壳聚糖智能水凝胶研究进展
水凝胶敷料在糖尿病足创面愈合治疗中的研究进展

水凝胶敷料在糖尿病足创面愈合治疗中的研究进展摘要:糖尿病足作为糖尿病并发症的一种,相较于糖尿病本身对患者的影响更大。
本文阐述了水凝胶敷料在糖尿病足创面愈合治疗中的机制,从抗菌水凝胶敷料、促血管化水凝胶敷料、抗氧化水凝胶敷料和多功能水凝胶敷料四个方面分析了水凝胶敷料在糖尿病足创面愈合治疗中的研究进展,以期为相关研究提供科学支撑。
关键词:水凝胶敷料;糖尿病足;创面愈合糖尿病作为一种高血糖为特征的代谢性疾病,全球患病人数超过四亿,糖尿病足给患者带来了巨大的身心创伤,其并发症因素主要与糖尿病神经病变、周围血管病变、足部畸形、创伤有关,属于难以愈合的慢性伤口。
水凝胶敷料为具有三维网络结构的聚合物材料,其优势为生物相容性、粘附性、抗菌性能偏高,且含水量高达70%-95%,应用前景广,也较为适用于糖尿病足创面促愈合。
1.水凝胶敷料在糖尿病足创面愈合治疗中的机制水凝胶敷料的特点是在水中迅速溶胀而不溶解,且水凝胶与ECM结构具有相似性,可作为物理屏障防止微生物入侵,因此可作为糖尿病足的创面治疗材料。
有关研究表明,水凝胶敷料与传统敷料对糖尿病足溃疡的对比中,水凝胶敷料因湿性可促使创面保持水润,促使Fb/KC增殖,进而加快表皮细胞的迁移,降低创面感染率,减少瘢痕。
水凝胶敷料相对温和,可负载不同物质定制自身功能,应用于糖尿病足时具有极高的价值[1]。
2.水凝胶敷料在糖尿病足创面愈合治疗中的研究进展2.1抗菌水凝胶敷料糖尿病足产生炎症多与微生物清除不全,延长了愈合的时间有关。
需积极控制炎症,遏制细菌生物膜形成,避免胞外多糖机制的过多分泌,避免对抗生素治疗产生影响。
临床在糖尿病足的创面分泌物标本研究中发现有60%的细菌生物膜,因此要求水凝胶敷料具有抗菌功能,破坏或防止创面中的细菌生物膜形成。
相关抗菌功能促进糖尿病足创面愈合的研究中,有学者制备了含有银-氧化锌纳米颗粒的水凝胶敷料,对大肠埃希菌、金黄色葡萄球菌的杀菌效果良好,动物模型试验中也显示该抗菌敷料可充分的促进创面的愈合;另外有学者制备含有去铁草酰胺、银离子的水凝胶敷料,将其作用于糖尿病大鼠全层皮肤缺损的创面时,发现其可促进血管生成、因抗菌作用加速缺损创面的愈合。
《壳聚糖-氧化海藻酸钠水凝胶的制备及其初步应用》

《壳聚糖-氧化海藻酸钠水凝胶的制备及其初步应用》壳聚糖-氧化海藻酸钠水凝胶的制备及其初步应用一、引言水凝胶是一种具有高度吸水性且能够保持其体积的三维网状聚合物,其在药物释放、生物材料、化妆品等多个领域有广泛的应用。
其中,壳聚糖和氧化海藻酸钠这两种生物材料制备的水凝胶因具有优异的生物相容性和生物降解性,成为近年来研究的热点。
本文将详细阐述壳聚糖/氧化海藻酸钠水凝胶的制备方法及其初步应用。
二、壳聚糖/氧化海藻酸钠水凝胶的制备1. 材料与试剂本实验所需材料包括壳聚糖、氧化海藻酸钠、交联剂等。
所有试剂均为分析纯,购买自国内知名化学试剂供应商。
2. 制备方法(1)将壳聚糖溶解在醋酸溶液中,形成壳聚糖溶液;(2)将氧化海藻酸钠溶解在去离子水中,形成氧化海藻酸钠溶液;(3)将两种溶液混合,加入适量的交联剂,搅拌均匀;(4)将混合溶液置于冰浴中,缓慢搅拌并逐渐升温,使溶液形成凝胶状态。
三、水凝胶的表征通过扫描电子显微镜(SEM)观察水凝胶的微观结构,并通过红外光谱(IR)分析水凝胶的化学结构。
结果表明,制备的壳聚糖/氧化海藻酸钠水凝胶具有三维网状结构,且化学结构符合预期。
四、初步应用1. 药物释放壳聚糖/氧化海藻酸钠水凝胶具有良好的药物载体性能,可用于药物释放。
将药物与水凝胶混合,制备成载药水凝胶。
通过模拟体内环境,观察药物的释放情况。
结果表明,载药水凝胶具有缓慢且持续的药物释放特性,可有效延长药物在体内的作用时间。
2. 伤口敷料壳聚糖/氧化海藻酸钠水凝胶具有良好的吸湿性和保湿性,可用于伤口敷料。
将水凝胶敷于伤口处,可吸收伤口渗出液,为伤口提供湿润的环境,促进伤口愈合。
同时,水凝胶的生物相容性和生物降解性也使其成为理想的伤口敷料材料。
五、结论本文成功制备了壳聚糖/氧化海藻酸钠水凝胶,并对其进行了表征。
该水凝胶具有优异的药物载体性能和伤口敷料应用潜力。
通过模拟体内环境的药物释放实验和伤口敷料实验,验证了其应用效果。
壳聚糖药物控释剂的应用研究进展

间。
0n a o
聚糖等) 。壳聚糖作为一 种资源丰 富的天然 高分子 化合 物 ,
因其不仅具有 良好的生物相容性 、 生物黏附性 、 低毒性 、 易降 解吸收 , 而且还具有 消炎 、 菌 、 抗 止血 、 制癌细胞 转移[] 抑 等 大多数聚合物所 不具 有 的功能 , 为了药 物控 释剂 的新 热 成 点 , 用研究非常广泛 。本文就壳 聚糖作 为药物 的控 制释放 应 载体在医学领域的应用研 究作简要综述 。
性病 , 内分 泌系统慢性疾病等医药领域 中的应 用研究作简要综述 。
关键 词 :壳聚糖; 控释剂; 剂型
Ap ia i n Pr g e s o pl to o r s fChio a - a e nt o l d-e e e Dr g c t s n- s d Co r le - l a u b r s
目前主要用高分 子材 料作 为控 释 剂 , 由于 生物 相容 性 差、 含毒性物质 、 以降解等 因素 , 难 合成 的高分子 ( 聚乳 酸 、 如 聚丙烯酸酯等) 的研究 不如天然 高分子 ( 明胶 、 维素 、 如 纤 壳
代丁二酸/ 己烷反相胶束 体系 中, 正 制得包 载蛋 白质药 物的
QUAN i a We— n,C n LI Si o g y AI Yig, — n d
( ol e f c n e Gu n d n ca i ri ,Z a a g 2 0 8 hn ) C l g i c , a g o gO enUn es y h Ni 5 4 8 ,C ia e oSe v t n
动态席夫碱交联的壳聚糖基水凝胶的合成与性能研究

动态席夫碱交联的壳聚糖基水凝胶的合成与性能研究郑洁;黄文灿;王文洁;应锐;张海洋【期刊名称】《中国海洋大学学报(自然科学版)》【年(卷),期】2024(54)6【摘要】壳聚糖基水凝胶机械性能往往较差,为提高其机械性能通常进行戊二醛交联,但是戊二醛会对水凝胶的生物安全性造成影响。
为在提高壳聚糖基水凝胶的机械性能时充分保障其生物安全性,本研究制备了一款完全基于壳聚糖及其衍生物的水凝胶。
羧甲基壳聚糖(CMC)与双醛壳聚糖(DACS)通过席夫碱键共价交联,形成壳聚糖基水凝胶(CBH),通过流变学实验、拉伸实验、黏附实验对CBH的自愈合性能、机械性能进行评价。
通过抗菌实验、活/死细胞实验、细胞毒性、溶血实验、抗炎实验对CBH的抗菌性能、生物相容性以及抗炎性能进行了全面评估。
研究发现,CBH可拉伸至原长的2倍,在4 h后的愈合效率可达72%,这证明席夫碱键交联赋予了CBH良好的自愈合性能并提高了其机械性能。
CBH的平衡溶胀率可达4 500%,且具有pH响应性。
CBH对大肠杆菌(Escherichia coli)和金黄色葡萄球菌(Staphylococcus aureus)的抑制效率分别为80.95%和79.79%。
与CBH共用培养的细胞可随时间正常增殖,无明显细胞死亡,且溶血率仅为3%,这证明CBH具有优异的生物相容性。
同时,CBH还可以抑制一氧化氮和TNF-α、IL-1β、IL-6等促炎因子的分泌,增加IL-10等抗炎因子的分泌,具有良好的抗炎活性。
研究结果表明,利用CMC和DACS制备的CBH,具有良好的自愈合性能、机械性能、抗菌、抗炎性能以及高度生物相容性,其在生物医学领域有广阔的应用潜力。
【总页数】11页(P77-87)【作者】郑洁;黄文灿;王文洁;应锐;张海洋【作者单位】中国海洋大学食品科学与工程学院【正文语种】中文【中图分类】Q819;R318.08【相关文献】1.新型视黄基席夫碱盐的合成与吸波性能研究2.双亲性羧甲基壳聚糖钠盐席夫碱衍生物的合成及其性能研究3.戊二醛交联壳聚糖席夫碱的合成及其对Pb2+吸附性能的研究4.新型视黄基席夫碱盐的合成与吸波性能研究5.碘掺杂的聚二茂铁基席夫碱的合成与性能研究因版权原因,仅展示原文概要,查看原文内容请购买。
高分子多糖水凝胶功能材料研究与应用进展

高分子多糖水凝胶功能材料研究与应用进展摘要:与传统高分子水凝胶材料相比,高分子多糖水凝胶因其具有环境友好型、生物相容性、特殊功能性、生物可降解性等优势而倍受重视。
综述了以植物多糖、海洋多糖、微生物多糖及其复合多糖为原料的多糖水凝胶功能材料的制备方法、功能特性和产品表征方法,介绍了多糖水凝胶材料在医药卫生、食品、化妆品、农业和环保等领域的应用情况,分析了多糖水凝胶在生物传感器、生物反应器、人工智能材料和抗菌材料等领域的应用前景,并指出提高材料性能与功能特性、分析凝胶形成机理和功能材料模拟等是未来多糖水凝胶研究的重点。
关键词:高分子多糖;水凝胶;功能材料;研究进展;应用多糖水凝胶是多糖利用的一个重要方面,水凝胶是一类具有三维交联网络结构,能够吸收并保持大量水分,而又不溶于水的功能高分子材料。
水凝胶自身的结构使其同时具备固体和液体的性质,即力学上表现出类固体性质,而在热力学上则表现出类液体行为[1-2]。
水凝胶因其具有低成本、多孔性、较高力学强度、光学透明性、生物可降解性、高溶胀率、生物相容性、刺激响应性等特性,被广泛应用于食品、化妆品、医药卫生、农业、环保等领域。
水凝胶按照制备原料的不同可分为天然高分子水凝胶和合成高分子水凝胶[3]。
用于制备水凝胶的天然高分子包括胶原/明胶、透明质酸、海藻酸盐、纤维素、黄原胶、魔芋葡聚糖、壳聚糖等[4-6]。
用于制备水凝胶的合成高分子包括聚丙烯酸、聚丙烯酰胺、聚乙二醇和聚乙烯醇等。
近年来,高分子多糖如纤维素、半纤维素、壳聚糖、海藻酸钠、黄原胶以及透明质酸等因其优越的生物相容性、天然可降解性以及丰富的来源等特点,越来越多地被用作制备水凝胶的原料,拓宽了多糖的应用领域。
多糖水凝胶材料包括互穿聚合物网络多糖胶、多糖类接枝共聚水凝胶、多糖类大孔冻凝胶和多糖类智能水凝胶。
其中多糖类智能水凝胶,通过在多糖类水凝胶中引入具有刺激响应性的化学基团,从而可以利用大分子链或链段的构象或基团的重排使其内部体积发生突变。
席夫碱反应壳聚糖透明质酸水凝胶

席夫碱反应壳聚糖透明质酸水凝胶下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!席夫碱反应壳聚糖透明质酸水凝胶: 革命性的生物医学材料引言在当今医学领域,寻找更有效的药物传递系统和组织工程支架是持续的挑战。
羟丁基壳聚糖的制备及其水凝胶敏感性(温度pH)与生物相容性研究

羟丁基壳聚糖的制备及其水凝胶敏感性(温度/pH)与生物相容性研究壳聚糖是广泛存在于自然界的一种氨基多糖,是甲壳素经脱乙酰基后的产物。
壳聚糖具有许多独特的性质如可生物降解、无毒性、生物相容性以及抗菌性等,在生物医学领域被广泛用作药物释放载体、组织工程支架、伤口敷料等。
但是由于分子链上分布着大量的氨基和羟基,形成分子内和分子间氢键,壳聚糖的结晶度较高、溶解性差,这极大地限制了它的开发和应用。
通过化学改性制备水溶性壳聚糖衍生物是改善壳聚糖性能、拓宽其应用范围的重要途径之一。
本文通过醚化改性方法在壳聚糖分子链上引入羟丁基基团,制备出水溶性良好的壳聚糖衍生物—羟丁基壳聚糖,研究了改性后产物的理化性质、生物活性、水凝胶敏感性、生物相容性以及作为药物缓释载体的可行性,对壳聚糖类产品的潜在应用价值的开发具有重要意义。
本实验以1,2-环氧丁烷在碱性条件下的开环产物为醚化剂,对壳聚糖进行改性反应,制得羟丁基壳聚糖。
探讨了主要反应条件如反应介质、1,2-环氧丁烷用量、反应温度和时间对产物取代度、特性粘度及水溶性的影响。
实验结果表明制备羟丁基壳聚糖的最佳反应条件为壳聚糖1g,10mL50%的NaOH水溶液,N2保护下碱化24h,挤出多余碱液,异丙醇水溶液中分散(异丙醇:水(v:v)=1:1),1,2-环氧丁烷20mL,60℃反应24h。
元素分析法测定此条件下产物的取代度为1.91。
采用红外光谱、固体13C核磁共振对产物的分子结构进行了表征,证明在壳聚糖分子上成功引入了亲水性的羟丁基基团,取代位置为C6-OH和C2-NH2。
通过多种方法测定合成产物的理化性质,与原料壳聚糖相比,羟丁基壳聚糖具有水溶性好、pH适应范围广、吸湿保湿性强等优点。
研究了羟丁基壳聚糖抑制细胞迁移、免疫活性及抑菌活性。
采用划痕法研究了羟丁基壳聚糖对L929细胞迁移的影响作用,实验由预处理阶段和细胞迁移阶段组成,两个阶段都影响羟丁基壳聚糖对L929细胞迁移的作用。
水凝胶作为眼部药物控释系统载体的研究进展

D O I :10.3969/j.i s s n .2096-6113.2021.01.026引用格式:王㊀争,梁㊀亮,陈玢琳.水凝胶作为眼部药物控释系统载体的研究进展[J ].巴楚医学,2021,4(1):115G119.基金项目:国家自然科学基金项目(N o :81770920)作者简介:王㊀争,女,硕士在读,主要从事眼科疾病研究.E Gm a i l :1033563970@q q.c o m 通讯作者:梁㊀亮,男,博士,教授㊁主任医师,主要从事眼科疾病研究.E Gm a i l :l i a n g l i a n g419519@163.c o m 水凝胶作为眼部药物控释系统载体的研究进展王㊀争㊀梁㊀亮㊀陈玢琳(三峡大学第一临床医学院[宜昌市中心人民医院]眼科&三峡大学眼科研究所,湖北宜昌㊀443003)摘要:水凝胶具有良好的生物相容性㊁可降解性㊁生物粘附性㊁智能性和缓释功能,载药的水凝胶可以延长药物在眼部的停留时间,提高生物利用度,减少给药次数,是一种理想的眼部药物控释系统的载体.本文论述了目前应用于眼部的水凝胶控释系统的不同类型及其国内外研究进展,以期为水凝胶在眼部的深入研究与开发应用提供思路.关键词:眼部;㊀水凝胶;㊀控释系统;㊀药物递送中图分类号:R 453㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:2096G6113(2021)01G0115G05㊀㊀药物在眼病的预防㊁诊断和治疗中起着重要作用.由于眼睛在解剖上的复杂性和生理上的特殊性,在全身给药后,仅有1%~2%可到达靶部位,因此眼科常采用局部给药[1].滴眼剂给药时,经眼外排出㊁眼内清除㊁组织结合或灭活作用后,药物在眼部的生物利用度不足5%[2].对于年龄相关性黄斑变性㊁视网膜血管疾病和青光眼视神经病变等眼底疾病,需要通过玻璃体注射将药物输送至眼后段,而玻璃体内的药物半衰期较短,往往需要反复注射,给患者带来不便的同时,还提高了眼内炎㊁视网膜脱离㊁眼内出血和高眼压等并发症的发生概率.因此,提高药物生物利用度和降低药物副作用是眼部药物递送的研究重点,其中构建药物控释系统是解决这一问题的有效途径.眼部药物控释系统是将药物与活性载体制成控释剂,通过活性载体与药物的有机结合与分离,维持局部药物浓度[3].眼部药物控释系统的发展促进了活性载体用于眼部给药的研究进展.近年来,许多生物材料如纳米胶束㊁纳米粒子㊁脂质体㊁植入物㊁隐形眼镜㊁纳米悬浮液㊁微针和水凝胶等新型药物传递系统逐步被报道有助于眼部的药物利用[4].其中,水凝胶因其优越的生物相容性㊁可降解性㊁智能调控性等成为眼部药物递送中的研究热点.本文将论述应用于眼部不同种类的水凝胶控释系统的国内外研究进展,并对其分析,以期为水凝胶在眼部药物递送上的进一步开发和应用提供新思路.1㊀眼部的药物递送由于泪液引流㊁角膜清除的生理屏障及代谢酶降解作用,药物在眼部的利用度较低.为了解决这一问题,研究人员设计合成了许多药物递送载体,主要有脂质体㊁纳米粒㊁微球㊁眼部植入剂等.脂质体和纳米粒具有增加角膜通透性㊁缓释和降低毒性反应等优点,但存在热力学性质不稳定㊁不能长期保存㊁包封率低㊁难灭菌和无法规模生产的不足,尚未得到广泛应用[5].微球稳定性较好,释药速率稳定,但过大的粒径可能会干扰光路,降低患者耐受性,且无菌微球的大规模生产成本较高[6].此外,眼部植入剂也会出现个别患者有眼部异物感㊁固体植入剂可能在眼部移动和操作相对复杂的问题[7].随着手术技术㊁治疗方法及材料科学的进步和发展,水凝胶给药系统被开发出来,旨在克服眼部药物递送的种种障碍,提高疗效㊁降低毒副作用.2㊀眼部水凝胶概述水凝胶的本质是一种能在水中溶胀而不溶解的亲水性三维网络结构高分子聚合物,在软性角膜接触镜㊁细胞和酶的固定㊁药物递送㊁组织工程等生物医学领域有着广泛应用[8G11].水凝胶在药物递送中,可根511 巴楚医学㊀2021年第4卷第1期㊀B A C H U M E D I C A L J O U R N A L ,2021,V o l 4,N o 1据外界环境改变凝胶结构起到控制药物释放的作用,具有靶向性㊁高生物利用度和高安全性等优点.因此,集吸水㊁保湿㊁缓释㊁柔软㊁良好的生物相容性以及智能可调控性于一身的水凝胶在眼部的应用受到越来越多的关注.而根据眼部疾病治疗方法和药物理化性质的不同,所合成的水凝胶的材料和性能也各不相同.3㊀眼部水凝胶种类3.1㊀温度敏感型水凝胶温度敏感型水凝胶存在着一个最低临界相变温度(l o w e r c r i t i c a l s o l u t i o n t e m p e r a t u r e,L C S T),当温度低于L C S T时,水凝胶为澄清透明的水溶液;当温度高于L C S T时,水凝胶呈现凝胶状态[12].在用于眼表给药时,滴眼液给药精准方便,给药后可以在生理条件下立即凝胶化而不会模糊视力,形成的凝胶具有较高的粘附性,可延长眼表滞留时间.K o n g等[13]将荧光素钠加入到左氧氟沙星的温度敏感型水凝胶体系中,结果发现,根据水凝胶的配方不同可将角膜滞留时间从30m i n延长至9h.梁楠[14]将泊洛沙姆联合复合羧甲基化壳聚糖制备了温度敏感水凝胶,装载双氯芬酸钠后滴入兔眼,与溶液型滴眼剂相比,凝胶滴眼剂的眼表滞留时间增加了3倍以上,房水中药物浓度在各个时间点均明显升高.M o h a mm e d等[15]利用壳聚糖的抗菌性,制成了一种抗菌型温度敏感型水凝胶,并加入抗生素后联合抗菌,与普通抗生素滴眼剂相比,在兔眼细菌性角膜炎模型中具有更好的治疗效果.以上研究证明,温度敏感型水凝胶装载药物,一方面可延长药物作用时间,另一方面有助于提高药物作用.同样的,温度敏感型水凝胶也被应用于玻璃体注药治疗眼内疾病.A w w a d等[16]将透明质酸与温敏高分子交联制成了一种可在眼内降解的温度敏感型水凝胶,装载治疗老年性黄斑病变的蛋白性药物英夫利昔单抗和贝伐单抗,在保留蛋白质三级结构的情况下,体外实现了长达50d的抗体缓释.该研究证明,将药物包裹在具有纳米复合体系的温度敏感型水凝胶中,可以避免药物在眼内被酶降解,同时凝胶基质增加了额外扩散阻力,可实现药物在玻璃体内的长期零级动力学释放.维甲酸㊁曲安奈德㊁抗V E G F药物均已被装载于温度敏感型纳米复合材料水凝胶中,并且取得了较好的控释效果[17G19].温敏聚合物泊洛沙姆对角膜的刺激性较小,在温度敏感型水凝胶中应用最广泛.但泊洛沙姆生物黏附性一般㊁胶凝浓度大㊁强度低㊁溶蚀性快.为了适应眼部的药物递送,有研究者加入了如聚卡波非,增强其生物黏附力和流变学性能[20].另有研究者开发了泊洛沙姆G聚丙烯接枝共聚物,使其能在较低的聚合物浓度下(1%~5%)形成凝胶,解决了高浓度泊洛沙姆的高渗透压引起的眼部不适[21].但仍存在着胶凝过程中相转变速度较慢引起药物流失的问题.因此,改善凝胶的胶凝性质及相转变速度,是温度敏感型水凝胶新的研究方向之一.3.2㊀p H敏感型水凝胶p H敏感型原位胶凝体系由含酸性或碱性基团的p H敏感聚合物组成,聚合物会随着周围环境中p H的改变而发生转化.与温度敏感性水凝胶相似,应用于眼部的p H敏感型水凝胶被设计成具有在非生理条件下为流动的液态,与泪液接触(p H值为7.2~7.4)后转化成凝胶态的理化性质.赵玉娜等[22]以卡波姆为凝胶基质㊁羟丙甲基纤维素为增稠剂制备了在非生理条件下(p H4.0)为流动的液态,生理条件下(p H7.4)胶凝成为半固态的p H敏感型氯霉素水凝胶滴眼剂,8h体外释药达到80%,12h 释放完全.该研究证明,p H敏感型水凝胶具有药物缓释功能,并可完全将药物释放至眼内.魟鱼软骨多糖(r a y c a r t i l a g e g l y c o s a m i n o g l y c a n s,R C G)是从魟鱼软骨中分离纯化得到的单一多糖,研究证明R C G 滴眼液能够抑制角膜组织血管内皮生长因子(v a s c u l a r e n d o t h e l i a l g r o w t h f a c t o r,V E G F)的表达,对大鼠角膜新生血管的形成具有显著的抑制作用[23].郭斌等[24]将R C G装载于p H敏感型水凝胶中,滴入兔眼后对不同组织的药代动力学进行分析,发现R C G在角膜中的分布远高于虹膜㊁房水和玻璃体,可充分发挥其在角膜的治疗作用.并发现当R C G的载药量超过50m g/m L时,能明显的抑制兔眼角膜新生血管生成.该研究证明p H敏感性水凝胶具有较好的生物相容性,可高效地将药物递送至角膜.常用的p H敏感型眼用凝胶的基质主要是聚丙烯酸类,其中以卡波普系列应用最多.卡波普分子中含有大量羧基,在泪液中羧基团解离,静电斥力可使分子链膨胀,聚合物黏度急剧增大[25].然而胶凝浓度过大具有一定的毒性,不易被中和.因此在制备眼部水凝胶控释系统中,常与羟丙基甲基纤维素合用,可一定程度降低卡波普浓度,减少眼部刺激性.因此,加大对凝胶基质的开发力度,确保凝胶的安全无毒是目前p H敏感型眼用凝胶需要克服的问题.3.3㊀离子敏感型水凝胶离子敏感型水凝胶可与生理条件下的离子交联,611 巴楚医学㊀2021年第4卷第1期㊀B A C H U M E D I C A L J O U R N A L,2021,V o l 4,N o 1发生溶胶与凝胶转变.由于泪液中含有N a+㊁K+㊁M g2+及C a2+等离子,因此通过离子活化水凝胶同样适用于眼部给药.研究发现,使用环糊精来增加抗真菌药物益康唑的溶解度,制成的离子敏感型水凝胶在体外能持续释放药物6h[26].他们发现凝胶制剂可使益康唑的角膜清除率明显降低,且不影响药物在鼠眼的角膜渗透率.双糖体是由非离子表面活性剂和胆盐组成的双层囊泡,囊泡中的两亲性胆盐可通过黏膜细胞膜的脂质层,增强药物的黏膜渗透性,已应用于皮肤和肠道药物递送[27,28].J a n g a等[29]首次将双糖体应用于眼部,加入0.3%w/v的结冷胶装载那他霉素(n a t a m y c i n,N T)制成离子敏感型水凝胶,在滴入兔眼6h后,除玻璃体外,角膜㊁房水㊁虹膜睫状体㊁巩膜㊁视网膜㊁脉络膜组织的药物平均剂量归一化水平均高于那他霉素溶液组.其机制与凝胶状态与角膜黏附性更强有关,且双糖体赋予了水凝胶缓释系统更强的角膜渗透性,从而确保了更长的停留时间和更高的眼内药物浓度.结冷胶是眼用离子敏感凝胶最常用的基质之一,阴离子型去乙酰结冷胶的羰基可与泪液中阳离子络合,形成稳定双螺旋的链间氢键.每2条双螺旋又逆向聚集构成三维凝胶网络结构[30].马来酸噻吗洛尔长效眼用制剂T i m o p t i cX E 中含有去乙酰结冷胶,已被应用于开角型㊁闭角型青光眼,以及继发性青光眼和其他高眼压症的临床治疗.但由于其价格昂贵,目前国内临床应用不多.因此,简化合成过程,节省材料费用,是离子敏感型水凝胶在应用与推广中需优化的地方.3.4㊀光敏水凝胶光敏水凝胶中含有光致变色基团,因此可通过调节光源信号,使基团发生光反应(异构化㊁裂解或二聚化等),将光信号转换为化学信号,使水凝胶发生相变.与p H㊁温度等刺激相比,光刺激的时间和空间具有高度的可控性,可远程且无创地控制治疗药物在局部的释放量[31].因此有研究者设想,通过人为调控透射入眼后节的光线控制药物释放,为眼内疾病的治疗提供一种新途径.S t u a r t等[32]将蛋白质微粒包裹在可光固化的水凝胶中,该系统在体外可释放贝伐单抗达90d.L i u等[33]将一种可作为抑制胶原合成靶点的多肽疏水性喜树碱,包封在光交联水凝胶中制成微针,在体外能持续释放达20h,并且能有效抑制瘢痕疙瘩成纤维细胞I型胶原的表达,表明该缓释系统在治疗青光眼滤过术后瘢痕上具有潜在价值.作为在玻璃体内实现交联的光敏水凝胶,交联时间过长可导致药物或药物前体在玻璃体内提前释放.T y a g i等[34]研发了一种光激活的水凝胶系统,脉络膜注射装有游离贝伐单抗的光激活水凝胶前体后,通过调控光照时间来控制药物释放.该研究发现,光激活的水凝胶系统可持续释放抗体4个月.然而在光交联初期存在突释现象,不同光照时间初始突释量不等.光交联时间为10m i n时,突释量最低为21%[34].另外,光敏水凝胶中的光敏剂吸收光能后能产生自由基㊁阳离子等,从而引发单体聚合交联固化形成凝胶.这些自由基可能会对附近的组织造成一定的毒性.同时,紫外线照射可能会影响蛋白质类药物的稳定性.因此,光敏水凝胶作为一种新型眼部水凝胶,虽具有定点㊁定时㊁定量释放的特点,但仍存在许多问题有待进一步解决.3.5㊀超分子水凝胶超分子水凝胶是一种由小分子化合物通过自组装,形成的有序结构水凝胶[35].与聚合物水凝胶中的交联不同,超分子水凝胶之间的纳米纤维通过非共价键交联,具有刺激响应性㊁结合可逆性㊁交联可调节性㊁生物相容性和仿生学特性等优点[36].Z h a n g 等[37]针对地塞米松(d e x a m e t h a s o n e,D e x)水溶性较差的问题,加入琥珀酸后改性制成前药,得到水溶性良好的琥珀酸地塞米松偶联物(s u c c i n a t e dd e x a mGe t h a s o n e,D e xGS A),制成D e xGS A的超分子水凝胶滴眼液.在体外释放中发现,前药D e xGS A在5d内几乎全部从水凝胶中释放出来,并能快速在磷酸盐缓冲液中转化为母药D e x,同时药物的释放速率也可以通过水凝胶的p H进行调节.在兔眼房水的生物利用度检测上,D e x凝胶剂是D e x水溶液的5.6倍.同样地,曲安奈德与琥珀酸耦连后装载在超分子水凝胶中,形成可注射的琥珀酸曲安奈德凝胶制剂[38].在体外,几乎100%的曲安奈德可缓释达3d.在鼠眼中,琥珀酸曲安奈德凝胶剂在6h内穿透巩膜的药物量是市售曲安奈德混悬液的25倍,且整个实验过程中,注射凝胶后的视网膜没有出现明显形态学异常改变,而琥珀酸曲安奈德混悬液在注射1d后视网膜形态即有明显改变.证明琥珀酸曲安奈德水凝胶在眼后段具有较好的安全性和生物相容性,在治疗眼后段炎症如葡萄膜炎上具有明显优势.值得注意的是,这两种超分子水凝胶具有触变性,即在生理眨眼或通过注射器针头引起的剪切作用下可以发生凝胶G溶胶状态转变,十分适合眼部药物递送.近几年来,氨基酸超分子水凝胶成为了最流行的超分子水凝胶构建体系之一.与其他小型有机分子相比,使用统一的生命单位更适合于生物医学.22个天然氨基酸与非天然氨基酸为产生自组装肽提供711巴楚医学㊀2021年第4卷第1期㊀B A C H U M E D I C A L J O U R N A L,2021,V o l 4,N o 1了巨大的分子空间,固相肽合成的开发和肽合成仪的商业化大大减少了肽合成的负担.在肽链的构建中,改变手性结构㊁多肽骨架折叠方式㊁修饰终端和侧链为生物医学和临床实践的发展提供了更多可能[39].4㊀总结与展望安全㊁稳定㊁高效的药物递送一直是眼部用药的研究方向,水凝胶作为眼部药物控释系统的载体,具有延长药物眼部滞留时间㊁提高生物利用度㊁减少给药频率等方面优势.尽管关于眼部水凝胶的研究取得了一定的成果,但也观察到许多问题,如温度敏感型凝胶所使用的聚合物泊洛沙姆的长期应用,需要考虑对角膜和其他眼组织的安全性.此外,p H敏感型的卡波姆胶凝浓度高,且不随剪切力改变,即在眨眼和不眨眼时保持同样粘度,因此浓度过高时眨眼会感到疼痛.虽然离子敏感型的结冷胶在0.1%的浓度下即可发生胶凝,但它在眼内所形成的硬凝胶难以再被泪液溶蚀,可能带来异物感等.因此,应加大对凝胶剂基质材料研发力度,包括更多新辅料的合成以及其安全性评价.同时,引进纳米技术㊁分子印迹等优化水凝胶的性能,实现对释放速率的调控,以满足不同的药物特性和疾病治疗要求.随着凝胶基质的不断完善和技术瓶颈的克服,水凝胶将成为一种极具潜力的药物递送载体.参考文献:[1]㊀U r t t iA.C h a l l e n g e s a n d o b s t a c l e s o f o c u l a r p h a r m a c o k iGn e t i c s a n d d r u g d e l i v e r y[J].A d vD r u g D e l i vR e v,2006,58(11):1131G1135.[2]㊀J o s e p hR R,V e n k a t r a m a nSS.D r u g d e l i v e r y t ot h ee y e:w h a t b e n ef i t s d on a n o c a r r i e r s o f f e r[J].N a n o m e d iGc i n e,2017,12(6):683G702.[3]㊀陈㊀侠,谢㊀琳.药物缓释系统在青光眼治疗中的应用[J].国际眼科杂志,2012,12(2):260G263.[4]㊀C h a n g D,P a r kK,F a m i l iA.H y d r o g e l s f o r s u s t a i n e dd e l i v e r y o f b i o l o g i c s t o t h e b a c k o f t h e e y e[J].D r u g D i sGc o vT od a y,2019,24(8):1470G1482.[5]㊀L a iS,W e iY,W u Q,e ta l.L i p o s o m e sf o re f f e c t i v ed r u g de l i v e r y t ot h e o c u l a r p o s t e r i o rc h a m b e r[J].JN a n o b i o t e c h n o l o g y,2019,17(1):64.[6]㊀H e r r e r oGV a n r e l lR,B r a v oGO s u n a I,A n d r sGG u e r r e r oV,e t a l.T h e p o t e n t i a l of u s i ng b i o d e g r a d a b l em i c r o s ph e r e si n r e t i n a l d i s e a s e sa n do t h e r i n t r a o c u l a r p a t h o l o g i e s[J].P r o g R e t i nE y eR e s,2014,42:27G43.[7]㊀S i n g l aJ,B a j a j T,G o y a lA K,e ta l.D e v e l o p m e n to f n a n o f i b r o u s o c u l a r i n s e r t f o rr e t i n a ld e l i v e r y o f f l u o c i nGo l o n e a c e t o n i d e[J].C u r rE y eR e s,2019,44(5):541G550.[8]㊀P o z u e l oJ,C o m p añV,G o n z l e zGMéi j o m eJ M,e ta l.O x y g e na n d i o n i c t r a n s p o r t i nh y d r o g e l a n ds i l i c o n eGh yGd r o ge l c o n t a c t l e n sm a t e r i a l s:a n e x p e r i m e n t a l a n dt h e oGr e t i c a l s t u d y[J].JM e m b r S c i,2014,452:62G72.[9]㊀N a r a y a n a s w a m y R,T o r c h i l i nVP.H y d r o g e l s a n d t h e i ra p p l i c a t i o n si nt a r g e t e d d r u g d e l i v e r y[J].M o l e c u l e s,2019,24(3):603.[10]V e n k a t e s a n J,B h a t n a g a r I,M a n i v a s a g a nP,e t a l.A l g iGn a t ec o m p o s i t e sf o rb o n et i s s u ee n g i n e e r i n g:ar e v i e w[J].I n t JB i o lM a c r o m o l,2015,72:269G281.[11]G a oY,Z h a oF,W a n g Q,e t a l.S m a l l p e p t i d en a n o f iGb e r s a s t h e m a t r ic e so fm o l e c u l a rh yd r o ge l sf o rm i m i cGk i n g e n z y m e s a n d e n h a n c i n g t h e a c t i v i t y o f e n z y m e s[J].C h e mS o cR e v,2010,39(9):3425G3433.[12]任婷婷,卢清侠,郝慧芳,等.温度敏感型可注射水凝胶的性质及应用研究进展[J].动物医学进展,2018,39(1):99G103.[13]K o n g X,X u W,Z h a n g C,e t a l.C h i t o s a n t e m p e r a t u r eGs e n s i t i v e g e l l o a d e dw i t hd r u g m i c r o s p h e r e s h a s e x c e l l e n te f f e c t i v e n e s s,b i o c o m p a t i b i l i t y a n ds a f e t y a s a no p h t h a lGm i c d r u g d e l i v e r y s y s t e m[J].E x p T h e rM e d,2018,15(2):1442G1448.[14]梁㊀楠.生物黏附性眼用双氯芬酸温度敏感水凝胶研究[J].中国医药导刊,2015,17(2):177G179.[15]M o h a mm e dS,C h o u h a nG,A n u f o r o m O,e t a l.T h e rGm o s e n s i t i v eh y d r o g e l a sa ni ns i t u g e l l i n g a n t i m i c r o b i a l o c u l a r d r e s s i n g[J].M a t e rS c iE n g C M a t e rB i o lA p p l,2017,78:203G209.[16]A w w a dS,A b u b a k r eA,A n g k a w i n i t w o n g U,e t a l.I n s i t u a n t i b o d yGl o a d e d h y d r o g e lf o ri n t r a v i t r e a ld e l i v e r y[J].E u r JP h a r mS c i,2019,137:104993.[17]G a oSQ,M a e d aT,O k a n oK,e t a l.A m i c r o p a r t i c l e/h y d r o g e l c o m b i n a t i o nd r u gGd e l i v e r y s y s t e mf o r s u s t a i n e dr e l e a s eo fr e t i n o i d s[J].I n v e s t O p h t h a l m o l V i s S c i,2012,53(10):6314G6323.[18]H i r a n iA,G r o v e rA,L e eY W,e ta l.T r i a m c i n o l o n ea c e t o n i d en a n o p a r t i c l e s i n c o r p o r a t e d i nt h e r m o r e v e r s ib l eg e l sf o ra g eGr e l a t e d m a c u l a rd e g e n e r a t i o n[J].P h a r mD e vT e c h n o l,2016,21(1):61G67.[19]O s s w a l dCR,K a n gGM i e l e r J J.C o n t r o l l e d a n d e x t e n d e di n v i t r o r e l e a s e o f b i o a c t i v e a n t iGv a s c u l a r e n d o t h e l i a lg r o w t h f a c t o r s f r o mam i c r o s p h e r eGh y d r o g e l d r u g d e l i vGe r y s y s t e m[J].C u r r E y e R e s,2016,41(9):1216G1222.[20]温㊀梦,张斯杰,马俊媛,等.聚卡波菲/泊洛沙姆407811 巴楚医学㊀2021年第4卷第1期㊀B A C H U M E D I C A L J O U R N A L,2021,V o l 4,N o 1为基质的姜黄素眼用凝胶研究[J].中国现代中药,2019,21(5):649G653.[21]N g u y e nDD,L u oLJ,L a i JY.D e n d r i t i c e f f e c t so f i nGj e c t a b l eb i o d e g r a d a b l et h e r m o g e l so n p h a r m a c o t h e r a p y o f i n f l a mm a t o r y G l a u c o m aGa s s o c i a t e dd e g r a d a t i o no f e xGt r a c e l l u l a rm a t r i x[J].A d v H e a l t h c a r e M a t e r,2019,8(24):1900702.[22]赵玉娜,郝秀娟.p H敏感型氯霉素眼用原位凝胶的制备及释放度考察[J].西北药学杂志,2018,33(6):793G796.[23]赵榛榛,郭㊀斌,韩冠英.p H敏感型魟鱼软骨多糖眼用原位凝胶兔眼药动学及其抑制角膜新生血管的研究[J].中国医院药学杂志,2017,37(18):1797G1801.[24]郭㊀斌,李㊀兵,韩冠英,等.应用魟鱼软骨多糖滴眼液抗大鼠角膜新生血管形成的实验研究[J].辽宁中医杂志,2008,35(2):298G300.[25]刘宏伟,晏亦林,周莉玲.磷酸川芎嗪鼻用p H敏感型原位凝胶的处方优化[J].时珍国医国药,2010,21(9):2296G2298.[26]Día zGT o méV,L u a c e sGR o d ríg u e zA,S i l v aGR o d ríg u e z J,e t a l.O p h t h a l m i c e c o n a z o l eh y d r o g e l sf o r t h e t r e a t m e n to f f u n g a lk e r a t i t i s[J].JP h a r m S c i,2018,107(5):1342G1351.[27]S h u k l aA,M i s h r aV,K e s h a r w a n iP.B i l o s o m e s i nt h ec o n t e x t o fo r a l i mm u n i z a t i o n:de v e l o p m e n t,c h a l l e n g e sa n do p p o r t u n i t i e s[J].D r u g D i s c o v T o d a y,2016,21(6):888G899.[28]A lGM a h a l l a w iA M,A b d e l b a r y A A,A b u r a h m a M H.I n v e s t i g a t i n g t h e p o t e n t i a l o fe m p l o y i n g b i l o s o m e sa san o v e l v e s i c u l a r c a r r i e r f o r t r a n s d e r m a l d e l i v e r y o f t e n o x iGc a m[J].I n t JP h a r m,2015,485(1/2):329G340.[29]J a n g aK Y,T a t k eA,B a l g u r i SP,e t a l.I o nGs e n s i t i v e i n s i t uh yd r o ge l s o fn a t a m y c i nb i l o s o m e sf o r e n h a n c e da n d p r o l o ng e do c u l a r ph a r m a c o t h e r a p y:i nv i t r o p e r m e a b i l iGt y,c y t o t o x i c i t y a n di nv i v oe v a l u a t i o n[J].A r t i fC e l l s N a n o m e dB i o t e c h n o l,2018,46(s u p1):1039G1050.[30]蔡㊀铮,侯世祥,赵斌斌.结冷胶在药剂学中的应用[J].中国医药工业杂志,2008,39(6):460G463.[31]K o JW,C h o iW S,K i mJ,e t a l.S e l fGa s s e m b l e d p e pGt i d eGc a r b o n n i t r i d e h y d r o g e l a s a l i g h tGr e s p o n s i v e s c a f f o l dm a t e r i a l[J].B i o m a c r o m o l e c u l e s,2017,18(11):3551G3556.[32]S t u a r tW,K e v i nH,G a r y O,e t a l.P h o t o c u r a b l e h y d r oGg e l i m p l a n t s f o r t h e e x t e n d e d r e l e a s e o f b e v a c i z u m a b f o rt h e t r e a t m e n to fa g eGr e l a t e d m a c u l a rd e g e n e r a t i o n[J].I n v e s tO p h t a m o lV i sS c i,2014,55(13):471.[33]L i uS,Y e oDC,W i r a j aC,e t a l.P e p t i d ed e l i v e r y w i t h p o l y(e t h y l e n e g l y c o l)d i a c r y l a t e m i c r o n e e d l e st h r o u g h s w e l l i n g e f f e c t[J].B i o e n g T r a n s l M e d,2017,2(3):258G267.[34]T y a g i P,B a r r o sM,S t a n s b u r y JW,e t a l.L i g h tGa c t i v aGt e d,i n s i t u f o r m i n gg e l f o r s u s t a i n e d s u p r a c h o r o i d a l d eGl i v e r y o fb e v a c i z u m a b[J].M o lP h a r m,2013,10(8):2858G2867.[35]d eB a t i s t aR A,E s p i t i aPJP,Q u i n t a n s JDSS,e t a l.H y d r o g e l a sa na l t e r n a t i v es t r u c t u r e f o r f o o d p a c k a g i n gs y s t e m s[J].C a r b o h y d rP o l y m,2019,205:106G116.[36]D uX,Z h o uJ,S h i J,e t a l.S u p r a m o l e c u l a rh y d r o g e l aGt o r s a n dh y d r o g e l s:f r o ms o f tm a t t e r t o m o l e c u l a rb i oGm a t e r i a l s[J].C h e m R e v,2015,115(24):13165G13307.[37]Z h a n g Z,Y uJ,Z h o uY,e t a l.S u p r a m o l e c u l a rn a n o f iGb e r s o fd e x a m e t h a s o n ed e r i v a t i v e s t of o r m h y d r o g e l f o rt o p i c a l o c u l a r d r u g d e l i v e r y[J].C o l l o i d s S u r f BB i o i n t e rGf a c e s,2018,164:436G443.[38]L iX,W a n g Y,Y a n g C,e t a l.S u p r a m o l e c u l a rn a n o f iGb e r s o f t r i a mc i n o l o n ea c e t o n id ef o ru ve i t i st h e r a p y[J].N a n o s c a l e,2014,6(23):14488G14494.[39]李㊀旋,蒋㊀瑶,谢千秋,等.超分子水凝胶材料研究进展[J].应用化工,2019,48(5):1140G1145.[收稿日期㊀2020G06G05]911巴楚医学㊀2021年第4卷第1期㊀B A C H U M E D I C A L J O U R N A L,2021,V o l 4,N o 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第24卷 第9期中 国 塑 料Vo l.24,N o.9 2010年9月C HINA PLASTIC S Sept.,2010壳聚糖智能水凝胶研究进展舒 静1,李小静1,赵大飙2(1.东北石油大学化学化工学院,黑龙江大庆163318;2.大庆油田储运销售分公司,黑龙江大庆163455)摘 要:概述了壳聚糖智能水凝胶的优点和发展状况,主要介绍了温度敏感型、pH敏感型、温度/pH双重敏感型壳聚糖水凝胶的研究进展及应用,详细介绍了壳聚糖水凝胶在医学领域如药物释放、组织工程方面的应用。
指出了目前壳聚糖水凝胶存在的问题以及未来发展趋势。
关 键 词:智能水凝胶;壳聚糖;温度敏感型;pH敏感型;药物释放;组织工程中图分类号:T Q321.4 文献标识码:A 文章编号:1001 9278(2010)09 0006 05Research Progress in Chitosan based Intelligent HydrogelsSH U Jing1,LI Xiaojing1,ZH A O Dabiao2(1.Co llege of Chemistr y and Chem ical Engineering,N o rtheast Petr oleum U niver sity,Daqing163318,China;2.Branch o f T r ansport ation and Sales,Daqing Oilfield,Daqing163455,China)Abstract:Chitosan based intelligent hy dro gels including tem peratur e sensitiv e,pH sensitive,andtemperature/pH sensitive types w ere summarized w ith their m er its and sho rtcom ings analyzed.The applications o f the chitosan based hydrog els in drug releasing and org anization engineeringwere r ev iew ed.Finally,the cur rent problems and future development of chitosan based hydrog elswere presented.Key words:intelligent hydrog el;chitosan;tem perature sensitive;pH sensitive;drug releasing;tissue engineering0 前言水凝胶是能显著溶胀于水但不溶解于水的一类亲水性高分子网络。
根据对外界刺激的响应情况,水凝胶可分为传统水凝胶和智能水凝胶。
所谓智能水凝胶就是能对外界环境(如温度、pH值、电、光、磁场、特定生物分子等)微小的变化或刺激有显著应答的三维交联网络结构的聚合物。
由于它能够对外界刺激产生应答,具有智能性,极大地扩大了其应用范围。
近年来对它的研究和开发工作异常活跃,成为当今研究的热点,尤其在生物医学领域有了快速的发展,已广泛用于细胞分离与培养、组织工程、固定化酶、药物的控制释放和靶向药物等领域。
但大部分的研究工作还是集中在收稿日期:2010 04 02黑龙江省博士后落户基金(L BH Q09193)联系人,shuj73@ 几种经典的智能水凝胶上,对于生物相容性好又可降解的天然高分子的研究甚少。
与合成高分子相比,天然高分子水凝胶具有低毒性、良好的生物相容性、对环境敏感等优点。
壳聚糖是甲壳素脱乙酰基的产物,属天然含氨基的均态直链多糖,含有游离氨基,反应活性和溶解性均比甲壳素强,具有对环境无污染、易降解、来源广泛、价格低廉等优点,且能够形成水凝胶,是一种可用于制备新型智能水凝胶很有潜力的原料。
近年来,人们开始采用壳聚糖为原料来制备智能水凝胶并取得了一些令人关注的成果。
以壳聚糖为原料制备的水凝胶将好于以传统原料如聚丙烯酰胺、聚丙烯酸等制备的水凝胶,会弥补传统水凝胶的不足,如不易降解、对环境有一定的污染性等,扩大智能水凝胶的应用范围。
但壳聚糖水凝胶同时也存在一些不足,如力学强度差、性能不稳定、对环境敏感性不强,还有待于改善。
本文主要介绍了温敏型、pH敏感型、温度/pH双2010年9月中 国 塑 料 7敏型壳聚糖基智能水凝胶的研究现状,及其在生物医学领域中的应用,提出了存在的主要问题,对今后的发展方向和前景进行了展望。
1 壳聚糖水凝胶的研究现状智能水凝胶根据其对外界的刺激响应性可分为温度敏感型、pH敏感型、电场敏感型、压力敏感型和多重敏感型等。
壳聚糖中含有NH2和OH,可以和某些物质通过化学交联和(或)物理交联形成凝胶,对环境刺激产生相应的反应和应激性。
其中,最常见、应用最广的壳聚糖智能水凝胶主要有3种,即温度敏感型、pH 敏感型、温度/pH双重敏感型水凝胶。
1.1 温度敏感型凝胶温度敏感型水凝胶是指随着外界温度的变化而产生刺激响应性的智能材料。
传统温敏水凝胶多采用丙烯酰胺为原料,这种物质有一定的毒性且不易降解。
在使用过中可能给环境带来不良影响。
壳聚糖具有生物相容性、可降解性等优点,因此,以壳聚糖为主要原料制备水凝胶正引起国内外广大学者的关注。
陈欢欢等[1]对壳聚糖/甘油磷酸盐体系通过化学交联和与聚乙烯醇(PVA)的物理交联,制备了一种能在体温下迅速成胶的温敏型水凝胶。
两种交联方式的结果使得凝胶体系形成了互穿的网络结构,提高了凝胶的密度和强度。
实验证明,交联剂和壳聚糖形成了Schiff!s键。
这种具有紧密结构的温敏凝胶在原位温敏性可生物降解植入剂应用领域具有发展潜力。
曾蓉等[2]通过壳聚糖与甘油磷酸钠制备成温敏型水凝胶,采用变温核磁共振技术对这种凝胶体系的凝胶化过程进行跟踪研究。
结果表明,壳聚糖中氢和磷酸甘油盐中磷的化学位移均随着温度的升高而变化。
其中壳聚糖中氢的化学位移向高场移动,而磷酸甘油盐中磷的化学位移向低场移动。
在凝胶温度附近,壳聚糖中H 2(D)的化学位移变化出现转折点,表明其所处的化学环境发生了突变。
随着体系中磷酸甘油盐含量的增加或者pH值的增大,壳聚糖中H 2(D)的化学位移逐渐偏向高场,体系的凝胶温度则越低。
由此提出壳聚糖/磷酸甘油盐温敏性水凝胶的凝胶机理是:随着温度的升高,壳聚糖通过氨基正离子与磷酸甘油盐形成的静电吸引被破坏,壳聚糖分子链间随之形成大量氢键而发生凝胶化。
H o等[3]以壳聚糖为主要原料分别制备了2种具有温敏性的可注型水凝胶,并研究了其物理和化学特性。
研究发现,随着温度的升高,凝胶的敏感度降低,最低临界溶解温度(LCST)在34∀。
将人骨髓中的干细胞培养在以水凝胶为载体的试管内,发现在凝胶中有软骨分化现象,并显示良好的温敏特性和生物相容性,这种温敏性水凝胶有望作为一种新型的可注入型生物材料,将会在医学领域有更好的应用前景。
为提高水凝胶的应用,可根据实际需要加入其他物质进行改性。
Tang等[4]合成了含有羟磷灰石的壳聚糖/聚乙烯醇水凝胶。
结果表明,加入羟磷灰石后,凝胶性能明显好于纯的壳聚糖凝胶,凝胶强度明显增强。
通过考察不同羟磷灰石含量对蛋白质释放的影响发现,含有0.1mmo l的羟磷灰石的水凝胶的溶胀率最低,蛋白质释放速度最慢。
这种水凝胶有望应用于蛋白质的控制释放、人造骨骼、以及组织工程支架等方面。
1.2 pH敏感型凝胶水凝胶的pH响应性是指其溶胀或消溶胀随pH 值的变化而变化。
水凝胶网络中一般含有可离子化的酸性或碱性基团,随着介质pH值的改变,这些基团会发生电离,导致网络内大分子链段间氢键的解离,产生不连续的溶胀体积变化[5]。
壳聚糖因分子内含碱性NH2基团,可与H+结合或解离,以及相关氢键发生解离或形成,因而具有明显的pH敏感性。
宋鹏飞等[6]合成了pH敏感性壳聚糖/聚乙烯基吡咯烷酮水凝胶,研究了室温下该水凝胶在不同pH介质中的溶胀比。
结果表明,pH>5时,壳聚糖/聚乙烯基吡咯烷酮水凝胶溶胀比很小;pH<5时,溶胀比急剧上升,且在pH= 1.5时达到最大值,凝胶在酸性溶液中的溶胀比远大于在碱性溶液中,且在不同pH溶液中重复可逆溶胀收缩。
壳聚糖/聚乙烯基吡咯烷酮水凝胶对溶胀介质pH值变化具有良好的响应性,溶胀收缩过程可逆。
这种良好的可逆性将会在药物释放、仿生材料、化学机械等方面发挥特殊作用。
王晓园等[7]用天然多糖壳聚糖和明胶也制备出了具有pH敏感性的凝胶。
结果表明,该凝胶在碱性和酸性环境中均具有pH敏感性,在酸性溶液的溶胀比远大于碱性溶液中。
当pH=3.0时,溶胀度最大;pH=9.0时,溶胀度最小,且在不同pH溶液中同样具有重复可逆溶胀收缩性。
近年来,改性壳聚糖在凝胶中的应用引起了研究者的兴趣和关注。
林荣珍等[8]先将壳聚糖改性为壳聚糖硫酸酯(SCS),然后以戊二醛(GA)作为交联剂,制备了一种新型的水凝胶SCS水凝胶。
结果表明,所制得的壳聚糖硫酸酯水凝胶对介质的pH值变化具有敏感性;当pH值在3~8.3范围内,随着pH值的增大,凝胶溶胀度减小;pH值在9~10范围内,随着pH8壳聚糖智能水凝胶研究进展值的增大,凝胶溶胀度有增大的趋势。
随着研究的深入,选用无毒害、易降解的交联剂成为一种趋势和要求。
Kaminski等[9]采用京尼平(栀子苷经 葡萄糖苷酶水解后的产物,是一种优良的天然生物交联剂)作交联剂合成了具有pH敏感性水的凝胶微球。
结果表明,该凝胶微球在pH< 6.5时有显著溶胀现象,pH> 6.5时略有收缩。
水凝胶制备中所用的交联剂大部分为化学物质,不可避免地会存在一定程度的残留,对凝胶性能和应用带来一定影响。
为避免交联剂带来的不利影响,一些学者采用新型合成方法(如辐射法)来制备水凝胶。
G lay等[10]通过辐射法制备了壳聚糖 聚甲基丙烯酸羟乙酯pH敏感水凝胶。
凝胶在酸性介质中有溶胀现象,60min达到平衡。
将抗生素类药物附着在凝胶上,当pH=7.4时,10h药物释放量为80%。
由此可见,这种凝胶体系是很好的抗生素药物载体,可用于药物的控制释放。
Abou等[11]通过 射线辐射将丙烯酸和丙烯酰胺接枝到壳聚糖上制备了pH敏感型凝胶,该凝胶具有两性可逆pH响应特性,可应用于胃部药物投递。
1.3 温度/pH敏感型凝胶目前,对壳聚糖智能水凝胶的研究还主要集中在单一敏感性方面。
这在一定程度上限制了壳聚糖智能水凝胶的应用。
因此,开发和研究多重敏感响应性水凝胶成为迫切的需求,尤其是温度/pH双敏感型水凝胶。
Lee等[12]采用聚氮异丙基丙烯酰胺(PN IPAAm)和壳聚糖为原料,以3 巯基丙酸作为链转移剂,采用游离聚合法制备成具有温度/pH双敏感性的凝胶。