汽车连接器定义及相关介绍

汽车连接器定义及相关介绍

汽车连接器定义及相关介绍

汽车连接器是插头或插座端子安装在护套内的组合件,通过电线附件在汽车内起到导电或者联通信号的零部件。一般由插头(插座)端子、插头(插座)护套和卡子及其他附件组成。端子在护套中的保持力一般是由端子和护套通过相互配合的挂接结构得到保证。

汽车连接器基本结构汽车连接器的四大基本结构组件

1、接触件:是汽车连接器完成电连接功能的核心零件。一般由阳性接触件和阴性接触件组成接触对,通过阴、阳接触件的插合完成电连接。

阳性接触件为刚性零件,其形状为圆柱形(圆插针)、方柱形(方插针)或扁平形(插片)。阳性接触件一般由黄铜、磷青铜制成。阴性接触件即插孔,是接触对的关键零件,它依靠弹性结构在与插针插合时发生弹性变形而产生弹性力与阳性接触件形成紧密接触,完成连接。插孔的结构种类很多,有圆筒型(劈槽、缩口)、音叉型、悬臂梁型(纵向开槽)、折迭型(纵向开槽,9字形)、盒形(方插孔)以及双曲面线簧插孔等。

2、壳体:也称外壳(shell),是汽车连接器的外罩,它为内装的绝缘安装板和插针提供机械保护,并提供插头和插座插合时的对准,进而将连接器固定到设备上。

3、绝缘体:绝缘体也常称之为汽车连接器基座(base)或安装板(insert),它的作用是使接触件按所需要的位置和间距排列,并保证接触件之间和接触件与外壳之间的绝缘性能。良好的绝缘电阻、耐电压性能以及易加工性是选择绝缘材料加工成绝缘体的基本要求。

4、附件:附件分结构附件和安装附件。结构附件如卡圈、定位键、定位销、导向销、联接环、电缆夹、密封圈、密封垫等。安装附件如螺钉、螺母、螺杆、弹簧圈等。附件大都有标准件和通用件。

正是这四大基本结构组件使汽车连接器能够充当桥梁作用,稳定运行。

汽车连接器设计标准随着汽车工业的快速发展,汽车上的各种功能件及各种零部件都在不

连接器

介绍 关于汽车连接器 一般汽车需要用到的连接器种类有近百种,单一车型所使用的连接器约有数百个之多。随著人们对汽车在安全性、环保性、舒适性、智慧化等要求越来越高,汽车电子产品的应用日益增加,这将使汽车连接器应用数量呈现增长的情形。 基本结构 汽车连接器的四大基本结构组件 一,接触件,是汽车连接器完成电连接功能的核心零件。一般由阳性接触件和阴性接触件组成接触对,通过阴、阳接触件的插合完成电连接。 阳性接触件为刚性零件,其形状为圆柱形(圆插针)、方柱形(方插针)或扁平形(插片)。阳性接触件一般由黄铜、磷青铜制成。阴性接触件即插孔,是接触对的关键零件,它依靠弹性结构在与插针插合时发生弹性变形而产生弹性力与阳性接触件形成紧密接触,完成连接。插孔的结构种类很多,有圆筒型(劈槽、缩口)、音叉型、悬臂梁型(纵向开槽)、折迭型(纵向开槽,9字形)、盒形(方插孔)以及双曲面线簧插孔等。 二,壳体,也称外壳(shell),是汽车连接器的外罩,它为内装的绝缘安装板和插针提供机械保护,并提供插头和插座插合时的对准,进而将连接器固定到设备上。 三,绝缘体,绝缘体也常称之为汽车连接器基座(base)或安装板(insert),它的作用是使接触件按所需要的位置和间距排列,并保证接触件之间和接触件与外壳之间的绝缘性能。良好的绝缘电阻、耐电压性能以及易加工性是选择绝缘材料加工成绝缘体的基本要求。 四,附件,附件分结构附件和安装附件。结构附件如卡圈、定位键、定位销、导向销、联接环、电缆夹、密封圈、密封垫等。安装附件如螺钉、螺母、螺杆、弹簧圈等。附件大都有标准件和通用件。 正是这四大基本结构组件使汽车连接器能够充当桥梁作用,稳定运行。 设计标准 随着汽车工业的快速发展,汽车上的各种功能件及各种零部件都在不断地向智能化、精细化及可靠性方向发展,对汽车连接器结构设计、外观设计及材料也提出了更高的要求。 汽车连接器必需符合USCAR—20的标准,这是汽车电气连接器系统的性能标准,规定汽车连接器在整个使用周期内电气连接器接触面要始终可靠,包括以下几个因素: 一、连接器触头的材料稳定、可靠 二、正向力稳定 三、电路的电压和电流稳定 四、温度要求在规定的范围之内,包括周围的温度和自身的温升 五、较好的鲁棒性

汽车接插件端子型号汇总

保险片系列 MPF-10A MPF-15A MPF-30A ATN-10A ATN-15A ATN-30A ATO-10A ATO-15A ATO-20A AFF-15A AFF-20A AFF-25A ATS-20A ATS-30A ATS-40A AD-10A AD-15A AD-20A MFJ-60A MFJ-40A

MFJ-70A MRF-30A MRF-60A MRF-80A MY-80MY-100A MY-60A SL-70A SL-80A SL-100A FLK-70A FLK-80A FLK-100A FL-30A FL-100A FL-60A SF-20A SF-40A SF-100A MF-40A

MF-60A MF-100A MJ-80A MJ-50A 1.0到9.6的端子系列 DJ-41220/L DJ618-2.8AL DJ621-1.5×1.8A/L DJ211-1.5B/L DJ617-2.3B/L DJ611-1.5×0.8A/L DJ212-2.5L/L DJ222-2.5L/L

DJ617-1.65×0.8A/L DJ611-F2.2×0.6/L DJ-141211/L DJ625-3B/L DJ-141242/L DJ614A-2.3B/L DJ212-2.3B/L DJ621-1.2A/L DJ622-A1.5A/L DJ212-2.1A/L DJ622-2A/L DJ621-A1.5B/L DJ222-2.1A/L DJ611-1.1A/L DJ629-2.2B/L DJ222-2.3B/L DJ628-2.2A/L DJ621-G2.3×0.6/L DJ622-2.8A/L DJ624-2.3A/L

汽车连接器应用案例

汽车连接器应用案例 作者:华银 汽车连接器的基本结构 汽车连接器的设计标准 汽车连接器的三种故障模式 汽车连接器的发展变化 汽车连接器应用案例 本讲从汽车连接器的四大基本结构入手,介绍了汽车连接器的设计标准,针对汽车连接器的稳定性评估问题,对汽车连接器的三种故障模式进行了解析,并解读了汽车连接器的发展变化情况,最后针对这种发展变化带来的市场需求,给出了相应的汽车连接器应用实例。 汽车连接器形式和结构是千变万化的,其主要是由四大基本结构组件组成,分别是:接触件,外壳(视品种而定),绝缘体,附件。这四大基本结构组件使汽车连接器能够充当桥梁作用,稳定运行。 接触件是汽车连接器完成电连接功能的核心零件。一般由阳性接触件和阴性接触件组成接触对,通过阴、阳接触件的插合完成电连接。阳性接触件为刚性零件,其形状为圆柱形(圆插针)、方柱形(方插针)或扁平形(插片)。阳性接触件一般由黄铜、磷青铜制成。阴性接触件即插孔,是接触对的关键零件,它依靠弹性结构在与插针插合时发生弹性变形而产生弹性力与阳性接触件形成紧密接触,完成连接。插孔的结构种类很多,有圆筒型(劈槽、缩口)、音叉型、悬臂梁型(纵向开槽)、折迭型(纵向开槽,9字形)、盒形(方插孔)以及双曲面线簧插孔等。 壳体,也称外壳(shell),是汽车连接器的外罩,它为内装的绝缘安装板和插针提供机械保护,并提供插头和插座插合时的对准,进而将连接器固定到设备上。 绝缘体也常称之为汽车连接器基座或安装板,它的作用是使接触件按所需要的位置和间距排列,并保证接触件之间和接触件与外壳之间的绝缘性能。良好的绝缘电阻、耐电压性能以及易加工性是选择绝缘材料加工成绝缘体的基本要求。 附件分结构附件和安装附件。结构附件如卡圈、定位键、定位销、导向销、联接环、电缆夹、密封圈、密封垫等。安装附件如螺钉、螺母、螺杆、弹簧圈等。附件大都有标准件和通用件。 随着汽车工业的快速发展,汽车上的各种功能件及各种零部件都在不断地向智能化、精细化及可靠性方向发展,对汽车连接器结构设计、外观设计及材料也提出了更高的要求,有了一定的设计标准。 汽车连接器的设计标准 汽车连接器必需符合USCAR—20的标准,这是汽车电气连接器系统的性能标准,规定汽车连接器在整个使用周期内电气连接器接触面要始终可靠,包括以下九个因素: 1)连接器触头的材料稳定、可靠; 2)正向力稳定; 3)电路的电压和电流稳定; 4)温度要求在规定的范围之内,包括周围的温度和自身的温升; 5)较好的鲁棒性; 6)必需与高速长距离通信计算机用的连接器相同,汽车连接器必需能在恶劣的条件下可靠地工作; 7)连接器插入力:20.5kg以下; 8)连接器保持力:2.5kg以上; 9)耐热性:—40~120℃ 一辆典型轻型汽车大约有1500个连接点,其中50%到60%用于关键的配电功能。汽车连接器被用于日益恶劣的环境,包括温度(低至零下40°C,高达零上155°C)、振动、氧化作用以及摩擦腐蚀,这就显示出设计攻关的重要性。 实际上这件事情做起来并不简单,大多数商业电子元器件出现故障时最多让人感到烦恼失意,可是如果关键汽车零配件连接出现问题,则会引起火灾报警器、制动器或安全气囊失灵,导致严重后果。 连接器制造商必须识别并分析环境中那些可能对连接器性能造成影响的物理和机械现象。按照汽车制造商规定的应

汽车线束端子退针原因分析

线束插接器用于汽车电路各连接点的连接,是汽车上的重要零件,其品质好坏直接影响到电力或信号的传输效果。插接器在汽车中占的成本比例较小,但在汽车使用中若出现品质问题,往往产生严重的后果,且维修成本大幅增加,因此,插接器的品质越来越得到汽车制造商及零部件供应商的重视。 端子退针是线束插接器比较常见的一种失效形式。端子退针是指插接器完成装配后,端子与护套非正常分离,从而使插接器功能丧失。此种失效形式的形成原因一般包括3个方面:①端子在护套中的保持力不合格;②对插干涉;③产品应用问题。本文根据这3个方面的原因对插接器端子退针进行分析并提出解决方案。 1 端子在护套中的保持力不合格 端子在护套中的保持力是指沿轴向使端子与护套分离所需的力。为避免出现端子退针的现象,插接器的性能试验标准对端子在护套中的保持力做了严格规定:①规格不大于2.8的插接器保持力大于40N;②规格大于2.8的插接器保持力大于60N。实践中较多端子退针现象的产生都是因为保持力不满足规定。一般来说,端子在护套中的保持力不合格的原因有:结构设计问题及材料选择问题。 1.1结构设计问题 结构设计问题主要是指端子和护套的挂接结构设计。这种挂接结构一般是一种弹性结构,分为护套上采用弹性结构和端子上采用弹性结构。1.1.1护套上采用弹性结构 护套上采用弹性结构,将端子和护套装配所需要的弹性结构设计在护套上,在端子和护套装配过程中,通过护套弹舌(设计在护套上的弹性结构)受力变形,实现端子和护套的装配。在端子和护套装配到位后,护套弹舌由于受力解除而恢复至原始状态。该护套弹舌和设计在端子上的挂台结构的配合,保证护套对端子的有效定位。护套弹舌的剪切强度决定了端子在护套中的保持力。剪应力计算公式如下: 式中:τ———材料所受的剪应力;F———材料剪切方向受力;A———剪切面积;[τ]——材料的许用屈服剪应力。由公式(1)可知:材料剪切方向承受的最大力与材料的剪切面积

关于接插件必须掌握的基本知识

接插件的基本常识<接插件的功能:为下列传递服务提供可以拆分的联结 a) 电流连接 b) 电信号连接 c) 光信号连接< 不同的标准把连接区分为联结器和联结接插件,定义(根据德国及欧盟标准DIN EN 61984 (VDE 0627)) 连接器 -- 用来和它相对应的器件进行电路连接及脱离的电子组件.(没有电压差的情况下. ) 接插件 -- 联结器带开关功能和联结器设计为特定的在带负载情况下联结和分离的器件 -- 在次标准中,所谓“带电压差”是指当器件带电压差,但还没有电流通过, -- 定义“ 负载”是指电流通过器件.

接插件的基本常识对于高手来说根本就不算什么问题,但是对于像我这样出校门不久的来说却一直让我头痛,而对于插件这一块我一直都比较感兴趣的,在21ic、以及电子元件技术网上查找了不少资料终于整理成了这篇还算让自己满意的新手教程。而对于连接器我同样有着自己个人的看法: 连接器的概念 历史背景:1926第一个批量生产的联结器:4> 一对二的插座(香蕉插座)

< DIV class=resizeimg4>
连接器的类型有那些?
连接器市场上存在着很多不同类型和针对不同用途的连接器,我们可以根据用途, 连接器类型区分, 当然同一种连接器也可以使用到不同用途的场合,例如:电路板的连接器可以在计算计/配件, 医疗技术,信号传递和运输领域- 几乎是所有已知的领域 (图片来自我爱方案网)连接器的用途和市场: ?汽车?军用和航空航天
?通讯和数据传输?消费产品
?运输?医疗技术 ?计算机及其配件?工业自动化

常用PCB接插件端子[1]

插拔式接线端子 总共 170 个产品 间 距 极 数 定 额 线 径 2.5 2-24P 125V/4A 28-20AWG 0.5mm 2 2.5 2-24P 125V/4A mm 2 2.5 2-24P 125V/4A mm 2 2.5 2*(2-24)P 125V/4A mm 2 间 距 极 数 定 额 线 径 2.5 2*(2-24)P 125V/4A mm 2 3.5/3.81 2-24P 300V/8A 28-16AWG 1.5mm 2 3.5/3.81 2-24P 300V/8A 28-16AWG 1.5mm 2 3.81 2-24P 300V/8A 28-16AWG 1.5mm 2 间 距 极 数 定 额 线 径 3.81 2-24P 300V/8A 28-16AWG 1.5mm 2 3.5/3.81 2-24P 300V/8A 28-16AWG 1.5mm 2 3.5/3.81 2-24P 300V/8A 28-16AWG 1.5mm 2 3.5/3.81 2-24P 300V/8A 28-16AWG 1.5mm 2 间 距 极 数 定 额 线 径 3.5/3.81 2-24P 300V/8A 3.81 2-24P 300V/8A 3.81 2-24P 300V/8A 3.5/3.81 2-24P 300V/8A

28-16AWG 1.5mm228-16AWG 1.5mm228-16AWG 1.5mm228-16AWG 1.5mm2插拔式接线端子总共170个产品 间距 极数 定额 线径 3.5/3.81 2-24P 300V/8A 28-16AWG 1.5mm2 3.5/3.81 2-24P 300V/8A 28-16AWG 1.5mm2 3.5/3.81 2-24P 300V/8A 28-16AWG 1.5mm2 3.5/3.81 2-24P 300V/8A 28-16AWG 1.5mm2 间距 极数 定额 线径 3.5/3.81 2-24P 300V/8A mm2 3.5/3.81 2-24P 300V/8A mm2 3.5/3.81 2-24P 300V/8A mm2 3.5/3.81 2-24P 300V/8A mm2 间距 极数 定额 线径 3.5/3.81 2-24P 300V/8A mm2 3.5/3.81 2-24P 300V/8A mm2 3.5/3.81 2*(2-12)P 300V/8A mm2 3.5/3.81 2*(2-12)P 300V/8A mm2

汽车线束端子合格压接及其判定

汽车线束端子合格压接及其判定 介绍 1. 压接高度过小 2. 压接高度过大 3. & 4. 绝缘压接过小或过大 5. 松散的线芯 6. 剥线长度过短 7. 线缆插入过深 8. "香蕉" (过度弯曲) 端子 9. 压接过于靠前 10. 喇叭口过小 11. 喇叭口过大 12. 尾料过长 13. 弹性片弯曲准则 介绍 您已经阅读了所有的连接器目录,找到了满足您的所有设计标准并完全适于您的应用的连接器。正确的额定电流、额定电压、电路大小、接合力、线规能力、结构、端接方法和安全特征,例如正向锁定、完全独立的触点、极性和代理商资格等要求得到满足,那么简而言之就 是您找到了完美的连接器。 但是还没有完全到长出一口气的时候,特别是如果您选择的连接器使用压接系统。虽然这可 能是最快、最可靠和牢固的端接方法之一,如果端子没有正确地压接在线缆上,您会忘记在 选择正确的连接器上付出的所有辛苦努力。虽然有13个常见的压接问题会降低您的产品的可靠性,但是仅需一些小的知识和预先规划就可以简单地避免这些问题。 首先,了解端子具有三个主要部分:插接区、过渡区和压接区(图A),这有助于我们理解。 顾名思义,插接区是端子与另一半连接端子插接的部分。该部分由连接器设计师设计为与对 接端子接合,并以一定的方式工作。如果压接过程中接合部变形,将会降低连接器的性能。 过渡区同样设计为在压接过程中不受影响。如果您改变了弹性片或端子止口的位置,同样将 影响连接器的性能。 压接区是唯一设计受到压接工艺影响的部分。使用连接器制造商推荐的端接设备,夹紧压接区,从而牢固地与线缆连接。理想情况下,您将端子压接在线缆上的所有工作仅发生在压接区。 正确执行的压接示例参见(图B)。绝缘压接区压缩绝缘层,但不会刺穿。线芯(或线刷)伸 出于导体压接区前部的距离至少等于线缆导体的直径。例如,18 AWG线缆应伸出至少.040"。在绝缘和导体压接区之间的部分可以看见绝缘层和导体。导体压接区在引入端和尾端呈喇叭形,而过渡区和接合区在压接工艺前后始终保持不变。 如果您的压接端子看起来和(图B)中的端子不同,可能是因为在压接工艺中出现了错误。这 里是压接工艺中可能出现的13个最常见的问题,以及如何避免它们。

高压连接器(电动汽车系列)技术规范

本规范规定了电动汽车系列高压连接器(以下简称连接器)的技术要求、质量保证规定、试验方法。 本规范适用于GB/T 18384.3-2015规定的B级电压电路的电动汽车高压连接器。 2.引用文件: 下列文件中的有关条款通过引用而成为本规范的条款。凡注日期或版次的引用文件,其后的任何修改单(不包括勘误的内容)或修订版本都不适用于本规范,但提倡使用本规范的各方探讨使用其最新版本的可能性。凡不注日期或版次的引用文件,其最新版本适用于本规范。 GB/T 18384.3-2015 电动汽车安全要求第3部分:人员触电防护 GB/T 5095.2-1997 电子设备用机电元件基本试验规程及测量方法第二部分:一般检查、电连续性和接触电阻测试、绝缘试验和电压应力试验 GB/T 5095.3-1997电子设备用机电元件基本试验规程及测量方法第3部分:载容流量实验 GB/T 5095.5-1997 电子设备用机电元件基本试验规程及测量方法第5部分:机械负荷和寿命试验 GB/T 5095.6-1997 电子设备用机电元件基本试验规程及测量方法第6部分:气候试验和锡焊试验 GB/T 5095.8-1997 电子设备用机电元件基本试验规程及测量方法第8部分:连接器、接触件及引出端的机械试验 GB/T 28046.3-2011道路车辆电气及电子设备的环境条件和试验第3部分_机械负荷标准 GB/T 28046.4-2011道路车辆电气及电子设备的环境条件和试验第4部分_气候负荷标准 GB/T 28046.5-2013道路车辆电气及电子设备的环境条件和试验第5部分_化学负荷标准 GB/T 4208-2008 外壳防护等级(IP代码) GB/T 2423.2-2008 电工电子产品环境试验第2部分:试验方法试验B:高温 GB/T 2423.5-1995 电工电子产品环境试验第二部分:试验方法试验Ea和导则:冲击 GB/T 2423.17-2008 电工电子产品环境试验第2部分:试验方法试验Ka:盐雾 GB/T 2048-2008 塑料燃烧性能的测定水平法和垂直法 QC/T 413-2002 汽车电子设备基本技术条件 QC/T 417.1-2001 车用电线束插接器 QC/T 29106-2014汽车电线束技术条件 GB/T 2828 计数抽样检验程序 SAE J2223-2-2011 Connections for On-Board Road V ehicle Electrical Wiring Harnesses—Part 2: Tests and General Performance Requirements SAE_J1742-2005 Connections_for_High_V oltage_On-Board_Road_Vehicle_Electrical_Wiring_Harnesses SAE USCAR-2-2013 Performance Specification For Automotive Electrical Connector Systems LV215-1-2009 Electrical/ Electronic Requirements of HV Connectors

汽车线束连接器端子退针原因分析

汽车线束连接器端子退针原因分析 车用电线束插接器用于汽车电路各连接点的连接,是汽车上的重要零件,其品质好坏直接影响到电力或信号的传输效果。插接器在汽车中占的成本比例较小,但在汽车使用中若出现品质问题,往往产生严重的后果,且维修成本大幅增加,因此,插接器的品质越来越得到汽车制造商及零部件供应商的重视。 端子退针是车用电线束插接器比较常见的一种失效形式,是指插接器完成装配后,端子与护套非正常分离,从而使插接器功能丧失。此种失效形式的形成原因一般包括3个方面:①端子在护套中的保持力不合格;②对插干涉;③产品应用问题。本文根据这3个方面的原因对插接器端子退针进行分析并提出解决方案。 01 端子在护套中的保持力不合格 端子在护套中的保持力是指沿轴向使端子与护套分离所需的力。为避免出现端子退针的现象,插接器的性能试验标准对端子在护套中的保持力做了严格规定:①规格不大于2.8的插接器保持力大于40N;②规格大于2.8的插接器保持力大于60N。实践中较多端子退针现象的产生都是因为保持力不满足规定。一般来说,端子在护套中的保持力不合格的原因有:结构设计问题;材料选择问题。 1.1结构设计问题 涉及到端子保持力方面的插接器的结构设计问题主要是指端子和护套的挂接结构设计。这种挂接结构一般是一种弹性结构,分为护套上采用弹性结构和端子上采用弹性结构。 1.1.1护套上采用弹性结构 护套弹性结构见图1。护套上采用弹性结构是指将端子和护套装配所需要的弹性结构设计在护套上,在端子和护套装配过程中,通过护套弹舌(设计在护套上的弹性结构)受力变形,实现端子和护套的装配。在端子和护套装配到位

后,护套弹舌由于受力解除而恢复至原始状态。该护套弹舌和设计在端子上的挂台结构的配合,保证护套对端子的有效定位。护套弹舌的剪切强度决定了端子在护套中的保持力。剪应力计算公式如下: 式中:τ———材料所受的剪应力;F———材料剪切方向受力;A———剪切面积;[τ]——材料的许用屈服剪应力。 由公式(1)可知:材料剪切方向承受的最大力与材料的剪切面积成正比,与材料的许用剪应力成正比。护套弹舌设计时,当材料选定后,材料的许用屈服剪应力即固定不变,要保证产品满足端子在护套中的保持力(剪切方向受力)要求,需保证护套弹舌的剪切面积满足要求值。实践中由于考虑到端子和护套的设计间隙,因此剪切面积应按极限恶劣情况计算。端子和护套的设计间隙应能保证在极限恶劣情况下计算出的剪切面积所能承受的屈服剪应力大于要求的端子在护套中的保持力。 1.1.2端子上采用弹性结构 端子弹性结构见图2。端子上采用弹性结构是指将端子和护套装配所需要的弹性结构设计在端子上,在端子和护套装配过程中,通过端子弹舌(设计在端子上的弹性结构)受力变形,实现端子和护套的装配。在端子和护套装配到位后,端子弹舌由于受力解除而恢复为原始状态。该端子弹舌和设计在护套上的挂台结构的配合,保证护套对端子的有效定位。端子弹舌的屈服强度决定了端子在护套中的保持力。由公式(1)可知:端子弹舌设计时,当材料选定后,材料的许用剪应力即固定不变,要保证产品满足端子在护套中的保持力(剪切方向受力)要求,需保证端子弹舌的剪切面积满足要求值。实践中由于考虑到端子和护套的设计间隙,除考虑端子弹舌的剪切面积(材料厚度和弹舌宽度)外,应保证极限恶劣情况下,端子弹舌与设计在护套上的挂台结构具有完整的配合。

接插件基础知识之连接器的三大基本性能

接插件基础知识之连接器的三大基本性能 2005年8月1日 9:36 连接器的基本性能可分为三大类:即机械性能、电气性能和环境性能。 1.机械性能就连接功能而言,插拔力是重要地机械性能。插拔力分为插入力和拔出力(拔出力亦称分离力),两者的要求是不同的。在有关标准中有最大插入力和最小分离力规定,这表明,从使用角度来看,插入力要小(从而有低插入力LIF和无插入力ZIF的结构),而分离力若太小,则会影响接触的可靠性。 另一个重要的机械性能是连接器的机械寿命。机械寿命实际上是一种耐久性(durability)指标,在国标GB5095中把它叫作机械操作。它是以一次插入和一次拔出为一个循环,以在规定的插拔循环后连接器能否正常完成其连接功能(如接触电阻值)作为评判依据。 连接器的插拔力和机械寿命与接触件结构(正压力大小)接触部位镀层质量(滑动摩擦系数)以及接触件排列尺寸精度(对准度)有关。 2.电气性能连接器的主要电气性能包括接触电阻、绝缘电阻和抗电强度。 ①接触电阻高质量的电连接器应当具有低而稳定的接触电阻。连接器的接触电阻从几毫欧到数十毫欧不等。 ②绝缘电阻衡量电连接器接触件之间和接触件与外壳之间绝缘性能的指标,其数量级为数百兆欧至数千兆欧不等。 ③抗电强度或称耐电压、介质耐压,是表征连接器接触件之间或接触件与外壳之间耐受额定试验电压的能力。 ④其它电气性能。 电磁干扰泄漏衰减是评价连接器的电磁干扰屏蔽效果,电磁干扰泄漏衰减是评价连接器的电磁干扰屏蔽效果,一般在100MHz~10GHz频率范围内测试。 对射频同轴连接器而言,还有特性阻抗、插入损耗、反射系数、电压驻波比(VSWR)等电气指标。由于数字技术的发展,为了连接和传输高速数字脉冲信号,出现了一类新型的连接器即高速信号连接器,相应地,在电气性能方面,除特性阻抗外,还出现了一些新的电气指标,如串扰(crosstalk),传输延迟(delay)、时滞(skew)等。 3.环境性能常见的环境性能包括耐温、耐湿、耐盐雾、振动和冲击等。

汽车接插件端子型号大全

保险片系列 MPF-10A MPF-15A MPF-30A ATN-10A ATN-15A ATN-30A ATO-10A ATO-15A ATO-20A AFF-15A AFF-20A AFF-25A ATS-20A ATS-30A ATS-40A AD-10A AD-15A AD-20A MFJ-60A MFJ-40A

MFJ-70A MRF-30A MRF-60A MRF-80A MY-80 MY-100A MY-60A SL-70A SL-80A SL-100A FLK-70A FLK-80A FLK-100A FL-30A FL-100A FL-60A SF-20A SF-40A SF-100A MF-40A

MF-60A MF-100A MJ-80A MJ-50A 1.0 到9.6的端子系列 DJ-41220/L DJ618-2.8AL DJ621-1.5×1.8A/L DJ211-1.5B/L DJ617-2.3B/L DJ611-1.5×0.8A/L DJ212-2.5L/L DJ222-2.5L/L

DJ617-1.65×0.8A/L DJ611-F2.2×0.6/L DJ-141211/L DJ625-3B/L DJ-141242/L DJ614A-2.3B/L DJ212-2.3B/L DJ621-1.2A/L DJ622-A1.5A/L DJ212-2.1A/L DJ622-2A/L DJ621-A1.5B/L DJ222-2.1A/L DJ611-1.1A/L DJ629-2.2B/L DJ222-2.3B/L DJ628-2.2A/L DJ621-G2.3×0.6/L DJ622-2.8A/L DJ624-2.3A/L

接线端子插接插件和各类连接器的基础知识

接线端子和各类连接器的基础知识 接线端子用于将分开的电路连接到一起。通常这些连接器用于常需要切换和断开的场合,如连接电源,连接外围电路,或者需要更换的扩展部分。 在本教程中,我们将介绍下面主题 ?关于接线端子的常见术语 ?将接线端子进行区别分类 ?介绍上述分类之间的区别 ?介绍如何使用极性防反的接线端子 ?介绍如何使用极性防反的接线端子 在您开始阅读本文之前,请确保您已经知道或者学习了以下教程中所罗列的内容:

在我们开始讨论一些常用的连接器之前,让我们来探讨用于描述接线端子的术语。 公母端子Gender–接线端子的公母性说明了它是用来插入还是被插入的。(哈哈,如果你还是单纯的孩子,更详细的解释估计你得去问问你父母)遗憾的是,有些被称为公头的端子,实际上是按照母头的端子来使用的。在接下来的示例中,我们将将说明这些缘由。 Male and female 2.0mm PH series JST connectors 左边公右边母的 2.0mm PH系列的JSP接线端子 极性-大多数接线端子有约定的极性方向。这种特性使得接线端子可以防止接反。 North America wall plug 有极性的美规墙上插头。通过为插头叶片两种不同的宽度,插头只能单向进入插座

触点-触点是接线端子真正起作用的功能部分。它们是彼此接触的金属部件,形成电气导通的连接。这里也往往是导致连接不良的地方:触点可能变脏或氧化、或者金属弹片的弹性随时间蠕化变小而将导致触点松脱或连接不可靠。 ADH8066 mating connector 该连接器上的触点清晰可见。 间距–许多连接器由重复排列的一组触点组成。连接器的间距是从一个触点的中心到下一个触点的中心的距离。这一点很重要,因为有许多接线端子外观和触点看起来非常相似,但间距可能不同,所以往往一个型号系列的端子仅仅因为这个参数不同而不同,因此在不知道此参数情况下,很容易在购买了不能配对连接端子。

接插件基础知识之连接器的基本结构组成

接插件基础知识之连接器的基本结构组成 2005年7月20日 8:18 连接器的基本结构件有①接触件;②绝缘体;③外壳(视品种而定);④附件。 1.接触件(contacts)是连接器完成电连接功能的核心零件。一般由阳性接触件和阴性接触件组成接触对,通过阴、阳接触件的插合完成电连接。 阳性接触件为刚性零件,其形状为圆柱形(圆插针)、方柱形(方插针)或扁平形(插片)。阳性接触件一般由黄铜、磷青铜制成。 阴性接触件即插孔,是接触对的关键零件,它依靠弹性结构在与插针插合时发生弹性变形而产生弹性力与阳性接触件形成紧密接触,完成连接。插孔的结构种类很多,有圆筒型(劈槽、缩口)、音叉型、悬臂梁型(纵向开槽)、折迭型(纵向开槽,9字形)、盒形(方插孔)以及双曲面线簧插孔等。 2.绝缘体绝缘体也常称为基座(base)或安装板(insert),它的作用是使接触件按所需要的位置和间距排列,并保证接触件之间和接触件与外壳之间的绝缘性能。良好的绝缘电阻、耐电压性能以及易加工性是选择绝缘材料加工成绝缘体的基本要求。 3.壳体也称外壳(shell),是连接器的外罩,它为内装的绝缘安装板和插针提供机械保护,并提供插头和插座插合时的对准,进而将连接器固定到设备上。 4.附件附件分结构附件和安装附件。结构附件如卡圈、定位键、定位销、导向销、联接环、电缆夹、密封圈、密封垫等。安装附件如螺钉、螺母、螺杆、弹簧圈等。附件大都有标准件和通用件。 接插件基础知识之连接器常用的专业术语 2005年7月21日 9:11 1. 连接器:通常装接在电缆或设备上,供传输线系统电连接的可分离元件(转接器除外)。 2. 射频连接器:是在射频范围内使用的连接器。 3. 视频:频率范围在3HZ∽30MHZ之间的无线电波。 4. 射频:频率范围在3千HZ∽3000GHZ之间的无线电波。

汽车接插件端子型号大全

保险片系列 MPF-10A MPF-15A MPF-30A ATN-10A ATN-15A ATN-30A ATO-10A ATO-15A ATO-20A AFF-15A AFF-20A AFF-25A ATS-20A ATS-30A ATS-40A AD-10A AD-15A AD-20A MFJ-60A MFJ-40A

MFJ-70A MRF-30A MRF-60A MRF-80A MY-80 MY-100A MY-60A SL-70A SL-80A SL-100A FLK-70A FLK-80A FLK-100A FL-30A FL-100A FL-60A SF-20A SF-40A SF-100A MF-40A

MF-60A MF-100A MJ-80A MJ-50A 1.0到9.6的端子系列 DJ-41220/L DJ618-2.8AL DJ621-1.5×1.8A/L DJ211-1.5B/L DJ617-2.3B/L DJ611-1.5×0.8A/L DJ212-2.5L/L DJ222-2.5L/L

DJ617-1.65×0.8A/L DJ611-F2.2×0.6/L DJ-141211/L DJ625-3B/L DJ-141242/L DJ614A-2.3B/L DJ212-2.3B/L DJ621-1.2A/L DJ622-A1.5A/L DJ212-2.1A/L DJ622-2A/L DJ621-A1.5B/L DJ222-2.1A/L DJ611-1.1A/L DJ629-2.2B/L DJ222-2.3B/L DJ628-2.2A/L DJ621-G2.3×0.6/L DJ622-2.8A/L DJ624-2.3A/L

《汽车端子连接器用铜及铜合金带》行业标准

《汽车端子连接器用铜及铜合金带》行业标准 编制说明(送审稿) (本编制说明应为《送审稿》编制说明,请按《送审稿》的情况进行说明) 1、工作简况 根据有色标委下发的[2013] 19号文件《关于转发2013年第一批有色金属国家、行业标准制(修)订项目计划的通知》,其中附件2《2013年第一批有色金属行业标准项目计划表》序号21项(计划编号2013-0316T-YS)《汽车端子连接器用铜带》由宁波兴业盛泰集团有限公司、菏泽广源铜带股份有限公司、安徽鑫科新材料股份有限公司、铜陵金威铜业有限公司、中色奥博特铜铝业有限公司、山西春雷铜材有限责任公司等单位负责起草。 本标准为首次制订。随着汽车对功能性要求的增多,汽车连接器的应用会越来越广泛。汽车的合成化趋势使连接器的集成度越来越高,由于汽车对空间设计的要求,连接器要求有更小的体积,使其不占用较大的空间,单个连接器要接收的信号越来越多,对其综合性能的要求也越来越苛刻。总的来说,汽车连接系统将会向电子控制模块的方向发展。因此通过汽车端子连接器的基础原材料铜板带产品标准的制定,可以更加规范产品质量,扩大供给量,替代进口,同时推进中国汽车产业的发展。 标准制订计划任务正式下达后,宁波兴业盛泰集团有限公司牵头成立了标准编制小组,首先整理收集本企业曾经生产的产品的技术要求及产品使用现状,为本标准全面、系统、有效的制定奠定了良好的基础。随后编制小组会同市场开发和营销人员汽车端子连接器用铜合金带材进行了全面的市场调研,全面、准确地了解了市场不同客户的需求以及产品未来的发展趋势,了解国内目前生产厂商的生产水平和现状。通过查阅了国内外有关的技术资料,结合主要用户的技术要求,经过多次讨论,形成了标准讨论及编制说明。 5月大连讨论会情况说明?《送审稿》的如何形成? 2、编制原则、主要技术指标确定依据 2.1 编制原则 本标准根据市场对汽车端子连接器用铜带的需求和客户的特殊要求进行了制定。 2.1 牌号、状态和规格 本标准根据我国目前材料应用的实际,选取了国家标准中规定的TFe2.5、QSn4-0.3、QSn6.5-0.1、QSn8-0.3、H70、H65、H63 七个牌号,依据GB/T5231-2012《加工铜及铜合金牌号和化学成分》,新增加了4个牌号:TFe0.75、HSn88-2、QSn10-0.3、QSi0.7-3。 依据GB/T29094-2012《铜及铜合金状态表示方法》,选取1/2硬(H02)、3/4硬(H03)、硬(H04)、特硬(H06)、弹性硬(H08)、高弹硬(H10)、TM00、TM02、TM03、TM04,共十种状态。 本标准根据汽车端子连接器行业常规铜带的要求,规定规格为:厚度0.15~2.0 mm×宽度10~600mm。 2.2外形尺寸及允许偏差的确定 本标准根据汽车端子连接器用铜带的要求制定。 2.3力学性能的确定 本标准根据汽车端子连接器用铜带的要求,参考ASTM B888-2010、ASTM B103-2010标准制定。 2.4电性能的确定 本标准根据汽车端子连接器用铜带的要求制定。

汽车线束常见端子 接插件型号规格

接插件型号规格二OO四年七月十三日

DJ7021A-2.8-21 DJ7031A-2.8-11 DJ7031A-2.8-21 DJ7041A-2.8-11 DJ7041A-2.8-11 DJ7061A-2.8-11 DJ7061A-2.8-21 DJ7091A-2.8-11 DJ7091A-2.8-21 DJ7021-2.8-11 DJ7021-2.8-21 DJ7031-2.8-11 DJ7041-2.8-21 DJ7061-2.8-11 DJ7061-2.8-21 DJ7091-2.8-11 DJ7091-2.8-21 DJ7011-6.3-11 DJ7011-6.3-21 DJ7014-6.3-21 DJ70114-4.8 DJ70114-4.8 DJ70221-6.3-21 DJ7028-6.3-21 DJ7021-6.3-11 DJ7021-6.3-21 DJJ7021-6.3-21 DJ7022-6.3-11 DJ70224-6.3-21

DJ70224-6.3-11 DJ70224-6.36-21 DJ70218-6.3-11 DJ70218-6.3-11 DJ7031-6.3-11 DJ7031-6.3-21 DJ7031A-6.3-11 DJ7031A-6.3-21DJF7031-6.3-11DJF7031-6.3-21 DJ7041-6.3-11DJ70413-6.3-21DJ70413-6.3-11 DJ70413-6.3-21DJ70413B-6.3-21DJ7048-6.3-21 DJ7042-6.3-11DJ7042-6.3-21DJ70410-6.3-11 DJ70410-6.3-21DJ70410-6.3-10DJ70415-6.3-11

导线连接器相关知识介绍

导线连接器相关知识介绍 现代汽车由于电控器件的不断增多,其连接导线的数量也不可避免地呈增大趋势,为保证导线连接的正确性和可靠性,导线连接器起到了非常重要的作用。 导线连接器是一个连有线束的插座,所有传感的接线端子都使用专用接口,控制电脑ECU 和外部所有部件的连接都是通过ECU上的连接器,而线束中信号的转接使用的也是线连接器。可以这样认为,在电控汽车中,控制电脑ECU是控制中枢,线束是控制系统的神经网络,那么,导线连接器则是电路线束的中继站。然而,连接器除具有安装方便,接线准确之外,在使用中也时常出现故障,而最为常见的故障则为接触不良从而导致“网络”信号传输的中断,直接影响着电控汽车良好性能的正常发挥。导线及连接器断路导线及连接器断路故障,可能是由于导线使用中折断,连接器接触不良,连接器端子松脱造成的。 由于导线在中间断开的故障是很罕见的,大都是在连接器处断开,因此,检查时应着重仔细检查传感器和连接顺处的导线,是否有松脱和接触不良。由接触不良而引起的连接器断路故障,常是由于连接器端于锈蚀,外界脏污进入端子或连接插座,从而造成接触压力降低。此时,只要把连接器拆下,再重新装插上,以改变它的连接状况,使其恢复正常接触即可。 导线及连接器短路故障 导线及连接器的故障也可能是由于线束与车身(地线)之间或在有关开关内部短路所造成的。检查前应首先看在车身的导线连接器固定是否牢靠,然后便可按下列步骤进行测试。 (1)检查电线通断 首先拆下控制电脑ECU和传感器两侧的导线连接器,再测量连接器相应端子间的电阻。如电阻值不大于1欧姆,则说明电线正常,以便进行下一步检查。在测量导线电阻时,最好在垂直和水平两个方向轻轻摇动导线以提高测量的准确性,同时注意,对大多数导线连接器、万用表表棒应从连接器的后端插入,但是对于装有防水套的防水型连接器表棒就不能从后端插入,因为在插入时稍不小心便会使端子变形。 (2)短路的电阻值检查 首先拆下控制电脑ECU和传感器两侧的导线连接器,再测量两侧连接器各端子与车身间的电阻值。测量时,表棒一端搭铁接车身,另一端要分别在两侧导线连接器上进行测量,如果电阻值大于1欧姆则说明该电线与车身无短路故障. 连接器外观及接触压力检查 首先应逐一拆下各导线连接器,检查连接器端子上有无锈触和脏污,对锈蚀和脏污应清理。然后检查端子片是否松动或损坏,端子固定是否牢靠,在轻轻拉动时端子应无松动现象。反之,如果在哪一个座孔中的插头端子拔出时比其它座孔容易,则该座孔可能在使用中会引起

电动汽车高压连接器概述及测试验证

无论是纯电动、混合、燃料电池汽车,都需有一套完整的高压连接系统,这个系统中,往往都应用大量的高压连接器,这一点与传统汽车有着明显的区别。高压系统工作时放电电流有可能达到数几十安,甚至高达数百安。 但是在新能源电动汽车发展初期,高压连接器并没有得到整车企业的足够重视,认为高压连接与传统低压线连接类似,重心在“三电”(电驱、电池、电控)上面,但随着时间的推移,大家发现高压连接系统比较容易发生问题,且一旦发生问题,后果都比较严重,轻则过热,严重时容易发生高温或燃烧事件。 本研究围绕高压连接器的发展历程展开,分析中国电动汽车用高压连接器的标准体系、测试方法,针对产品使用过程中的性能指标,搭建高压连接器测试系统,开展高压连接器的物理连接、电气性能等方面的测试,为产品的不断改进提供了支撑。 1、高压连接器的发展历程 电动汽车高压连接器的发展与电动汽车的发展是同步进行的,从连接器角度来说,国内电动汽车连接器发展经历以下几代。 1)第1代高压连接器(图1),2008年左右开始,主要是由当时工业连接器改款而来。这代产品的特点,以金属连壳体为主,无高压互锁功能,防误插入(防呆)效果较差。比较有代表性产品有安费诺HV系列的金属连接器,后来市场上很多款连接器是基于这种类型产品延伸扩展出来的。

2)第2代高压连接器(图2),在第1代的基础上增加了高压互锁功能,连接器的外壳也逐渐由金属变为塑料。

3)第3代高压连接器(图3),塑料+屏蔽功能+高压互锁的高压连接器。有代表性的是行业中800系列产品(这类产品是通过操作顺序来实现部分二级解锁功能,不是直接机械式结构),如TE/安费诺/智绿及国内新一代产品。 4)第4代高压连接器(图4),塑料+屏蔽功能+高压互锁+二级解锁的高压连接器。有代表性的是行业中280系列产品,如TE/智绿及国内新一代产品,这类产品是通过机械结构来实现二级解锁功能,更为安全。

试析几种常用接触件在新能源汽车高压连接器上的应用

试析几种常用接触件在新能源汽车高压连接器上的应用 发表时间:2019-11-06T16:18:44.827Z 来源:《基层建设》2019年第22期作者:季凤霞[导读] 摘要:作为连接电气和实现信号传递的基础机电元件,高压连接器需要做好接触件的选择,以便通过可靠信号传输保证新能源汽车安全运行。 身份证号码:32062119860108xxxx 摘要:作为连接电气和实现信号传递的基础机电元件,高压连接器需要做好接触件的选择,以便通过可靠信号传输保证新能源汽车安全运行。基于此,本文对片簧式、扭簧式、触指式等几种常用接触件在新能源汽车高压连接器上的应用问题展开了分析,发现采用触指式插孔的接触件具有较好的可靠性、经济性。 关键词:接触件;新能源汽车;高压连接器引言:在新能源汽车上,利用高压连接器进行高压组件的连接,在连接器应用场合不同的情况下,需要采用不同的端子接触件,以便运用不同电接触方式满足电路的各种信号传输需求。加强对常用接触件在新能源汽车高压连接器上的应用分析,能够进一步了解不同接触件应用的可靠性和经济性水平,从而为高压连接器功能的正常发挥提供保障。 1新能源汽车高压连接器上接触件的应用要求在新能源汽车的整车、充电设施上,均需要采用高压连接器。而在连接器中,接触件作为重要构成部分,将在连接器绝缘体中集成,承担信号传输任务,接触不良将造成连接器失效。从结构上来看,连接器包含插合端与尾端。其中,插合端包含弹性部件和刚性部件,能够使插头与插座可靠接触,尾端用于实现线缆、印制板等部件的连接。在新能源汽车高压连接器上,接触件基本是成对出现,分为插头端子和插座端子,是整车电路连接的基础元器件,能够通过端子啮合完成电流传输和信号传递。由于连接器需要依靠接触件的界面相互接触实现电传导,所以保证接触件可靠接触是连接器实现电连接的基础[1]。在电接触过程中,存在由接触体电阻和表面接触电阻构成的接触电阻,实现负载连通后会使接点升温、发热,关系到接触件使用可靠性和寿命。而接触电阻大小与接触件材料、表面粗糙度和接触压力有关。在材料成分稳定的情况下,可以减小材料电阻率和有效导电截面的变化,使导体维持稳定电阻值。表面粗糙度受制作工艺影响,数值越大接触点数越小,导致接触电阻增大,接触稳定性下降。接触压力与弹性结构有关,需要根据弹性极限、弹性模量等因素确认。从总体上来看,需要选用接触电阻较小的接触件,并且保证接触结构具有一定的稳定性,能够减小接触电阻变化,继而使高压连接器能够实现可靠连接。除了考虑性能可靠性问题,还应认识到新能源汽车生产对元器件的成本要求,需要保证接触件选用保持一定经济性。 2几种常用接触件在新能源汽车高压连接器上的应用分析 2.1常用接触件种类 在接触件应用上,需要结合应用场合决定采用哪种类型。常用的接触件在结构上包含插孔、插针两部分,插孔属于弹性结构,插针属于刚性结构,需要通过插合实现连接。在高电压、大电流的条件下,通常采用扭簧式、触指式、冠簧式、片簧式等结构形式的接触件。其中,扭簧式拥有较强电流承载能力,通常在充电插座等器件中得到应用。扭簧式接触件利用双绞线扭簧增大接触面积,能够使接触界面保持良好电气性能和抗振性能,使接触电阻得到降低。在结构变形上,包含绕轴扭动变形和绞线扭动微变形,使得插孔直径限制在2.5-20mm 范围内[2]。然而在新能源汽车中,使用的高压连接器插孔尺寸并不相同,因此并非都适用该种接触件。片簧式属于第一代连接器元器件,在工业中得到了广泛应用。冠簧式拥有复杂接触端子结构,核心弹片是经过精密冲压形成的百叶窗形栅栏,拥有几十个接触点,能够使连接的可靠性得到提升。触指式接触件利用三圈簧丝与插针紧密接触,能够实现多点接触,保证接触的可靠性。从剩余三类接触件的结构和基本性能情况来看,均能满足新能源汽车对高压连接器的应用要求,拥有短且直径小的凸出插针,插孔凹陷在绝缘体中,能够减小插拔强度,避免插拔时发生弯曲变形问题,从而延长器件使用寿命。而插针端部均为锥性斜面或球形,能够解决因制造、装配误差导致插针与插孔同轴度不一致的问题,可以对弯曲插针进行校正,为插针拾取提供便利。而接触件的插孔端部存在喇叭口倒角,内部设置有弹性簧片,可以在校正插针的同时,防止直径过大插针插入,避免接触不良问题的发生。在接触件材料选择上,为提高器件导电率、导热率和抗疲劳性等性能,降低接触电阻的产生,选用了铍青铜、黄铜等材料,能够使接触件保持优良电气性能。此外,接触件的插孔、插针等接触位置经过抛光处理,能够使实际接触面积得到增加,减少插拔磨损的产生。 2.2接触件性能分析 在材质、表面质量等因素大致相同的情况下,想要选取适合的接触件满足高压连接器应用需求,还要加强不同结构形式的接触件的电接触性能分析,确定各类接触件的连接可靠性。按照要求,插针和插孔的插合应保证接触电阻比规定值小,并且插合后能够保证接触的连续性,避免出现接触瞬断问题,以便使连接期间能够实现信号可靠传输。常用接触件可以完成单独万次插拔,在机械耐久性上基本能够满足要求。因此在实际分析过程中,重点需要完成结构接触可靠性分析,可以直径8mm插针为例,结合接触件的结构形式完成接触面分析。在接触面越大的情况下,接触电阻越小,接触的可靠性越高。 触指式接触件利用三段簧丝接触插针,簧丝直径1.2mm,真正接触从距离端口5.2mm开始,接触面积为三圈簧丝在外力作用后叠加成的三段簧丝带,长8mm,接触面积约90m㎡。在接触座上,存在用于降温的两个孔,促使插孔拥有较强持续栽流能力。在等效导流力作用下,无需采用屏蔽件,能够简化接触件结构,允许器件安装存在较大同轴度,所以机械特性良好。该种接触件能够实现柔和插拔,具有一定可靠性。 冠簧式接触件采用铍青铜多簧且带斜纹连接构成的冠簧,可以保证插孔基体不会出现弹性失效问题,可以降低插拔力和接触电阻,使用寿命较长,具有良好综合性能[3]。从插孔与插针接触情况来看,从距离端口8mm开始接触,长约3mm,在插针直径为8mm的条件下,接触面积约75m㎡。而该类接触件额定电流在13-1000A范围内,在高压连接条件下接触可靠性一般。 片簧式接触件利用簧片轴向垂直叠加方式进行插接,在插孔插接端等位置需要完成绝缘帽的设置。在簧片一端,需要利用工装夹具保证直槽收口一致,另一端利用外壁凸起保证簧片装配后能够实现可靠接触。采取该种接触结构,能够避免开槽后因插针发生外塑性变形出现松弛问题,因此可以避免接触失效问题的发生。采取开槽结构,插孔与插针从距端口1.25mm的位置开始接触,每段接触长1.9mm,直径8mm时,接触面积约143m㎡。由于可以增大接触面积,使接触电阻得到减小,所以能够使接触可靠性得到提高。 2.3接触件综合比较

相关主题
相关文档
最新文档