周长最小值专题(试题部分 生用)

周长最小值专题(试题部分 生用)
周长最小值专题(试题部分 生用)

周长最小值专题(试题部分生用)

A.线段和最小值

两种基本模型

如图,要在街道旁修建一个奶站P,向居民区A、B提供牛奶,奶站P应建在什么地方,才能使从A,B到它的距离之和最短?为什么?

求线段和最小值的一般步骤:

①选点P所在直线l为对称轴;画出点A的对称点A’

②连结对称点A’与B之间的线段,交直线l于点P,

点P即为所求的点,线段A’B的长就是AP+BP的最小值。

基本解法::利用对称性,将“折”转“直”

基础训练

1.如图11,梯形ABCD中,AD//BC,AB=CD=AD=1,∠B=60°,直线MN为梯形ABCD的对称轴,P为MN上一点,那么PC+PD的最小值为

A.1

B.

C.

D.2

2. 如图4,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________。

图4

2.如图,已知点A是半圆上一个三等分点,点B是弧AN的中点,点P是半径ON上的动点,若⊙O的半径长为1,则AP+BP的最小值为___。

B.三角形周长最小值

1.(福建彰州)如图4,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB上的动点,求△PQR周长的最小值.

2.如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点,

(1)求该抛物线的解析式。

(2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存在点Q,使得QAC

的周长最小?如果存在,求出点Q的坐标;若不存在,请说明理由。

(3)在第二象限的抛物线上是否存在一点P,是△PBC的面积最大?若存在,求出点P坐标及△PBC面积的最大值;若不存在,请说明理由

3. 如图,已知抛物线y=ax2+bx+c过A(3,3.5)、B(4,2)、C(0,2)三点,点P是x 轴上的动点.

(1)求抛物线的解析式;

(2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由;

(3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.

(1)利用待定系数法,将点A,B,C的坐标代入解析式即可求得;

(2)根据等腰梯形的判定方法分别从PC∥AB与BP∥AC去分析,注意不要漏解;(3)首先确定点P与点H的位置,再求解各线段的长即可.

B.四边形周长最小值

基本模型(一)定长不动:做双对称

思路与方法

1)总有两个已知点,即一条边是定值。

2)分别做两个已知点关于xy轴的对称点,则与两坐标轴的焦点就是所求两点3)此时,两个对称点与坐标轴上的两个点在一条直线上,即四点共线,所以最小。

1.在直角坐标系中,设A(4,-5)B(8,-3)C(m,0)D(0,n),当四边形的周长最短时,m/n的值为_________.

2.在直角坐标系中有四个点A (-6,3),B (-2,5),C (0,m ),D (n ,

0),当四边形ABCD 周长最短时,则m+n=_________

基本模型(二)定长移动:做单对称

思路与方法

1)做一个定点的对称点

2)过另一定点做移动边的平行线

3)做出平行四边形,找到定长的两个端点。

1.如图,A 、B 是直线a 同侧的两定点,定长线段PQ 在a 上平行移动,问PQ 移动到什么位置时,AP+PQ+QB 的长最短?

作法:(假设P'Q'就是在直线a 上移动的定长线段)

1)过点B 作直线a 的平行线,并在这条平行线上截取线段BB',使它等于定长P'Q'; 2)作出点A 关于直线a 的对称点A',连接A'B',交直线a 于P ; 3)在直线a 上截取线段PQ=P'Q. .则此时AP+PQ+BQ 最小.

略证:由作法可知PQ=P'Q'=BB',四边形PQBB'与P'Q'BB'均为平行四边形. 下面只要说明AP+BQ

Q P A'

B'

P'

A

B

Q'

点A与A'关于直线a对称,则AP=A'P,AP'=A'P'.

故:AP+BQ=A'P+B'P=A'B';

AP'+BQ'=A'P'+B'P'.显然,A'B'

即AP+BQ

2.如图,在直线l上有动线段CD,在直线l的同侧有两定点A,B在CD运动过程中请画出使四边形ABCD周长最短的CD的位置

专题训练

1.在平面直角坐标系中,A、B两点的坐标分别为A(3,2),B(1,5).(1)若点P的坐标为(0,m),当m= 时,△PAB的周长是;(2)若点C、D的坐标分别为(0,a)、(0,a+4),则当a=

时,ABDC的周长最短.

2.(浙江省湖州市)如图,已知平面直角坐标系,A、B两点的坐标分别为A(2,-3)、B (4,-1)。(1)若P(p,0)是x轴上的一个动点,则当p=__________时,△PAB的周长最短;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,则当a=__________时,四边形ABDC的周长最短;(3)设M、N分别为x轴和y轴上的动点,请问:是否存在这样的点M(m,0)、N(0,n),使四边形ABMN的周长最短?若存在,请求出m=__________,n=__________(不必写解答过程);若不存在,请说明理由。

3在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x 轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点.(1)若E为边OA上的一个动点,当△CDE的周长最小时,求点E的坐标。(2)若E、F为线段边OA上的两个动点,且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标.

4.已知顶点为A(1,5)的抛物线经过点B(5,1).

(1)求抛物线的解析式;

(2)如图(1),设C,D分别是轴、轴上的两个动点,求四边形ABCD周长的最小值;

(3)在(2)中,当四边形ABCD的周长最小时,作直线CD.设点P()()是直线

上的一个动点,Q是OP的中点,以PQ为斜边按图(2)所示构造等腰直角三角形PRQ.

①当△PBR与直线CD有公共点时,求的取值范围;

②在①的条件下,记△PBR与△COD的公共部分的面积为S.求S关于的函数关系式,并求S的最大值。

二次函数专题训练(三角形周长最值问题)含问题详解

1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式; (2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值; (3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.

2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E. (1)求直线AD的解析式; (2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值; (3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△PM Q′与□APQM 重合部分的面积是?APQM面积的时,求?APQM面积.

3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),且OC=OB,tan∠ACO=. (1)求抛物线的解析式; (2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值; (3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.

阴影部分求面积及周长(含答案)

圆与求阴影部分面积专题练习 目标:通过专题复习,加强学生对于图形面积计算的灵活运用。并加深对面积和周长概念的理解和区分。面积求解大致分为以下几类: 重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。 例1.求阴影部分的面积。(单位:厘米) 例2.正方形面积是7平方厘米,求阴影部分面积。(单位:厘米) 例3.求图中阴影部分的周长与面积。(单位:厘米) 例4.求阴影部分的周长与面积。(单位:厘米) 例5.求阴影部分的周长与面积。(单位:厘米) 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问: 空白部分甲比乙的面积多多少厘米?

例7.求阴影部分的面积。(单位:厘米)例8.求阴影部分的面积。(单位:厘米) 例9.求阴影部分的周长与面积。(单 位:厘米) 例10.求阴影部分的周长与面积。(单位:厘米) 例11.求阴影部分的周长与面积。(单位:厘 米) 例12.求阴影部分的周长与面积。(单位: 厘米) 例13.求阴影部分的面积。(单位:厘米)例14.求阴影部分的周长与面 积。(单位:厘米)

例15.已知直角三角形面积是12平方厘米,求阴影部分的面 积。 例16.求阴影部分的周长与面积。(单 位:厘米) 例17.图中圆的半径为5厘米,求阴影部分的面积。(单位:厘米) 例18.如图,在边长为6厘米的等边三角形中挖去三个同样的扇形, 求阴影部分的周长。 例19.正方形边长为2厘米,求阴影部分的面积。例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分的 面积。 例21.图中四个圆的半径都是1厘米,求阴影部分的面积。例22.如图,正方形边长为8厘米,求阴影部分的面积。 例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公 共点是该正方形的中心,如果每个圆的半径都是1厘米,那 例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分 连成一个花瓣图形,图中的黑点是这些圆的圆心。如果圆周π率

苏州市2019年中考《坐标系中三角形周长最小值问题》复习指导

利“刃”在手亿“折”成“直” —例析坐标系中三角形周长最小值问题 在近几年的各地中考中,与线段相关的最值问题频频出现,已然成为一道亮丽的风景线.而其中以平面直角坐标系为载体来设计三角形周长最小值问题,更是中考命题所关注的热点之一本文以近几年中考题为例,归纳其类型与解法,供参考. 1.三角形的三个顶点中仅有一个顶点是动点 例1 (2019年河南省,有改动)如图1,边长为8的正方形OABC 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上点A 、C 间的一个动点(含端点),过点P 作PF BC ⊥于点F .点D 、E 的坐标分别为(0,6),(-4,0),连接,,PD PE DE .是否存在点P ,使PDE ?的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由. 分析 存在.理由:易求抛物线的解析式为2188y x =- +.设21 (,8)8 P m m -+(80)m -≤≤, 则2221118(8),2888PF m m PD m =--+===+,故2PD PF =+, PDE ?的周长=2DE EP PD DE EP PF ++=+++. 如图2,过E 点作EG BC ⊥于点G .当,,E P F 三点共线,即点P 为EG 与抛物线的交点时, EP PF +的值最小,此时21 4,(4)868 P E P x x y ==-=-?-+=,所以PDE ?周长最小时点P 的坐标为 (-4,6). 点评 本例三角形的三个顶点中,点P 为动点,点,D E 均为定点.由于DE 的长为定值,欲使PDE ?的周长最小,只需满足PD PE +的值最小即可.进而利用“点P 运动的过程中,PD 与PF 的差为定值”这一有力武器,将问题转化为“求定直线BC 上一动点F 与直线外一定点E 的距离的最小值”,最终借助“连结直线外一点与直线上各点的所有线段中,垂线段最短”确定点P 的位置. 例2 (2019年山西省,有改动)如图3,在平面直角坐标系中,抛物线2 23y x x =-++与x 轴交于A 、 B 两点,与y 轴交于点 C ,点 D 是该抛物线的顶点.请在直线AC 上找一点M ,使BDM ?的周长最小, 求出M 点的坐标. 分析 易知(1,0),(3,0),(0,3),(1,4)A B C D -,故4,10AB AC ===,直线AC 的解析式为33y x =+.

二次函数及三角形周长,面积最值问答

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·宜宾)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式; (2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出y x O A B

2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由. 例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值;

练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2 0). ⑴求抛物线的解析式及顶点D的坐标; ⑵判断△ABC的形状,证明你的结论; ⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值. (4)过点F作FG垂直X轴,并与直线BC交于点H,求FH的最大值。

周长最小值专题(完整版师用)

周长最小值专题(完整版师用) A.线段和最小值 两种基本模型 如图,要在街道旁修建一个奶站P,向居民区A、B提供牛奶,奶站P应建在什么地方,才能使从A,B到它的距离之和最短?为什么? 求线段和最小值的一般步骤: ①选点P所在直线l为对称轴;画出点A的对称点A’ ②连结对称点A’与B之间的线段,交直线l于点P, 点P即为所求的点,线段A’B的长就是AP+BP的最小值。 基本解法::利用对称性,将“折”转“直”

基础训练 1.如图11,梯形ABCD中,AD//BC,AB=CD=AD=1,∠B=60°,直线MN为梯形ABCD的对称轴,P为MN上一点,那么PC+PD的最小值为 A.1 B. C. D.2 试题分析:连接AC,与MN所得交点即为所求P点,因为D与A关于MN对称,的最小值即符合两点之间线段最短,所以AC与MN交点即为所求P点。因为,,所以,所以,所以,此时,所以,即 2. 如图4,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________。 图4 分析:首先分解此图形,构建如图5模型,因为E、B在直线AC 的同侧,要在AC上找一点P,使PE+PB最小,关键是找出点B或E关于AC的对称点。如图6,由菱形的对称性可知点B和D关于AC对称,连结DE,此时DE即为PE+PB的最小值, 图5 图6

由∠BAD=60°,AB=AD ,AE=BE 知, 322 3DE =?= 故PE+PB 的最小值为 3。 2.如图,已知点A 是半圆上一个三等分点,点B 是弧AN 的中点,点P 是半径ON 上的动点,若⊙O 的半径长为1,则AP+BP 的最小值为___。 P 位于A ′B 与MN 的交点处,AP+BP 的值最小; 作A 关于MN 的对称点A ′,根据圆的对称性,则A ′必在圆上, 连接BA ′交MN 于P ,连接PA ,则PA+PB 最小,此时PA+PB=PA ′+PB=A ′B ,连接OA 、OA ′、OB , B.三角形周长最小值 1.彰州)如图4,∠AOB=45°,P 是∠AOB 一点,PO=10, (彰州)如图4,∠AOB=45°,P 是∠AOB 一点,PO=10,Q 、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值. 分析:点P 是角部的一个定点,要在角的两边各确定一点使这三点连成的三角形周长最小,只需将这三边的和转化为以两定点为端点的一条折线. 解:分别作点P 关于OA 、OB 的对称点P 1、P 2,连结P 1P 2, 根据轴对称性易知:OP 1=OP 2=OP=10,∠P 1OP 2=2∠AOB=90°,因而P 1P 2=102, 故△PQR 周长的最小值为102. 2.如图,抛物线y=-x2+bx+c 与x 轴交于A(1,0),B(-3,0)两点, P 2 P 1 O A B P R Q O 图4

小升初——求阴影部分面积及周长(带答案)

【史上最全小学求阴影部分面积专题—含答案】 小学及小升初复习专题-圆与求阴影部分面积 ----完整答案在最后面 目标:通过专题复习,加强学生对于图形面积计算的灵活运用。并加深对面积和周长概念的理解和区分。面积求解大致分为以下几类: 1、 从整体图形中减去局部; 2、 割补法,将不规则图形通过割补,转化成规则图形。 重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。 例1.求阴影部分的面积。 (单位:厘米) 例2.正方形面积是7平方厘米,求阴影部分的面积。 (单位:厘米) 例3.求图中阴影部分的面积。(单位:厘米) 例4.求阴影部分的面积。(单位:厘米) 例5.求阴影部分的面积。(单位:厘米) 例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘 米?

例7.求阴影部分的面积。(单位:厘米)例8.求阴影部分的面积。(单位:厘米)例9.求阴影部分的面积。(单位:厘米)例10.求阴影部分的面积。(单位:厘米) 例11.求阴影部分的面积。(单位:厘米)例12.求阴影部分的面积。(单位: 厘米) 例13.求阴影部分的面积。(单位:厘米)例14.求阴影部分的面积。(单位:厘米)

例15.已知直角三角形面积是12平方厘米,求阴影部分的面 积。 例16.求阴影部分的面积。(单位:厘米) 例17.图中圆的半径为5厘米,求阴影部分的面积。(单位:厘米) 例18.如图,在边长为6厘米的等边三角形中挖去三个同样的 扇形,求阴影部分的周长。 例19.正方形边长为2厘米,求阴影部分的面积。例20.如图,正方形ABCD的面积是36平方厘米,求阴影部分 的面积。 例21.图中四个圆的半径都是1厘米,求阴影部分的面积。例22.如图,正方形边长为8厘米,求阴影部分的面积。

2.25阴影部分面积及周长的专题(较难)

阴影部分面积的专题 阴影部分的面积的方法: 一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了。 二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可。 三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它是一个底2,高4的三角形,就可以直接求面积了。 四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了。

五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,右图中大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便。 六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半. 七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如上页最后一图,欲求阴影部分面积,可先沿中间切开把左边正方形

阴影部分求面积及周长(含答案)

【史上最全小学求阴影部分面积专题—含答案】 小学及小升初复习专题-圆与求阴影部分面积 ----完整答案在最后面 目标:通过专题复习,加强学生对于图形面积计算得灵活运用。并加深对面积与周长概念得理解与区分。面积求解大致分为以下几类: c 重难点:观察图形得特点,根据图形特点选择合适得方法求解图形得面积。能灵活运用所学过得基本得平面图形得面积求阴影部分得面积。

例27、如图,正方形ABCD得对角线AC=2厘米,扇形ACB就 是以AC为直径得半圆,扇形DAC就是以D为圆心,AD为半径 得圆得一部分,求阴影部分得面积。 例28、求阴影部分得面积。(单位:厘米) 例29、图中直角三角形ABC得直角三角形得直角边AB=4厘米,BC=6厘米,扇形BCD所在圆就是以B为圆心,半径为BC 得圆,∠CBD=,问:阴影部分甲比乙面积小多少?例30、如图,三角形ABC就是直角三角形,阴影部分甲比阴影部分乙面积大28平方厘米,AB=40厘米。求BC得长度。 例31、如图就是一个正方形与半圆所组成得图形,其中P为半圆周得中点,Q为正方形一边上得中点,求阴影部分得面积。例32、如图,大正方形得边长为6厘米,小正方形得边长为4厘米。求阴影部分得面积。 例33、求阴影部分得面积。(单位:厘米) 例34、求阴影部分得面积。(单位:厘米) 例35、如图,三角形OAB就是等腰三角形,OBC就是扇 形,OB=5厘米,求阴影部分得面积。 举一反三★巩固练习 【专1 】下图中,大小正方形得边长分别就是9厘米与5厘米,求阴影部分得面积。 【专1-1】、右图中,大小正方形得边长分别就是12厘米与10厘米。求阴影部分面 积。

二次函数与三角形周长,面积最值问题

知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·宜宾)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。 练习 1、如图,已知二次函数24 y ax x c =-+的图象与坐标轴交于点A(-1, 0)和点B(0,-5).(1)求该二次函数的解析式; (2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐

标. 2、如图,抛物线y =ax 2-5ax +4(a <0)经过△ABC 的三个顶点,已知BC ∥x 轴,点A 在x 轴上,点C 在y 轴上,且AC =BC . (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M ,使|MA -MB |最大?若存在,求出点M 的坐标;若不存在,请说明理由. 例2. (2018?莱芜)如图,抛物线y=ax 2+bx+c 经过A (﹣1,0),B (4,0),C (0, 3)三点,D 为直线BC 上方抛物线上一动点,DE ⊥BC 于E . (1)求抛物线的函数表达式; (2)如图1,求线段DE 长度的最大值;

练习 1、如图,抛物线y =2 1x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). ⑴求抛物线的解析式及顶点D 的坐标; ⑵判断△ABC 的形状,证明你的结论; ⑶点M (m ,0)是x 轴上的一个动点,当CM +DM 的值最小时,求m 的值. (4)过点F 作FG 垂直X 轴,并与直线BC 交于点H ,求FH 的最大值。 2、 如图,在平面直角坐标系中,直线3342y x = -与抛物线214 y x bx c =-++交于A 、B 两点,点A 在x 轴上,点B 的横坐标为-8. (1)求该抛物线的解析式; (2)点P 是直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线,垂足为C ,交直线AB 于点D ,作PE ⊥AB 于点E .设△PDE 的周长为l ,点P 的横坐标为x ,求l 关于x 的函数关系式,并求出l 的最大值.

中考数学指导复习例析坐标系中三角形周长最小值问题练习

—例析坐标系中三角形周长最小值问题 在近几年的各地中考中,与线段相关的最值问题频频出现,已然成为一道亮丽的风景线.而其中以平面直角坐标系为载体来设计三角形周长最小值问题,更是中考命题所关注的热点之一本文以近几年中考题为例,归纳其类型与解法,供参考. 1.三角形的三个顶点中仅有一个顶点是动点 例1 (2015年河南省,有改动)如图1,边长为8的正方形OABC 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上点A 、C 间的一个动点(含端点),过点P 作PF BC ⊥于点F .点D 、E 的坐标分别为(0,6),(-4,0),连接,,PD PE DE .是否存在点P ,使PDE ?的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由. 分析 存在.理由:易求抛物线的解析式为2188 y x =-+.设21(,8)8 P m m -+(80)m -≤≤, 则2221118(8),2888PF m m PD m =--+===+,故2PD PF =+, PDE ?的周长=2DE EP PD DE EP PF ++=+++. 如图2,过E 点作EG BC ⊥于点G .当,,E P F 三点共线,即点P 为EG 与抛物线的交点时,EP PF +的值最小,此时2 14,(4)868P E P x x y ==-=-?-+=,所以PDE ?周长最小时点P 的坐标为(-4,6). 点评 本例三角形的三个顶点中,点P 为动点,点,D E 均为定点.由于DE 的长为定值,欲使PDE ?的周长最小,只需满足PD PE +的值最小即可.进而利用“点P 运动的过程中,PD 与PF 的差为定值”这一有力武器,将问题转化为“求定直线BC 上一动点F 与直线外一定点E 的距离的最小值”,最终借助“连结直线外一点与直线上各点的所有线段中,垂线段最短”确定点P 的位置. 例2 (2012年山西省,有改动)如图3,在平面直角坐标系中,抛物线223y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.请在直线AC 上找一点M ,使BDM ?的周长最小,求出M 点的坐标. 分析 易知(1,0),(3,0),(0,3),(1,4)A B C D -,故4,10AB AC ===,直线AC 的解析式为33y x =+. 如图4,作点B 关于直线AC 的对称点B ',连接B D ',交AC 于点M ,则BDM ?即为符合题意的周长最小的三角形.(证明如下:不妨在直线AC 上取异于点M 的任一点M ',

二次函数专题训练(三角形周长最值问题)含答案(完整资料).doc

【最新整理,下载后即可编辑】 1.如图所示,抛物线y=ax2+bx﹣3与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C. (1)求抛物线的解析式; (2)如图所示,直线BC下方的抛物线上有一点P,过点P作PE⊥BC于点E,作PF平行于x轴交直线BC于点F,求△PEF周长的最大值;(3)已知点M是抛物线的顶点,点N是y轴上一点,点Q是坐标平面内一点,若点P是抛物线上一点,且位于抛物线的对称轴右侧,是否存在以P、M、N、Q为顶点且以PM为边的正方形?若存在,直接写出点P的横坐标;若不存在,说明理由.

2.如图,抛物线y=﹣x2+2x+3与x轴交于A,B两点,与y轴交于点C,点D,C关于抛物线的对称轴对称,直线AD与y轴相交于点E. (1)求直线AD的解析式; (2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH周长的最大值;(3)如图2,点M是抛物线的顶点,点P是y轴上一动点,点Q是坐标平面内一点,四边形APQM是以PM为对角线的平行四边形,点Q′与点Q关于直线AM对称,连接M Q′,P Q′.当△P M Q′与□APQM重合部分的面积是?APQM面积的时,求?APQM面积.

3.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点A的坐标为(﹣1,0),

且OC=OB,tan∠ACO=. (1)求抛物线的解析式; (2)若点D和点C关于抛物线的对称轴对称,直线AD下方的抛物线上有一点P,过点P作PH⊥AD于点H,作PM平行于y轴交直线AD于点M,交x轴于点E,求△PHM的周长的最大值; (3)在(2)的条件下,以点E为端点,在直线EP的右侧作一条射线与抛物线交于点N,使得∠NEP为锐角,在线段EB上是否存在点G,使得以E,N,G为顶点的三角形与△AOC相似?如果存在,请求出点G的坐标;如果不存在,请说明理由.

求三角形或四边形周长最小问题

三角形或者四边形周长最小问题 例一:已知直角坐标系中,A 、B 两点坐标分别为A (4,2)、B (-2, 4)、C 点在X 轴上, 求:⊿ ABC 周长最小时,C 坐标,并求出这个最小值。 解:画出坐标系如图,作B 点关于X 轴对称点E ,E 点坐标(-2,-4)。则,AE 直线方程式可列方程组如下,并交X 轴于点C 。 244(2)k b k b =+??-=-+? ×× 解得,K=1,b=-2,则直线AE 解析式为:y=x-2,C 点坐标为(2,0)。证明: BC=EC ,AC=AC ,当E 、C 、A 三点共线时,AC+EC 最短。 又因为,AB 长是固定值,对周长的大小不具备影响。 所以⊿ ABC 周长最小时,指点B 关于X 轴的对称点与点A 的连线的交点,就是所求的坐标C 点。 ⊿ ABC 周长最小值=AE+AB+BC 例二:已知直角坐标系中矩形OABC ,坐标点分别为O (0,0)、A (4,0)、C 点(0,2)且D 点为OC 中点,E 、F 分别是OA 上的动点,且EF=2,求:四边形DEFB 周长最小时,E 、F 坐标,并求出这个最小值。 解:画出坐标系如图,过点D 做D 点关于X 轴对称点P ,则P 点坐

标(0,-1),过点B沿BC方向平移两个单位,该点坐标H(2,2)。连结PH,交动点所在轴X轴于点E,则E点就是所求周长最小值所在的动点位置。将该点E沿X轴正方向平移两个单位,就是F点所在位置。 证明: D点与P点对称,所以DE=PE; 又因为HB//=EF,所以BF=HE 所以,DE+BF=PE+EH,又因为,PEH在一条直线上, 根据“两点之间线段最短”公理,所以点E,就是所求动点在周长最小时所在位置。 P(0,-1),H(2,2),则直线PH解析式为:y=3 2 x-1,设点E横坐标为x,则E点坐标为E(x,0),当y=0时,就 是其与X轴的交点,代入解得,x=2 3,即点E(2 3 ,0),点F(8 3 ,0), 经检算,点E、F都在OA范围内,答案有效。 四边形DEFB周长 = 例三:已知边长为4的等边三角形ABC中,点D为AB点中点,M、N分别为AC、BC边上的动点,求⊿DMN周长最小值。

三角形中的最值问题

第42课 三角形中的最值问题 考点提要 1.掌握三角形的概念与基本性质. 2.能运用正弦定理、余弦定理建立目标函数,解决三角形中的最值问题. 基础自测 1.(1)△ABC 中,cos A A =,则A 的值为 30° 或90° ; (2)△ABC 中,当A= 3π 时,cos 2cos 2B C A ++取得最大值 3 2 . 2.在△ABC 中,m m m C B A 2:)1(:sin :sin :sin +=,则m 的取值范围是 2 1 >m . 解 由m m m c b a C B A 2:)1(:::sin :sin :sin +==, 令mk c k m b mk a 2,)1(,=+==,由b c a c b a >+>+,,得2 1>m . 3.锐角三角形ABC 中,若A=2B ,则B 的取值范围是 30o<B <45o . 4.设R ,r 分别为直角三角形的外接圆半径和内切圆半径,则 r R 1. 5.在△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,若23b ac =,则B 的取值范围是 0°<B ≤120° . 6.在△ABC 中,若A>B ,则下列不等式中,正确的为 ①②④ . ①A sin >B sin ; ②A cos B 2sin ; ④A 2cos B ?a >b A R sin 2?>B R sin 2?A sin >B sin ,故①正确; A cos < B cos ?)2sin(A -π<)2 sin(B -π ?A>B ,故②正确(或由余弦函数 在(0,)π上的单调性知②正确); 由A 2cos B sin ?A>B ,故④正确. 知识梳理 1.直角△ABC 中,内角A ,B ,C 所对边的边长分别是,,a b c ,C=90°,若内切圆的半径为r ,则2 a b c r +-= . 2.在三角形中,勾股定理、正弦定理、余弦定理是基础,起到工具性的作用.它们在处理三角形中的三角函数的求值、化简、证明、判定三角形的形状及解三角形等问题中

三角形周长最小值专题

三角形周长最小值专题 A.线段和最小值 两种基本模型 如图,要在街道旁修建一个奶站P,向居民区A、B提供牛奶,奶站P应建在什么地方,才能使从A,B到它的距离之和最短?为什么? 求线段和最小值的一般步骤: ①选点P所在直线l为对称轴;画出点A的对称点A’ ②连结对称点A’与B之间的线段,交直线l于点P, 点P即为所求的点,线段A’B的长就是AP+BP的最小值。 基本解法::利用对称性,将“折”转“直”

基础训练 1.如图11,梯形ABCD中,AD//BC,AB=CD=AD=1,∠B=60°,直线MN为梯形ABCD的对称轴,P为MN上一点,那么PC+PD的最小值为 A.1 B. C. D.2 试题分析:连接AC,与MN所得交点即为所求P点,因为D与A关于MN对称,的最小值即符合两点之间线段最短,所以AC与MN交点即为所求P点。因为,,所以,所以,所以,此时 ,所以,即 2. 如图4,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________。 图4 分析:首先分解此图形,构建如图5模型,因为E、B在直线AC 的同侧,要在AC上找一点P,使PE+PB最小,关键是找出点B或E

关于AC 的对称点。如图6,由菱形的对称性可知点B 和D 关于AC 对称,连结DE ,此时DE 即为PE+PB 的最小值, 图5 图6 由∠BAD=60°,AB=AD ,AE=BE 知, 322 3 DE =?= 故PE+PB 的最小值为 3。 2.如图,已知点A 是半圆上一个三等分点,点B 是弧AN 的中点,点P 是半径ON 上的动点,若⊙O 的半径长为1,则AP+BP 的最小值为__ _。 P 位于A ′B 与MN 的交点处,AP+BP 的值最小; 作A 关于MN 的对称点A ′,根据圆的对称性,则A ′必在圆上, 连接BA ′交MN 于P ,连接PA ,则PA+PB 最小,此时PA+PB=PA ′+PB=A ′B ,连接OA 、OA ′、OB ,

阴影部分求面积及周长(含答案)

目标:通过专题复习,加强学生对于图形而积计算的灵活运用。并加深对而积和周长概念的理解和区分。而积求解大致分为以下几类: 重难点:观察图形的特点,根拯图形特点选择合适的方法求解图形的而积。能灵活运用所学过的基本的平而图形的面积求阴影部分的面积匚 I δ l 与求阴影部分面积专题练习

(20) 例21 ?图中I 川个闘的半径都是1厘米.求阴影部分的倆积。 例22?如图.正方形边长为8厘米,求阴影部分的面积。 (22) 例23?图中的4个圆的圆心是正方形的4个顶点… 它们的公 例24?如图?有8个半径为1厘米的小恻?用他们的圆周的一部分 共点是该正方形的中心,如果每个圆的半径都是1厘米,那 连成一个花瓣图形,图中的黑点是这些圆的圆心。如果圆周TT 率例15.e 知直角三角形面枳是12平方厘米.求阴影部分的面 例16 ?求阴影部分的周长与而枳。 (单 位:厘米) 例17?图中圆的半径为5凰米,求阴影部分的面积。(虹位:厘米) 例18?如图,在边长为6厘米的等边三角形中挖去三个同样的扇 形, 求阴影部分的周长。 (17) (18) 例19.正方形边长为2厘米,求阴影部分的Ifti 积。 例20?如图?正方形ABCD 的面积是36平方厘米,求阴影部分的 而积。 (19) (21)

例25?如图?四个扇形的半径相等,求阴影部分的面枳。仲位: 厘米) 例26?如图?等腰直角三角形ABC和四分之一圆DEB. AB=5厘 米■ BE=2MX.求图中阴影部分的面积。 例27.如图,正方形ABCD的对角线AC=2厘米,扇形ACB 是 以AC为直径的半圆?扇形DAC是以D为圆心?AD为半径的 圆的一部分.求阴影部分的而积。 (27) 例29?图中直角三角形ABC的直角三角形的直角边AB=4厘 米,BC=6厘米,扇形BCD所在恻是以B为恻心,半径为BC 例30?如图?三角形ABC是直角三角形?阴影部分甲比阴影部 分乙面枳大28 T方厘米?AB=40厘米。求BC的长度。 么阴影部分的而枳是女少? (23) 取 3.1416, 方厘米? (26) (29) 例28?求阴影部分的面积。仲位:厘米)

阴影部分求面积及周长(含答案)

小学及小升初复习专题 -圆与求阴影部分面积及答案 目标:通过专题复习,加强学生对于图形面积计算的灵活运用。并加深对面积和周长概念的理解和区分。面积求解大致分为以下几类: 重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。 例1.求阴影部分的面积。 (单位:厘米) 例2.正方形面积是7平方厘米,求阴影部分的面积。 (单位:厘米) 例3.求图中阴影部分的面积。(单位:厘米) 例4.求阴影部分的面积。(单位:厘米) 例5.求阴影部分的面积。(单位:厘米)

例7. 求阴影部分的面积。 (单位: 厘米 )例8.求阴影部分的面积。(单位:厘 米) 例9.求阴影部分的面积。(单位:厘米)例10.求阴影部分的面积。(单位:厘米) 例11.求阴影部分的面积。(单位:厘米)例12.求阴影部分的面积。(单位: 厘米) 例13.求阴影部分的面积。(单位:厘米)例14.求阴影部分的面积。(单位:厘米) 例15.如图,在边长为6厘米的等边三角形中挖去三个同样的 扇形,求阴影部分的周长。

举一反三★巩固练习 【专1 】下图中,大小正方形的边长分别是9厘米和5厘米,求阴影部分的面积。 【专1-1】. 求右图中阴影部分图形的面积及周长。 【专2】已知右图阴影部分三角形的面积是5平方米,求圆的面积。 【专2-1】已知右图中,圆的直径是2厘米,求阴影部分的面积。 【专2-2】求右图中阴影部分图形的面积及周长。

【专2-3】求下图中阴影部分的面积。(单位:厘米) 【专3】求下图中阴影部分的面积。 【专3-1】求右图中阴影部分的面积。 【专3-2】求右图中阴影部分的面积。

阴影部分求面积及周长(含答案)

【史上最全小学求阴影部分面积专题一含答案】 小学及小升初复习专题-圆与求阴影部分面积 ----完整答案在最后面 目标:通过专题复习,加强学生对于图形面积计算的灵活运用。并加深对面积和周长概念的理解和区分。面积求解 大致分为以下几类: 重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。能灵活运用所学过的基本的平面图形的 面积求阴影部分的面积。 例3.求图中阴影部分的面积。(单位:厘米)例4.求阴影部分的面积。(单位:厘米) 例7.求阴影部分的面积。(单位:厘米)例8.求阴影部分的面积。(单位:厘米) 例1.求阴影部分的面积。 (单位:厘米) ⑴ 例2.正方形面积是7平方厘米,求阴影部分的面积。 (单位:厘 米) 例5.求阴影部分的面积。(单位:厘米)例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,

例9.求阴影部分的面积。(单位:厘米)例10.求阴影部分的面积。(单位:厘米) 例13.求阴影部分的面积。(单位:厘米)例14.求阴影部分的面积。(单位:厘米) 例15.已知直角三角形面积是12平方厘米,求阴影部分的面 L2 例11.求阴影部分的面积。(单位:厘米)例12.求阴影部分的面积。(单位: 厘米) 3 (12) 积 。 例16.求阴影部分的面积。(单位:厘米)

例18.如图,在边长为6厘米的等边三角形中挖去三个同样的 扇形,求阴影部分的周长。 例23.图中的4个圆的圆心是正方形的4个顶点,,它们的公共点 是该正方形的中心,如果每个圆的半径都是1厘米,那 例24.如图,有8个半径为1厘米的小圆,用他们的圆周的一部分 连成一个花瓣图形,图中的黑点是这些圆的圆心。如果圆周n率取 3.1416,那么花瓣图形的的面积是多少平方厘米? 例19.正方形边长为2厘米,求阴影部分的面积。 例21.图中四个圆的半径都是1厘米,求阴影部分的面积。 例17.图中圆的半径为5厘米,求阴影部分的面积。(单位:厘米)

阴影部分周长和面积计算趣题

阴影部分周长和面积计算趣题 1、如图,求阴影部分图①比阴影图②多多少平方厘米? 分析:在本题中,有一些同学总是想到,要算图①-图②的面积,就要知道中间空白③的面积,但半圆的面积好算,却算不出空白的面积,不知道空白③的面积,就算不出图①-图②的面积。所以感到无从下手做这道题。其实,很简单,我们从图中可以看出:图①+图③=半圆的面积图②+图③=三角形的面积。我们给被减数和减数都加上空白的面积图③,这道题就好算了。其中运用了:给被减数和减数同加上或减去一个相同的数,差不变。这个性质。这样一来图①-图②的面积=半圆的面积-三角形的面积。计算过程就不写了,很简单。 2、如图,已知正方形的面积是10平方厘米,求阴影部分面积。 在这一道题中你如果硬要先算出半径,再算四分之三圆的面积,对六年级学生来说,就难了。如果你不是小学生。还要算半径,你就OUT了。 3、如图,已知三角形AFB比三角形EFD的面积大12平方厘米,求ED的长。图中CD的长为2厘米,ABCD为直角梯形。

4、如图,已知大半圆的直径为10CM,求阴影部分的周长。 5、如图,求阴影部分的面积。(长方形的长为6CM,宽为4CM)

6、如图,已知正方形的边长为8CM,求阴影部分的面积。 本题要以有几种解法,分析如下; (1)正方形面积—四分之一圆的面积= ① ①乘以2 = 图中空白面积 正方形面积一空白面积=阴影面积 (2)如图做辅助线:(四分之一圆的面积一三角形的面积)乘2 = 阴影面积

(3)本题中的图可以看做两个四分之一圆面对面拼在一起而成,阴影部分刚好就是两个四分之一圆拼在一起时的重叠部分。所以本题可以用以下方法做: 半圆面积一正方形面积= 阴影面积

中考《坐标系中三角形周长最小值问题》复习指导

利“刃”在手亿“折”成“直” —例析坐标系中三角形周长最小值问题 在近几年的各地中考中,与线段相关的最值问题频频出现,已然成为一道亮丽的风景线.而其中以平面直角坐标系为载体来设计三角形周长最小值问题,更是中考命题所关注的热点之一本文以近几年中考题为例,归纳其类型与解法,供参考. 1.三角形的三个顶点中仅有一个顶点是动点 例1 (2015年河南省,有改动)如图1,边长为8的正方形OABC 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上点A 、C 间的一个动点(含端点),过点P 作PF BC ⊥于点F .点D 、E 的坐标分别为(0,6),(-4,0),连接,,PD PE DE .是否存在点P ,使PDE ?的周长最小?若存在,求出点P 的坐标;若不存在,请说明理由. 分析 存在.理由:易求抛物线的解析式为2188 y x =-+.设21(,8)8 P m m -+(80)m -≤≤, 则2221118(8),2888PF m m PD m =--+===+,故2P D P F =+, PDE ?的周长=2DE EP PD DE EP PF ++=+++. 如图2,过E 点作EG BC ⊥于点G .当,,E P F 三点共线,即点P 为EG 与抛物线的交点时,EP PF +的值最小,此时214,(4)868P E P x x y ==-=-?-+=,所以PDE ?周长最小时点P 的坐标为(-4,6). 点评 本例三角形的三个顶点中,点P 为动点,点,D E 均为定点.由于DE 的长为定值,欲使PDE ?的周长最小,只需满足PD PE +的值最小即可.进而利用“点P 运动的过程中,PD 与PF 的差为定值”这一有力武器,将问题转化为“求定直线BC 上一动点F 与直线外一定点E 的距离的最小值”,最终借助“连结直线外一点与直线上各点的所有线段中,垂线段最短”确定点P 的位置. 例2 (2012年山西省,有改动)如图3,在平面直角坐标系中,抛物线2 23y x x =-++与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是该抛物线的顶点.请在直线AC 上找一点

周长最小值专题

A.线段和最小值 两种基本模型 如图,要在街道旁修建一个奶站P,向居民区A、B提供牛奶,奶站P 应建在什么地方,才能使从A,B到它的距离之和最短?为什么? 求线段和最小值的一般步骤: ①选点P所在直线l为对称轴;画出点A的对称点A’ ②连结对称点A’与B之间的线段,交直线l于点P, 点P即为所求的点,线段A’B的长就是AP+BP的最小值。 基本解法::利用对称性,将“折”转“直” 基础训练 如图11,梯形ABCD中,AD C. 2. 如图4,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是________。 图4 2.如图,已知点A是半圆上一个三等分点,点B是弧AN的中点,点P是半径ON上的动点,若⊙O的半径长为1,则AP+BP的最小值为___。

B.三角形周长最小值 1.(福建彰州)如图4,∠AOB=45°,P是∠AOB内一点,PO=10,Q、R分别是OA、OB 上的动点,求△PQR周长的最小值. 2.如图,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点, (1)求该抛物线的解析式。 (2)设(1)中的抛物线交y轴于点C,在该抛物线的对称轴上是否存在点Q,使得QAC 的周长最小?如果存在,求出点Q的坐标;若不存在,请说明理由。 (3)在第二象限的抛物线上是否存在一点P,是△PBC的面积最大?若存在,求出点P坐标及△PBC面积的最大值;若不存在,请说明理由 3. 如图,已知抛物线y=ax2+bx+c过A(3,)、B(4,2)、C(0,2)三点,点P是x轴上的动点. (1)求抛物线的解析式; (2)如图甲所示,连接AC、CP、PB、BA,是否存在点P,使四边形ABPC为等腰梯形?若存在,求出点P的坐标;若不存在,说明理由; (3)点H是题中抛物线对称轴l上的动点,如图乙所示,求四边形AHPB周长的最小值.

周长最小值问题2015解析

下载试卷文档前说明文档: 1.试题左侧二维码为该题目对应解析; 2.请同学们独立解答题目,无法完成题目或者对题目有困惑的,扫描二维码查 看解析,杜绝抄袭; 3.只有老师通过组卷方式生成的二维码试卷,扫描出的解析页面才有“求老师 讲解”按钮,菁优网原有的真题试卷、电子书(习题集)上的二维码试卷扫出的页面无此按钮。学生点击该按钮以后,下载试卷教师可查看被点击的相关统计数据。 4.自主组卷的教师使用该二维码试卷后,可在“菁优网->我的空间->我的收藏 ->我的下载”处点击图标查看学生扫描的二维码统计图表,以便确定讲解重点。 5.在使用中有任何问题,欢迎在“意见反馈”提出意见和建议,感谢您对菁优 网的支持。

周长最小值问题2015 (扫描二维码可查看试题解析) 一.解答题(共6小题) 1.(2015?剑川县三模)已知:如图所示,抛物线y=﹣x2+bx+c与x轴的两个交点分 别为A(1,0),B(3,0). (1)求抛物线的解析式; (2)设点P在该抛物线上滑动,且满足条件S△PAB=1的点P有几个?并求出所有点P的坐标; (3)设抛物线交y轴于点C,问该抛物线对称轴上是否存在点M,使得△MAC的周长最小?若存在,求出点M的坐标;若不存在,请说明理由. 2.(2015?平南县一模)如图,在平面直角坐标系中,已知点B的坐标是(﹣1,0), 并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上. (1)求抛物线的解析式; (2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由; (3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,写出点P的坐标(不要求写解题过程).

相关文档
最新文档