 7=13

3p . 答案:C

例4.等差数列{a n }中,已知a 1=1

3,a 2+a 5=4,a n =33,则n 为( )

A .48

B .49

C .50

D .51

解析:∵a 2+a 5=2a 1+5d =4,则由a 1=13得d =23,令a n =33=13+(n -1)×2

3,可解得n =50.故选C.

如(1)等差数列{}n a 中,10

30a =,2050a =,则通项n a = ;

(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______ ; 例5:设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:S 9=9a 5=-9,∴a 5=-1,S 16=8(a 5+a 12)=-72. 答案:-72 例6:已知数列{a n }为等差数列,若a 11

a 10

<-1,且它们的前n 项和S n 有最大值,则使S n >0的n 的最大值为( ) A .11 B .19 C .20 D .21

解析:∵a 11a 10<-1,且S n 有最大值,∴a 10>0,a 11<0,且a 10+a 11<0,∴S 19=19(a 1+a 19)2=19·a 10>0,S 20=20(a 1+a 20)

2

=10(a 10+a 11)<0. 所以使得S n >0的n 的最大值为19,故选B.答案:B

如(1)数列 {}n a 中,*11(2,)2

n

n a a n n N -=+≥∈,32n a =,前n 项和15

2n S =-,则1a =_,n = ;

(2)已知数列 {}n a 的前n 项和2

12n S n n =-,求数列{||}n a 的前n 项和n T .

5、等差中项:若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2

a b

A +=。

提醒:(1)等差数列的通项公式及前n 和公式中,涉及到5个元素:1a 、d 、n 、n a 及n S ,其中1a 、d 称作为基本元素。只要

已知这5个元素中的任意3个,便可求出其余2个,即知3求2。

(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2a d a d a a d a d --++…(公差为d );偶数个数成等差,可设为…,3,,,3a d a d a d a d --++,…(公差为2d ) 6.等差数列的性质: 常用结论

(1)前n 项和为,则(m 、n ∈N*,且m ≠n )。

(2)若m+n=p+q (m 、n 、p 、q ∈N*,且m ≠n ,p ≠q ),则。 (3),,成等差数列。

()若,是等差数列,为前项和,则;421

21

a b S T n a b S T n n n n m m m m =--

)(n f T S n n =,则)12()12()12(121

2-==--=--n f T S b n a n b a n n n n n n

(5) ①若a 1>0,d <0,有最大值,可由不等式组来确定n ;

②若a 1<0,d >0,有最小值,可由不等式组来确定n ,也可由前n 项和公式来确定n 。 (6)若a n =m,a m =n, (m ≠n)则a m+n =0 (7)若a n =m,a m =n, (m ≠n)则a m+n =0

(8)若S n =m,S m =n, (m ≠n)则S m+n =―m―n 重点:

(1)当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;前n 和211(1)()222

n n n d d

S na d n a n -=+=+-是关于n 的二次函数且常数项为0.

(2)若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。 (3)当m n p q +=+时,则有q p n m a a a a +=+,特别地,当2m n p +=时,则有2m n p a a a +=.

(4)若

{}n a 、{}

n b 是等差数列,则

{}

n ka 、

{}

n n ka pb + (

k

p

是非零常数)、

*{}(,)

p nq a p q N +∈、

232,,n n n n n S S S S S -- ,…也成等差数列,而{}n a a 成等比数列;若{}n a 是等比数列,且0n a >,则{lg }n a 是等差数列.

练一练:等差数列的前n 项和为25,前2n 项和为100,则它的前3n 和为 。 (5)在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-?中

(这里a 中即n a );:(1):奇

偶S S k k =+。

练一练:项数为奇数的等差数列{}n a 中,奇数项和为80,偶数项和为75,求此数列的中间项与项数.

(6)若等差数列{}n a 、{}n b 的前n 和分别为

n A 、n B ,且

()n n A f n B =,则21

21

(21)(21)(21)n n n n n n a n a A f n b n b B ---===--. 练一练:设{n a }与{n b }是两个等差数列,它们的前n 项和分别为n S 和n T ,若341

3-+=n n T S n n ,那么=n

n b a ___________;

(7)“首正”的递减等差数列中,前n 项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n 项和的最小值是所有非正

项之和。法一:由不等式组?

??

?

?

????≥≤??

?≤≥++000011n n n n a a a a 或确定出前多少项为非负(或非正);法二:因等差数列前n 项是关于n 的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*

n N ∈。上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗? 练一练:等差数列{}n a 中,1

25a =,917S S =,问此数列前多少项和最大?并求此最大值;

例7.(1)设{a n }(n ∈N *

)是等差数列,S n 是其前n 项的和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误..的是( ) <0 =0 >S 5

与S 7均为S n 的最大值 (2)等差数列{a n }的前m 项和为30,前2m 项和为100,则它的前3m 项和为( ) 解析:(1)答案:C ;由S 50,又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,

由S 7>S 8,得a 8<0,而C 选项S 9>S 5,即a 6+a 7+a 8+a 9>0?2(a 7+a 8)>0,由题设a 7=0,a 8<0,显然C 选项是错误的。

(2)答案:C 。解法一:由题意得方程组???????=-+=-+100

2

)12(22302)1(11d m m ma d m m ma ,视m 为已知数,解得212)2(10,40m m a m d +==, ∴210402)13(3)2(1032)13(332

2113=-++=-+=m

m m m m m d m ma ma S m 。 解法二:设前m 项的和为b 1,第m +1到2m 项之和为b 2,第2m +1到3m 项之和为b 3,则b 1,b 2,b 3也成等差数列。于是b 1=30,b 2=100

-30=70,公差d =70-30=40。∴b 3=b 2+d =70+40=110,∴前3m 项之和S 3m =b 1+b 2+b 3=210.

解法三:取m =1,则a 1=S 1=30,a 2=S 2-S 1=70,从而d =a 2-a 1=40。于是a 3=a 2+d =70+40=110.∴S 3=a 1+a 2+a 3=210。

等差数列课后练习

一、选择题

1.若a ≠b,数列a,x 1,x 2 ,b 和数列a,y 1 ,y 2 ,b 都是等差数列,则 =--1

21

2y y x x

( )

A .43

B .32

C .1

D .3

4

2.在等差数列{}n a 中,公差d =1,174a a +=8,则20642a a a a ++++Λ= (

) A .40 B .45 C .50 D .55

3.等差数列{}n a 的前三项为1,

1,23x x x -++,则这个数列的通项公式为

( )

A .21n

a n =+

B .21n

a n =- C .23n a n =-

D .25

n

a n =-

4.在等差数列||,0,0}{10111110a a a a a n >><且中,则在S n

中最大的负数为

( )

A .S 17

B .S 18

C .S 19

D .S 20

5.已知等差数列的首项为31,若此数列从第16项开始小于1,则此数列的公差d 的取值范围是

A .(-∞,-2)

B .[-715, -2]

C .(-2, +∞)

D .(—7

15 ,-2) 6.在等差数列}{n a 中,若30,240,1849===-n n a S S ,则n 的值为

( )

A .18

B17. C .16 D .15 7.等差数列}{n a 中,110052515021,2700,200a a a a a a a 则=+++=+++ΛΛ等于( )

A .-20.5

B .-21.5

C .-1221

D .-20

8.已知某数列前n 项之和3

n 为,且前n 个偶数项的和为)34(2

+n n ,则前n 个奇数项的和为

A .)1(32

+-n n

B .)34(2

-n n

C .2

3n - D .32

1n

9.一个只有有限项的等差数列,它的前5项的和为34,最后5项的和为146所有项的和为234,则它的第七项等于

A .22

B .21

C .19

D .18 10.等差数列

{}n a 中,n a 2110m m

m a a a -+-+=≠0,若m>1且2

110m m m a a a -+-+=,2138m S -=,则m的值是 A . 10 B . 19

C .20

D .38

二、填空题

11.已知}{n a 是等差数列,且,13,77,57146541074

==++++=++k a a a a a a a a 若K 则k = .

12.在△ABC 中,A ,B ,C 成等差数列,则=++2

tan 2tan 32tan 2tan C

A C A .

13.在等差数列}{n a 中,若4681012120a a a a a ++++=,则10122a a -= .

14.n S 是等差数列}{n a 的前n 项和,542,30n a a -==(n ≥5,*n N ∈),n S =336,则n 的值是 .

三、解答题

15.己知}{n a 为等差数列,1

22,3a a ==,若在每相邻两项之间插入三个数,使它和原数列的数构成一个新的等差数列,求:

(1)原数列的第12项是新数列的第几项? (2)新数列的第29项是原数列的第几项? 16.数列

{}n a 是首项为23,公差为整数的等差数列,且第六项为正,第七项为负。

(1)求数列公差;(2)求前n 项和n s 的最大值;(3)当0>n s 时,求n 的最大值。

17.设等差数列}{n a 的前n项的和为S n ,且S 4 =-62, S 6 =-75,求:

(1)}{n a 的通项公式a n 及前n项的和S n ; (2)|a 1 |+|a 2 |+|a 3 |+……+|a 14 |.

18.已知数列

{}n a ,首项a 1

=3且2a

n+1

=S n ·S n -1 (n ≥2).

(1)求证:{

n

S 1}是等差数列,并求公差;(2)求{a n }的通项公式;

(3)数列{a n }中是否存在自然数k 0,使得当自然数k ≥k 0时使不等式a k >a k+1对任意大于等于k 的自然数都成立,若存在求出最小

的k 值,否则请说明理由.

选择题:ABCCB DABDA 填空题:11.8; 12.3; 13.24; 14.21.

解答题:15.分析:应找到原数列的第n 项是新数列的第几项,即找出新、旧数列的对应关系。解:设新数列为

{},4,)1(,3,2,1512511d b b d n b b a b a b b n

n +=-+=====有根据则即3=2+4d ,∴14

d =

,∴172(1)4

4

n

n b n +=+-?=,

1(43)7(1)114

n n a a n n -+=+-?=+=

Q 又,∴43n n a b -=,即原数列的第n 项为新数列的第4n -3项.

(1)当n=12时,4n -3=4×12-3=45,故原数列的第12项为新数列的第45项;(2)由4n -3=29,得n=8,故新数列的第29项是原数列的第8项。

说明:一般地,在公差为d 的等差数列每相邻两项之间插入m 个数,构成一个新的等差数列,则新数列的公差为.1

+m d 原数列的第n

项是新数列的第n+(n -1)m=(m+1)n -m 项. 16.解: (1)231=a Θ, 06>a ,07

a d a d +>??

+

235

23-<<-d d Θ为整数, ∴ 4d =-. (2))4(2)1(23-?-+

=n n n s n =23)1(2--n n n =-2n n 252+ =-2

625)425(22+-n ,∴当6=n 时n

s 最大=78

(3)02522>+-=n n s n

时,02

25<

17.解:设等差数列首项为a 1,公差为d ,依题意得??

?-=+-=+75

15662

6411d a d a ,解得:a 1=-20,d=3。⑴

2

)23320(2)(,233)1(11-+-=

+=

-=-+=n n n a a S n d n a a n n n 234322n n =-⑵

{}120,3,n a d a n =-=∴Q 的项随着的增大而增大 12023

00,3230,3(1)230,(),7,733k k a a k k k k Z k +≤≥-≤+-≥∴≤≤∈=设且得且即第项之前均为负数

123141278914||||||||()()a a a a a a a a a a ++++=-+++++++L L L 1472147S S =-=.

18.分析:证?

?

????n S 1为等差数列,即证d S S n n =--1

11(d 是常数)。解:⑴由已知当2n ≥时111111112()111

2:2()(2).1(2)2

11111

{

},32

n n n

n n n n n n n n n n n S S a

S S S S S S n n S S S S d S S a -------=?-=?≥?

=?-=-≥?===-得是以为首项公差的等差数列。⑵

11111536

(1)(1)(),(2)32653n n n n d n S n S S n -=+-=+--=∴=≥-Q

13(1)118(2)182(35)(38)(2)

(35)(38)

n n n n n a S S n a n n n n n -?=?=?=≥=?--≥?

--?从而,因此

⑶11258

0,(32)(35)(38)03,333

3,3k k k k a a k k k k k k a a ++->---><<>=>令即,可得或。故只需取则对大于或等于的一切自然数总有成立这样的自然数存在最小值。

(完整版)数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)( 1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??? ???????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积 归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,121 41 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1) 2 43 4)1211(211--= --+=n n n a a n ★ 说明 只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代 入,可得n-1个等式累加而求a n 。 (3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2 ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1 -1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2 , 把n-1个等式累加得: ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n n n n b a )31(2)21(32-== (5)递推式为21n n n a pa qa ++=+

等比数列常考题型归纳总结很全面

等比数列及其前n 项和 教学目标: 1、熟练掌握等比数列定义;通项公式;中项;前n 项和;性质。 2、能熟练的使用公式求等比数列的基本量,证明数列是等比数列,解决与等比数列有关的简单问题。 知识回顾: 1.定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示。用递推公式 表示为)2(1≥=-n q a a n n 或q a a n n =+1。注意:等比数列的公比和首项都不为零。(证明数列是 等比数列的关键) 2.通项公式: 等比数列的通项为:11-=n n q a a 。推广:m n m n q a a -= 3.中项: 如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项;其中ab G =2。 4.等比数列的前n 项和公式 ?? ? ??≠--==)1(1)1()1(11q q q a q na S n n 5.等比数列项的性质 (1)在等比数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则q p n m a a a a =;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a =2 。 (2)除特殊情况外,,...,,232n n n n n S S S S S --也成等比数列。n q q ='。 (其中特殊情况是当q=-1且n 为偶数时候此时n S =0,但是当n 为奇数是是成立的)。 4、证明等比数列的方法 (1)证: q a a n n =+1(常数);(2)证:112 ·+-=n n n a a a (2≥n ). 考点分析

数列题型及解题方法归纳总结

累加累积 归纳猜想证明 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了 典型 题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 ⑴递推式为a n+i =3+d 及a n+i =qa n (d ,q 为常数) 例1、 已知{a n }满足a n+i =a n +2,而且a i =1。求a n 。 例1、解 ■/ a n+i -a n =2为常数 ??? {a n }是首项为1,公差为2的等差数列 /? a n =1+2 (n-1 ) 即 a n =2n-1 1 例2、已知{a n }满足a n 1 a n ,而a 1 2,求a n =? 佥 1 2 解■/^ = +是常数 .■-傀}是以2为首顶,公比为扌的等比数 把n-1个等式累加得: .' ? an=2 ? 3n-1-1 ji i ? / ] — 3 ⑷ 递推式为a n+1=p a n +q n (p ,q 为常数) s 1 1 【例即己知何沖.衍二右札+ 吧求% 略解在如十冷)*的两边乘以丹得 2 严‘ *珞1 = ~〔2怙血)+1.令亠=2n 召 则也€%乜于是可得 2 2 n b n 1 n 1 n b n 1 b n (b n b n 1)由上题的解法,得:b n 3 2(—) ? a . n 3(—) 2(—) 3 3 2 2 3 ★说明对于递推式辺曲=+屮,可两边除以中叫得蹲= Q 計/斗引辅助财如(%=芒.徼十氣+护用 (5) 递推式为 a n 2 pa n 1 qa n 知识框架 数列 的概念 数列的分类 数列的通项公式 数列的递推关系 函数角度理解 (2)递推式为 a n+1=a n +f (n ) 1 2 例3、已知{a n }中 a 1 a n 1 a n 1 ,求 a n . 4n 2 1 等差数列的疋义 a n a n 1 d(n 2) 等差数列的通项公式 a n a 1 (n 1)d 等差数列 等差数列的求和公式 S n (a 1 a n ) na 1 n(n 1)d 2 2 等差数列的性质 a n a m a p a q (m n p q) 两个基 本数列 等比数列的定义 a n 1 q(n 2) 等比数列的通项公式 a n n 1 a 1q 数列 等比数列 a 1 a n q 3(1 q ) (q 1) 等比数列的求和公式 S n 1 q 1 q / n a 1(q 1) 等比数列的性质 S n S m a p a q (m n p q) 公式法 分组求和 错位相减求和 裂项求和 倒序相加求和 解:由已知可知a n 1 a n (2n 1)(2n 1)夕2n 1 2n 令n=1,2,…,(n-1 ),代入得(n-1 )个等式累加,即(a 2-a 1) + 1广 K z 1】、 =-[(1-" + J J 5 _■ 冷(一 Jr ★ 说明 只要和f ( 1) +f (2) 入,可得n-1个等式累加而求a n 。 ⑶ 递推式为a n+1=ps n +q (p , q 为常数) 1 a n a 1 (1 2 +?…+f 例 4、{a n }中,ai 1,对于 n > 1 (n € N) 有a n (a 3-a 2) + ? + (a n -a n-1) L )也 2n 1 4n 2 (n-1 )是可求的,就可以由 a n+1=a n +f (n )以n=1,2,…, 3a n 1 2 ,求 a n ? 数列 求和 解法一: 由已知递推式得 a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3 (a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为 a 2-a 1= (3X 1+2) -1=4 --a n+1 -a n =4 ? 3 - a n+1 =3a n +2 - - 3a n +2-a n =4 ? 3 即 a n =2 ? 3 -1 解法_ : 上法得{a n+1-a n }是公比为 3 的等比数列,于是有: a 2-a 1=4, a 3-a 2=4 ? 3, a 4-a 3=4 ? 3 ? 3 , 数列的应用 分期付款 其他

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

等差数列知识点总结和题型归纳

等差数列 一.等差数列知识点: 知识点1、等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 知识点3、等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数 知识点4、等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2) 1(1-+ = 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2 b a A += 或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点6、等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是:ΛΛ=+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示:

等差数列常考题型归纳总结很全面

等差数列及其前n项和 教学目标: 1、熟练掌握等差数列定义;通项公式;中项;前n项和;性质。 2、能熟练的使用公式求等差数列的基本量,证明数列是等差数列,解决与等差数列有关的简单问题。 知识回顾: 1. 定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等丁同一个常数,那么这个数列就叫等差数歹0,这个常数叫做等差数列的公差,公差通常用字母d表示。用递推公式表示为a n a n1 d(n 2)或a n1 a n d (n 1)。(证明数歹0是等差数歹0的关键) 2. 通项公式: 等差数列的通项为:a n a i (n i)d,当d 0时,a n是关丁n的一次式,它的图象是一条直线上自然数的点的集合。推广:a n a m (n m)d 3. 中项: 如果a , A , b成等差数列,那么A叫做a与b的等差中项;其中A J。 2 4. 等差数列的前n项和公式 S n座U na i虹皂d可以整理成&= Sn2+(a i d)n。当d』时是n的一个常数 2 2 2 2 项为0的二次函数。 5. 等差数列项的性质 (1) 在等差数歹0 a n中,若m , n , p , q N且m n p q ,则a m a n a p a q ;特别的,若m , p , q N 且2m p q ,则2a m a p a q。 (2) 已知数列a n , b n为等差数列,S n,T n为其前n项和,则冬 b n T2n 1 (3) 若等差数列的前n项和为Sn,则Sn,S2n Sn,S3n S2n,也成等差数列,公差d' n2d ; S,(n 1) a n (4) S n & 1 , (n 2). (5)若数列{%}是公差为d的等差数列,则数列斜也是等差数列,且公差为 考点分析 考点一:等差数列基本量计算 例1、等差数列{a n}中,a i 3a8血120,贝U 3a’ a,的值为

等差数列题型总结、知识点

等差数列题型总结、知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

等差数列 一.等差数列知识点: 1等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 3等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+=该公式整理后是关于n 的一次函数 4等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 5等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或 b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 5等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是: =+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S , k k S S -2,k k S S 23-成等差数列如下图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 二、题型选析: 考试对等差数列的考察,侧重在求值、等差数列性质和前n 项和,求值的过程中,对首项和公差的把握是重中之重,其实很多的试题都是在围绕对首项和公差的应用在考察。性质的题要求学生对性质的熟练应用,题目一般在简单难度。 题型一、计算求值(等差数列基本概念的应用)

数列题型与解题方法归纳总结

.下载可编辑. 知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ????????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可 能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+… +(a n -a n-1)

高中数学必修等差数列知识点总结和题型归纳

二、题型选析: 题型一、计算求值(等差数列基本概念的应用) 1、.等差数列{a n }的前三项依次为 a-6 ,2a -5 , -3a +2 ,则 a A . -1 B . 1 C .-2 D. 2 2.在数列 {a n } 中, a 1=2,2a n+1=2a n +1,则 a 101的值为 ( ) A .49 B .50 C . 51 D .52 3.等差数列 1,- 1,- 3,?,- 89的项数是( ) 等差数列 一.等差数列知识点: 知识点 1、等差数列的定义 : ①如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示 知识点 2、等差数列的判定方法 : ②定义法:对于数列 a n ,若a n 1 a n d (常数) ,则数列 a n 是等差数列 ③等差中项:对于数列 a n ,若2a n 1 a n a n 2,则数列 a n 是等差数列 知识点 3、等差数列的通项公式 : 的首项是 a 1 ,公差是 d ,则等差数列的通项为 该公式整理后是关于 n 的一次函数 n 项和 : n (n 1) ⑥ S n na 1 d 2 ④如果等差数列 a n a n a 1 (n 1)d 知识点 4、等差数列的前 ⑤ Sn n (a 1 a n ) 2 对于公式 2整理后是关于 n 的没有常数项的二次函数 知识点 5、等差中项 : ⑥如果 a , A , b 成等差数列,那么 A 叫做 a 与b 的等差中项即: A a b 或2A a b 在一个等差数列中,从第 2 项起,每一项(有穷等差数列的末项除外)都是它的前一项 与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点 6、等差数列的性质 : ⑦等差数列任意两项间的关系:如果 且 m n ,公差为 d ,则有 a n a m (n ⑧ 对于等差数列 a n ,若 n m p a n 是等差数列的第 n 项, a m 是等差数列的第 m 项, m )d q ,则 a n a m a p a q 也就是: a 1 a n a 2 a n 1 a 3 a n 2 ⑨若数列 a n 是等差数列, 等差数列如下图所示: S n 是其前 n 项的和, k N ,那么 S k , S 2k S k , S 3k S 2k 成 S 3k a 1 a 2 a 3 S k a k a k 1 S 2k a 2k S k a 2k 1 S 3k S 2k a 3k ①若项数为 2n n * , 则 S 2n n a n a n 1 , 且 S 偶 S 奇 S 奇 nd , 奇 an . ②若项数为 2n 1 n S 偶 a n 1 S 奇 n (其中 S 奇 na n , S 偶 n 1 a n ). S 偶 n 1 奇 等差数列的前 n 项和的性质: 10、 ,则 S 2n 1 2n 1 a n ,且 S 奇 S 偶 a n , 等于( )

等差数列常考题型归纳总结很全面

等差数列及其前n 项和 教学目标: 1、熟练掌握等差数列定义;通项公式;中项;前n 项和;性质。 2、能熟练的使用公式求等差数列的基本量,证明数列是等差数列,解决与等差数列有关的简单问题。 知识回顾: 1.定义: 一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为)2(1≥=--n d a a n n 或)1(1≥=-+n d a a n n 。(证明数列是等差数列的关键) 2.通项公式: 等差数列的通项为:d n a a n )1(1-+=,当0≠d 时,n a 是关于n 的一次式,它的图象是一条直线上自然数的点的集合。推广:d m n a a m n )(-+= 3.中项: 如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项;其中2 a b A +=。 4.等差数列的前n 项和公式 11()(1)22 n n n a a n n S na d +-= =+可以整理成S n =2d n 2+n d a )2(1-。 当d ≠0时是n 的一个常数项为0的二次函数。 5.等差数列项的性质 (1)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+;特别的,若m ,p ,q N +∈且q p m +=2,则q p m a a a +=2。 (2)已知数列{}{}n n b a ,为等差数列,n n T S ,为其前n 项和,则1 21 2--= n n n n T S b a (3)若等差数列的前n 项和为 n S ,则 ,,,232n n n n n S S S S S --也成等差数列,公差d n d 2 '=; (4) ?? ?≥-==-)2(n ,) 1(n ,11n n n S S S a ; (5)若数列{n a }是公差为d 的等差数列,则数列???? ?? Sn n 也是等差数列,且公差为______。

等差数列知识点总结和题型归纳

等差数列知识点总结和题型归 纳 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

等差数列 一.等差数列知识点: 知识点1、等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 知识点2、等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 知识点3、等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为 d n a a n )1(1-+= 该公式整理后是关于n 的一次函数 知识点4、等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2b a A +=或 b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点6、等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是: =+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 10、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且 S S nd -=偶奇,1 n n S a S a +=奇偶.②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1 S n S n =-奇偶(其中n S na =奇,()1n S n a =-偶). 二、题型选析: 题型一、计算求值(等差数列基本概念的应用) 1、.等差数列{a n }的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 2 2.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( ) A .49 B .50 C .51 D .52

数列题型及解题方法归纳总结

知识框架 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d及a n+1 =qa n (d,q为常数) 例1、? 已知{a n }满足a n+1 =a n +2,而且a 1 =1。求a n 。 例1、解? ∵a n+1-a n =2为常数∴{a n }是首项为1,公差为2 的等差数列 ∴a n =1+2(n-1)即a n =2n-1 例2、已知{} n a满足 1 1 2 n n a a + =,而 1 2 a=,求 n a=? (2)递推式为a n+1 =a n +f(n) 例3、已知{} n a中 1 1 2 a=, 12 1 41 n n a a n + =+ - ,求 n a. 解:由已知可知 )1 2 )(1 2( 1 1- + = - +n n a a n n ) 1 2 1 1 2 1 ( 2 1 + - - = n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2 -a 1 ) +(a 3 -a 2 )+…+(a n -a n-1 ) ★说明 ?只要和f(1)+f(2)+…+f(n-1)是可求的, 就可以由a n+1 =a n +f(n)以n=1,2,…,(n-1)代入,可得 n-1个等式累加而求a n 。

(3)递推式为a n+1=pa n +q (p ,q 为常数) 例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a . 解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4 ∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2? ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2, 把 n-1 个 等 式 累 加 得 : ∴an=2·3n-1-1 (4)递推式为a n+1=p a n +q n (p ,q 为常数) )(3211-+-= -n n n n b b b b 由上题的解法,得:n n b )3 2(23-= ∴n n n n n b a )31(2)21(32 -== (5)递推式为21n n n a pa qa ++=+ 思路:设21n n n a pa qa ++=+,可以变形为: 211()n n n n a a a a αβα+++-=-, 想 于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的 类型。

数列题型及解题方法归纳总结

知识框架 111111(2)(2)(1)(1)()22()n n n n n n m p q n n n n a q n a a a q a a d n a a n d n n n S a a na d a a a a m n p q --=≥=?? ←???-=≥?? =+-??-?=+=+??+=++=+??两个基等比数列的定义本数列等比数列的通项公式等比数列数列数列的分类数列数列的通项公式函数角度理解 的概念数列的递推关系等差数列的定义等差数列的通项公式等差数列等差数列的求和公式等差数列的性质1111(1)(1) 11(1)() n n n n m p q a a q a q q q q S na q a a a a m n p q ---=≠--===+=+???? ? ???????????????? ??? ???????????? ???? ????????????? ?????? ? ?? ?? ?? ?? ??????????? 等比数列的求和公式等比数列的性质公式法分组求和错位相减求和数列裂项求和求和倒序相加求和累加累积归纳猜想证明分期付款数列的应用其他??????? ? ? 掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。 一、典型题的技巧解法 1、求通项公式 (1)观察法。(2)由递推公式求通项。 对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。 (1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数) 例1、 已知{a n }满足a n+1=a n +2,而且a 1=1。求a n 。 例1、解 ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列 ∴a n =1+2(n-1) 即a n =2n-1 例2、已知{}n a 满足11 2 n n a a +=,而12a =,求n a = (2)递推式为a n+1=a n +f (n ) 例3、已知{}n a 中112a = ,12141 n n a a n +=+-,求n a . 解: 由已知可知)12)(12(11-+= -+n n a a n n )1 21 121(21+--=n n 令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…

史上最全等差数列题型归纳

课题:教学目标:掌握等差数列的定义,通项公式和前n 项和的公式以及等差数列的相关性质, 并能利用这些知识解决有关问题. 教学重点:等差数列的判断,通项公式、前n 项和公式、等差数列的性质应用. (一) 主要知识: 1.等差数列的判定方法: ()1定义法:1n n a a +-=常数(*n N ∈)?{}n a 为等差数列; ()2中项公式法:122n n n a a a ++=+(*n N ∈)?{}n a 为等差数列; ()3通项公式法:n a kn b =+(*n N ∈)?{}n a 为等差数列; ()4前n 项求和法:2n S pn qn =+(*n N ∈)?{}n a 为等差数列; (二)主要方法: 1.涉及等差数列的基本概念的问题,常用基本量1,a d 来处理; 2.若奇数个成等差数列且和为定值时,可设中间三项为,,a d a a d -+;若偶数个成等差 数列且和为定值时,可设中间两项为,a d a d -+,其余各项再根据等差数列的定义进行对称设元. 3.等差数列的相关性质: ()1等差数列{}n a 中,()m n a a m n d =+-,变式m n a a d m n -= -; ()2等差数列{}n a 的任意连续m 项的和构成的数列232,,,m m m m m S S S S S -- 仍为等差数列. ()3等差数列{}n a 中,若m n p q += +,则q p n m a a a a +=+,

若2m n p +=,则2m n p a a a += ()4等差数列{}n a 中,2 n S an bn =+(其中1,02 a d d = ≠) ()5两个等差数列{}n a 与{}n b 的和差的数列{}n n a b ±仍为等差数列. ()6若{}n a 是公差为d 的等差数列,则其子列2,,,k k m k m a a a ++L 也是等差数列, 且公差为m d ; {}n ka 也是等差数列,且公差为kd ()7在项数为21n +项的等差数列{}n a 中,2+1=(+1),=,=(2+1)n S n a S na S n a 奇中偶中中; 在项数为2n 项的等差数列{}n a 中2+11=,=,=()n n n n n S na S na S n a a +++1奇偶. ()8等差数列{}n a 中,n S n ?? ? ??? 也是一个等差数列,即点(),n n a (*n N ∈)在一条直线上; 点( ), n S n n (*n N ∈)在一条直线上. ()9两个等差数列{}n a 与{}n b 中,,n n S T 分别是它们的前n 项和,则 2121 n n n n a S b T --=. (三)典例分析: 问题1.()1(01全国)设数列{}n a 是递增等差数列,前三项的和为12,前三项的 积为48,求1a ()2(04全国Ⅰ文)等差数列}{n a 的前n 项和记为n S ,已知1030a =, 2050a =, ①求通项n a ; ② 若242n S =,求n

(完整word版)数列常见题型总结经典(超级经典)

高中数学《数列》常见、常考题型总结 题型一 数列通项公式的求法 1.前n 项和法(知n S 求n a )???-=-11n n n S S S a ) 2()1(≥=n n 例1、已知数列}{n a 的前n 项和212n n S n -=,求数列|}{|n a 的前n 项和n T 1、若数列}{n a 的前n 项和n n S 2=,求该数列的通项公式。 2、若数列}{n a 的前n 项和32 3-= n n a S ,求该数列的通项公式。 3、设数列}{n a 的前n 项和为n S ,数列}{n S 的前n 项和为n T ,满足22n S T n n -=, 求数列}{n a 的通项公式。 2.形如)(1n f a a n n =-+型(累加法) (1)若f(n)为常数,即:d a a n n =-+1,此时数列为等差数列,则n a =d n a )1(1-+. (2)若f(n)为n 的函数时,用累加法. 例 1. 已知数列{a n }满足)2(3,111 1≥+==--n a a a n n n ,证明2 13-=n n a 1. 已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 2. 已知数列}{n a 满足31=a ,)2() 1(11≥-+=-n n n a a n n ,求此数列的通项公式. 3.形如 )(1n f a a n n =+型(累乘法) (1)当f(n)为常数,即:q a a n n =+1(其中q 是不为0的常数),此数列为等比且n a =11-?n q a . (2)当f(n)为n 的函数时,用累乘法. 例1、在数列}{n a 中111 ,1-+= =n n a n n a a )2(≥n ,求数列的通项公式。 1、在数列}{n a 中1111,1-+-==n n a n n a a )2(≥n ,求n n S a 与。 2、求数列)2(1 232,111≥+-==-n a n n a a n n 的通项公式。 4.形如s ra pa a n n n += --11型(取倒数法) 例1. 已知数列{}n a 中,21=a ,)2(1 211≥+=--n a a a n n n ,求通项公式n a 练习:1、若数列}{n a 中,11=a ,1 31+=+n n n a a a ,求通项公式n a . 2、若数列}{n a 中,11=a ,112--=-n n n n a a a a ,求通项公式n a . 5.形如0(,1≠+=+c d ca a n n ,其中a a =1)型(构造新的等比数列) (1)若c=1时,数列{n a }为等差数列;(2)若d=0时,数列{n a }为等比数列; (3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求. 方法如下:设)(1A a c A a n n +=++,利用待定系数法求出A 例1.已知数列}{n a 中,,2 121,211+= =+n n a a a 求通项n a . 练习:1、若数列}{n a 中,21=a ,121-=+n n a a ,求通项公式n a 。

等差数列题型总结、知识点

等差数列 一.等差数列知识点: 1等差数列的定义: ①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示 2等差数列的判定方法: ②定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列 ③等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列 3等差数列的通项公式: ④如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=该公式整理后是关于n 的一次函数 4等差数列的前n 项和: ⑤2 )(1n n a a n S += ⑥d n n na S n 2)1(1-+= 对于公式2整理后是关于n 的没有常数项的二次函数 5等差中项: ⑥如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:2 b a A +=或b a A +=2 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 5等差数列的性质: ⑦等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有d m n a a m n )(-+= ⑧ 对于等差数列{}n a ,若q p m n +=+,则q p m n a a a a +=+ 也就是: =+=+=+--23121n n n a a a a a a ⑨若数列{}n a 是等差数列,n S 是其前n 项的和,*N k ∈,那么k S ,k k S S -2,k k S S 23-成等差数列如下图所示: k k k k k S S S k k S S k k k a a a a a a a a 3232k 31221S 321-+-+++++++++++ 二、题型选析: 考试对等差数列的考察,侧重在求值、等差数列性质和前n 项和,求值的过程中,对首项和公差的把握是重中之重,其实很多的试题都是在围绕对首项和公差的应用在考察。性质的题要求学生对性质的熟练应用,题目一般在简单难度。 题型一、计算求值(等差数列基本概念的应用) 1、.等差数列{an}的前三项依次为 a-6,2a -5, -3a +2,则 a 等于( ) A . -1 B . 1 C .-2 D. 2 2.在数列{a n }中,a 1=2,2a n+1=2a n +1,则a 101的值为 ( ) A .49 B .50 C .51 D .52 3.等差数列1,-1,-3,…,-89的项数是( ) A .92 B .47 C .46 D .45

相关文档
最新文档