煤的机械强度热稳定性与气化关系

煤的机械强度热稳定性与气化关系
煤的机械强度热稳定性与气化关系

煤的机械强度热稳定性与气化关系

煤的机械强度、热稳定性与气化关系:煤的机械强度是指它的抗破碎力,即破碎难易程度。用于两段炉的燃料,要求机械强度大,以减少输送过程中的破碎量。机械强度差的煤,在运转过程易于破碎,使煤的含粉量过高,块煤量降低。另一方面,在气化过程中煤还要承受上层燃料的挤压,易被压碎,影响料层的正常通风,不利于气化。机械强度一般用转鼓方法和落下方法来确定。转鼓方法是把经过筛分的一定粒度的煤(13~100mm)块,放在直径φ100 的钢制卷筒中,转筒以25 转/分的速度,回转4 分钟,在100 转之后停止转动,将试料倒出用13×13 mm 的筛孔过筛,用筛上残留燃料与原加入燃料的百分比,表示煤的机械强度。落下试验是将粒度为60~100 mm 的煤样25 公斤(或10 块),从 2 米高自由落下三次(落在铁板上),大于25 mm 的煤与原样的质量百分比,来表示煤的机械强度。

煤的热稳定性又叫热强度,是指煤在高温下,是否易于破碎的性质,热稳定性的强弱直接影响气化过程,热稳定性

差的煤在高温作用下,易在炉内碎裂,产生大量煤末,使燃料层阻力增加,气流分布不均匀,使气化条件恶化。固体燃料受热不稳定,主要是由于下列原因引起的:

1.1 燃料受热时,由于内部的水分蒸发和放出挥发分而导致碎裂。

1.2 燃料中的碳酸盐受热分解,生成二氧化碳的过程中引起碎裂。

1.3 燃料受热时,粒度内、外温度差较大,以及由于不同组成物质的膨胀系数不同,发生肢解破裂。无烟煤与烟煤相比,热稳定性较差。这是因为无烟煤结构紧密,含脆性的固定碳多,含挥发分少,而且与烟煤相比热传导率低。褐煤的热稳定性也较差。这是因为加热时,褐煤内的水分蒸发使煤破裂。热稳定性的测定方法是:从煤中选出10 块60~100 mm 的标准煤块,在900℃的马弗炉内加热15 分钟,拿出冷却后,放在直径为Ф200 mm 的转鼓内,以50 转/分的速度,转动5 分钟,然后用25×25 mm 的筛子过筛,用残留煤与加入煤的重量。百分比来表示热稳定性:

由于原料煤的粘结性大小不同,所用两段炉的结构也不同,对粘结性煤,需配有专门的搅拌设备。

煤柱安全系数计算

煤柱强度及煤柱稳定性研究 根据煤柱设计理论,煤柱作为控制上覆岩层移动与破坏的主要手段,必须能够保持长期的稳定性。目前主要根据极限强度理论评价煤柱的稳定性。 极限强度理论认为,如果煤柱所受载荷达到煤柱的极限强度,则煤柱的承载力降低到零,煤柱就会破坏。一般由下式计算条带煤柱的安全系数: p p S F σ= 式中p S 为煤柱所承受的实际载荷;p σ为煤柱的强度;F 为安全系数,如果 F ≥1.5,可认为煤柱具有长期的稳定性。 1 煤柱强度分析 煤柱强度是指煤柱单位面积上所能承受的最大载荷,它是煤柱稳定性分析的 基础。煤柱的强度不仅与煤块的强度有关,还与煤柱的尺寸、煤柱内部的地质构造、煤柱与顶底板岩层的接触状况、煤柱侧向受力等因素有关。 准确预测煤柱强度是十分困难的。长期以来,针对煤柱强度的主要影响因素,人们通过现场试验和经验总结提出了许多计算煤柱强度的经验公式。具体说来可以分为以下两类,即线性公式和指数公式: ?? ? ?? ? ??? ??+=h W B A m p σσ b a m p h W σσ= 式中p σ为煤柱强度;m σ为现场立方体煤柱的临界强度;A ,B ,a ,b 为无量纲量,且有1=+B A 。A ,B ,a ,b 的取值如表1所示。 表1 常用煤柱强度经验公式参数

目前应用较多的是Bieniawski 提出的线性煤柱强度计算公式: ??? ? ? +=h W S m p 36.064.0σ 式中m σ为临界尺寸时煤柱的强度,MPa ,一般取5-8MPa 。 实际上,煤柱强度不仅与煤柱的宽高比(h W /)有关,还与煤柱的长度有关。 美国学者Mark (1997)根据式(3-11),提出了考虑煤柱长度l 影响的煤柱强度公式 ??? ? ??-+=lh W h W S m p 218.054.064.0σ 从式中可以看出,煤柱长度l 增加,可以提高煤柱的强度。 Arther Wilson(1973)最早提出了煤柱屈服区的概念。他将煤柱视为一种复杂结 构,承受不均匀的应力梯度,在煤柱中央因约束作用存在一个应力较高的核区。他认为煤柱的破坏方式是渐进的(progressive )。根据这一思想,建立了一种新的煤柱强度计算公式: (1) 对于正方形煤柱: () 1044.481084.9462232,--?+?-=H h Wh W H S p γ(hH W 00984.0>时) ,

煤炭发热量指标

煤炭指标 (2007-05-17 10:04:54) 第一个指标:水分。煤中水分分为内在水分、外在水分、结晶水和分解水。煤中水分过大 是,不利于加工、运输等,燃烧时会影响热稳定性和热传导,炼焦时会降低焦产率和延长焦 化周期。现在我们常报的水份指标有:1、全水份(Mt),是煤中所有内在水份和外在水份 的总和,也常用Mar表示。通常规定在8%以下。2、空气干燥基水份(Mad),指煤炭在空气 干燥状态下所含的水份。也可以认为是内在水份,老的国家标准上有称之为“分析基水份”的 第二个指标:灰分指煤在燃烧的后留下的残渣。不是煤中矿物质总和,而是这些矿物质在化 学和分解后的残余物。灰分高,说明煤中可燃成份较低。发热量就低。同时在精煤炼焦中, 灰分高低决定焦炭的灰分。能常的灰分指标有空气干燥基灰分(Aad)、干燥基灰分(Ad) 等。也有用收到基灰分的(Aar)。 第三指标:挥发份(全称为挥发份产率)V指煤中有机物和部分矿物质加热分解后的产物, 不全是煤中固有成分,还有部分是热解产物,所以称挥发份产率。挥发份大小与煤的变质程 度有关,煤炭变质量程度越高,挥发份产率就越低。在燃烧中,用来确定锅炉的型号;在炼 焦中,用来确定配煤的比例;同时更是汽化和液化的重要指标。常使用的有空气干燥基挥发 份(Vad)、干燥基挥发份(Vd)、干燥无灰基挥发份(Vdaf)和收到基挥发份(Var)。其 中Vdaf是煤炭分类的重要指标之一。 第四个指标:固定碳不同于元素分析的碳,是根据水分、灰分和挥发份计算出来的。 FC+A+V+M=100相关公式如下:FCad=100-Mad-Aad-Vad FCd=100-Ad-Vd FCdaf=100-Vdaf 第五个指标:全硫St是煤中的有害元素,包括有机硫、无机硫。1%以下才可用于燃料。部 分地区要求在0.6和0.8以下,现在常说的环保煤、绿色能源均指硫份较低的煤。常用指标 有:空气干燥基全硫(St,ad)、干燥基全硫(St.d)及收到基全硫(St,ar)。 第六指标:煤的发热量煤的发热量,又称为煤的热值,即单位质量的煤完全燃烧所发出的热 量。煤的发热量时煤按热值计价的基础指标。煤作为动力燃料,主要是利用煤的发热量, 发热量愈高,其经济价值愈大。同时发热量也是计算热平衡、热效率和煤耗的依据,以及锅 炉设计的参数。煤的发热量表征了煤的变质程度(煤化度),这里所说的煤的发热量,是指 用1.4比重液分选后的浮煤的发热量(或灰分不超过10%的原煤的发热量)。成煤时代最晚 煤化程度最低的泥炭发热量最低,一般为20.9~25.1MJ/Kg,成煤早于泥炭的褐煤发热量增 高到25~31MJ/Kg,烟煤发热量继续增高,到焦煤和瘦煤时,碳含量虽然增加了,但由于挥 发分的减少,特别是其中氢含量比烟煤低的多,有的低于1%,相当于烟煤的1/6,所以发热 量最高的煤还是烟煤中的某些煤种。鉴于低煤化度煤的发热量,随煤化度的变化较大,所 以,一些国家常用煤的恒湿无灰基高位发热量作为区分低煤化度煤类别的指标。我国采用煤 的恒湿无灰基高位发热量来划分褐煤和长焰煤。(1)发热量的单位热量的表示单位主要有 焦耳(J)、卡(cal)和英制热量单位Btu。焦耳,是能量单位。1焦耳等于1牛顿(N)力在 力的方向上通过1米的位移所做的功。 1J=1N×0J 1MJ=1000KJ 焦耳时国际标准化组 织(ISO)所采用的热量单位,也是我国1984年颁布的,1986年7月1日实施的法定计量 热量的单位。煤的热量表示单位:J/g、KJ/g、MJ/Kg 卡(cal)是我国建国后长期采用的 一种热量单位。1cal是指1g纯水从19.5C加热到20.5C时所吸收的热量。欧美一些国家多 采用15Ccal,即1g纯水从14.5C加热到15.5C时所吸收的热量。1cal(20Ccal)=4.1816J 1cal(15Ccal)=4.1855J 答案补充 1956年伦敦第误解蒸汽性质国际会议上通过的国际蒸汽表卡的温度比15Ccal还低,其定义 如下:1cal==4.1866J 从上看出,15Ccal中,每卡所含热能比20Ccal还高。英、美等

89-30-永久煤柱下巷道围岩稳定性及控制技术分析-2016年第3期

巷道支护理论与技术 永久煤柱下巷道围岩稳定性及控制技术分析 孙明磊1,李佳丽 2 (1.华东理工大学,上海200237; 2.中煤煤炭进出口公司,北京100024) [摘要]以岱河煤矿Ⅳ1专用回风巷变形破坏为研究对象,从煤柱支承压力、围岩强度、现有 支护措施3个方面分析了其破坏影响因素和机理,通过建立FLAC 2D 模拟模型明确了巷道与煤柱边缘 水平距离、巷道支护方式对围岩应力分布的影响。研究了U 型钢、注浆及锚索结构补偿支护3种作用下的巷道弯矩分布、围岩位移等特点,提出了永久煤柱下的巷道在U 型钢基础上应进行注浆加固,再用锚索进行针对性支护结构补偿,形成稳定的共同承载体,有效地控制巷道变形。 [关键词] 永久煤柱;围岩稳定性;数值模拟;围岩应力 [中图分类号]TD353 [文献标识码]A [文章编号]1006-6225(2016)01-0059-04Stability and Control Technology of Surrounding Rock under Permanent Coal Pillar SUN Ming-lei 1,LI Jia-li 2 (1.East China University of Science &Technology ,Shanghai 200237,China ;2.China National Coal Import &Export Co.,Ltd.,Beijing 100024,China ) Abstract :Broken influence elements and mechanism of special return air entry of Daihe coal mine were analyzed ,which included supporting pressure of coal pillar ,surrounding rock strength and supporting way.Detailed numerical modeling of FLAC 2D was conducted to evaluate surrounding rock stress distribution that influence by horizontal distance of roadway to coal pillar edge and supporting way.These papers studied the characters of roadway moment distribution and surrounding rock displacement that influenced by three dif ferent supporting way ,which included U style steel supporting ,grouting reinforcement and compensate supporting with cable ,put for-ward grouting and compensate supporting with cable should be used on the basis of U style steel supporting in roadway under the perma-nent coal pillar ,then stability supporting body would formed ,and roadway deformation could be controlled effectively.Keywords :permanent coal pillar ;surrounding rock stability ;numerical simulation ;surrounding rock stress [收稿日期]2015-08-07 [DOI ]10.13532/https://www.360docs.net/doc/f717994754.html,11-3677/td.2016.03.016[基金项目]国家自然科学基金项目(51174070);河北省自然科学基金资助项目(D2013402006) [作者简介]孙明磊(1984-),男,江苏盐城人,硕士,主要从事矿井地质环境监测和矿井生产信息化建设研究。[引用格式]孙明磊,李佳丽.永久煤柱下巷道围岩稳定性及控制技术分析[J ].煤矿开采,2016,21(3):59-62,149. 1工程概述 岱河煤矿Ⅳ1专用回风巷位于Ⅳ1采区轨道上山南侧,巷道埋深430 605.5m 左右,所在层位为粉砂岩,裂隙较发育,较软,含黄铁矿、钙质结 核;中间有0.5m 厚的泥岩夹层,极软,易破碎。Ⅳ1回风巷为Ⅳ1采区专用回风巷道,巷道上方布置有Ⅳ3217和Ⅳ3218工作面,两工作面回采结束后形成的永久煤柱与Ⅳ1专用回风巷斜交。Ⅳ1专用回风巷现有支护方式为29U 型钢棚支护,巷道两帮收敛量较大,棚腿扭曲变形严重,底鼓强烈,虽屡经修复但巷道有效使用断面仍难满足Ⅳ1采区生产要求。2 Ⅳ1专用回风巷变形破坏原因及机理分析研究表明,影响深部巷道围岩变形破坏因素很多,不同巷道其变形破坏原因也有着较大不同。综 合多方面资料与研究,针对岱河煤矿Ⅳ1专用回风 巷具体地质条件,巷道变形破坏因素分析如下: 永久煤柱支承压力影响Ⅳ1专用回风巷与Ⅳ 3217和Ⅳ3218两工作面回采结束后形成的永久煤柱间距较小,巷道处于回采煤柱形成的支承压力升高区。现有地质资料表明,Ⅳ1专用回风巷上方煤 柱形成的支承压力峰值约为原岩应力的3倍左右, 根据巷道平均埋深估算,围岩中的切向应力达到32MPa 以上。巷道上方的高支承压力对巷道稳定产 生较大影响。 巷道围岩强度Ⅳ1专用回风巷所在层位为粉 砂岩,裂隙较发育,且含有0.5m 厚泥岩夹层,膨胀性软岩成分含量较高。在高应力作用下,该类型 围岩极易发生变形破坏。 现有支护措施 Ⅳ1专用回风巷目前使用29U 型钢棚支护,造成其强烈变形的原因主要有: (1)现有支护结构承载性能较差 从Ⅳ1专用 9 5第21卷第3期(总第130期) 2016年6月煤矿开采 COAL MINING TECHNOLOGY Vol.21No.3(Series No.130) June 2016 中国煤炭期刊网 w w w .c h i n a c a j .n e t

煤的热物性

查看完整版本: [-- 煤的物理性质和固态胶体性质--] 炎黄焦化论坛-煤焦化行业专业交流平台-> 备煤工艺技术-> 煤的物理性质和固态胶体性质[打印本页]登录-> 注册-> 回复主题-> 发表主题我牛12010-11-16 13:37 煤的物理性质和固态胶体性质 煤的物理性质主要包括空间结构性质、机械性质、光学性质、电性质等。从胶体化学的观点,可将煤看作是一种特殊和复杂的固态胶体体系。为此研究煤作为固态胶体所表现的物理化学性质。 煤的物理和物理化学性质也和煤的其他性质一样,主要取决于煤化度和煤岩组成,有时还取决于煤的还原程度。煤的某些物理性质还与矿物质(数量、性质与分布)、水分和风化程度有关。 由于物质结构和它的物理常数等有直接的关系,所以对煤的物理性质、物理化学性质的测定和研究反映了煤分子的化学组成与结构、分子空间结构及其变化特点,为煤结构的研究和煤化学学科的发展提供重要的信息。此外,了解煤的物理与物理化学性质,对煤的开采、破碎、洗选、型煤制造、热加工和新产品的开发等工艺和技术进步也有很大的实际意义。 1 煤的密度 物质密度的大小取决于分子结构和分子排列的紧密度,因而与分子空间结构有关。因此密度是性质与结构的重要参数,应了解煤的密度随煤化度的变化规律。 (1) 煤密度的几个基本概念 煤的密度是单位体积煤的质量,单价是g/cm3或kg/m3。煤的相对体积质量(亦称相对密度)是煤的密度与参考物质的密度在规定条件下的比,量纲为1。密度与相对体积质量数值相同,但物理意义不同。学术多使用密度,而工业上习惯用相对体积质量。中国已将煤相对体积质量的测定方法列为国家标准。 ①煤的真相对体积质量 煤的真相对体积质量(亦称真相对密度)是指煤的密度(不包括煤中空隙的体积)与参考物质的密度在规定条件下之比。煤的真相对体积质量代表符号是TRD,它是计算煤层平均质量与煤质研究的一项重要指标。TRD,可用比重瓶法(参考GB217)或其他置换法求得。 ②煤的视相对体积质量 煤的视相对体积质量(亦称视相对密度)是指煤的密度(包括煤的内孔隙)与参考物质的密度在规定条件下之比。煤的视相对体积质量代表符号是ARD,在计算煤的理藏量及煤的运输、粉碎、燃烧等过程都需要用此数据。ARD可用涂 蜡法(参考GB6949)、凡士林法或水银法测定。 根据煤的真密度和视密度可计算出煤的孔隙率,计算公式如下: 孔隙率=(真密度一视密度)/真密度×100%

热稳定性校验(主焦

井下高压开关、供电电缆动热稳定性校验 一、-350中央变电所开关断路器开断能力及电缆热稳定性校验 1 23 G 35kV 2 Uz%=7.5△P N.T =12kW △P N.T =3.11kW S N.T =8MVA 6kV S1点三相短路电流计算: 35kV 变压器阻抗: 2 22.1. u %7.5 6.30.37()1001008z N T N T U Z S ?===Ω? 35kV 变压器电阻:2 22.1.22. 6.30.0120.007()8 N T N T N T U R P S =?=?=Ω 35kV 变压器电抗:10.37()X = ==Ω 电缆电抗:02(x )0.415000.08780 0.66()1000 1000i L X ??+?== =Ω∑ 电缆电阻:02(x )0.11815000.118780 0.27()1000 1000 i L R ??+?== =Ω∑ 总阻抗: 21.370.66) 1.06( Z ==Ω S1点三相短路电流:(3)1 3.43()d I KA === S2点三相短路电流计算: S2点所用电缆为MY-3×70+1×25,长400米,变压器容量为500KV A ,查表的:(2)2d I =2.5KA

S2点三相短路电流:32 d d =2.88I I KA = 1、架空线路、入井电缆的热稳定性校验。已知供电负荷为3128.02KV A ,电压为6KV ,需用系数0.62,功率因数cos 0.78φ=,架空线路长度1.5km ,电缆长度780m (1)按经济电流密度选择电缆,计算容量为 3128.020.62 2486.37cos 0.78 kp S KVA φ?= ==。 电缆的长时工作电流Ig 为239.25 Ig === A 按长时允许电流校验电缆截面查煤矿供电表5-15得MYJV42-3×185-6/6截面长时允许电流为479A/6kV 、大于239.25A 符合要求。 (2)按电压损失校验,配电线路允许电压损失5%得 60000.1300Uy V ?=?=,线路的实际电压损失 109.1L U COS DS φφ?====,U ?小于300V 电压损失满足要求 (3)热稳定性条件校验,短路电流的周期分量稳定性为 电缆最小允许热稳定截面积: 3 2min d =S I mm 其中:i t ----断路器分断时间,一般取0.25s ; C----电缆热稳定系数,一般取100,环境温度35℃,电缆温升不超过120℃时,铜芯电缆聚乙烯电缆熔化温度为130℃,电

区段煤柱稳定性分析

4.2区段煤柱稳定性分析 1 刀柱煤柱的弹塑性变形区分析 我国对煤柱的稳定性进行分析时,应用最多的是英国学者 A.H.威尔逊(Wilson,1972)的煤柱设计公式.由于该理论是建立在三向强度特性的基础上,克服了其他方法的缺陷,因而更加实用和可靠. A.H.威尔逊于1972年提出了两区约束理论,如图1所示 通过对刀柱煤柱加载试验,发现在加载的过程中煤柱的应力是变化的, 从煤柱应力峰值σ1到煤柱边界这一区段,煤体应力超过了煤体的屈服点,并且向采空区有一定量的流动,这个区域为屈服区,其宽度用Y表示,在高应力作用下,靠近采空区侧应力低于原岩应力的部分称为破裂区.屈服区向里的煤体变形较小,煤体应力没有超过煤体的屈服点,基本上符合弹性法则,这个区域被屈服区所包围,并受屈服区的约束,处于三轴应力状态,为煤柱核区,该区在尺寸较大时,弹性核区内有一部分核区的应力为原岩应力,这部分核区为原岩应力区. A.H.威尔逊通过实验得出了屈服区宽度Y与采深H和采厚M之间的关系为: Y=0.00492MH 由图2所示的三向应力状态下的极限平衡条件可知,在三向应力状态下应有式(2-5)和(2-6):

在煤柱的边缘,煤柱的侧向应力σ3=0,屈服区侧向应力σ3由外向里逐渐增大,至与煤柱核区交界处时σ3的值为最大, σ3恢复到开采前的原岩自重应力σ3=γh.一旦煤柱核区内部的应力达到峰值应力,则核区弹性状态就会逐渐消失,煤柱必将失去其稳定性.将σ3代入式(2-6)得到式(2-7): h—开采深度,m. 窑煤矿11#、12#层及其顶底板岩石物理力学参数,并结合11#煤层赋存情况可知,11#煤层平均开采厚度为4.02m,开采深度为235m,11号煤层的内摩擦角φ为31°,粘聚力c 为1.19MPa,覆岩的容重γ为0.025MN/m3.把相关数据代入式(2-7)得:σ1=22.56MPa 则煤柱核区交界处受到的最大主应力为22.56MPa。 2 刀柱煤柱承受载荷的计算 2.1 刀柱煤柱所能承受的极限载荷 对于11#煤层的煤柱而言,由于其长度远大于宽度,故可将其视为平面问题,因而可以忽略煤柱前后两端的边缘效应,如图3所示。

煤的水分、灰分、挥发分和发热量对燃烧性能的影响

煤的水分、灰分、挥发分和发热量对燃烧性能的影响 煤的水分、灰分、挥发分和发热量对燃烧性能的影响 人们通常把开发煤炭资源的企业称作煤矿,把开采出来的煤矿产品称为煤炭。我国古代曾称煤炭为石涅,或称石炭。它是植物遗体埋藏在地下经过漫长复杂的生物化学、地球化学和物理化学作用转化而成的一种固体可燃矿产。它不仅是工农业和人民生活不可缺少的主要燃料,而且还是冶金、化工、医药等部门的重要原料。据统计,在我国能源生产和消费构成中,煤炭一直居于主导地位,1995年,生产占75.5%,消费占75.0%。在国民经济中,工业、农业、交通运输的发展都离不开煤炭。随着近代科学技术的发展和新工艺、新方法的应用,煤炭的用途和综合利用价值将会越来越大。可以预计,在未来相当长的时期内,煤炭在我国国民经济中都将占有相当重要的地位。 一、矿物原料特点 (一) 煤的物理性质 煤的物理性质是煤的一定化学组成和分子结构的外部表现。它是由成煤的原始物质及其聚积条件、转化过程、煤化程度和风、氧化程度等因素所决定。包括颜色、光泽、粉色、比重和容重、硬度、脆度、断口及导电性等。其中,除了比重和导电性需要在实验室测定外,其他根据肉眼观察就可以确定。煤的物理性质可以作为初步评价煤质的依据,并用以研究煤的成因、变质机理和解决煤层对比等地质问题。 1.颜色 是指新鲜煤表面的自然色彩,是煤对不同波长的光波吸收的结果。呈褐色—黑色,一般随煤化程度的提高而逐渐加深。 2.光泽 是指煤的表面在普通光下的反光能力。一般呈沥青、玻璃和金刚光泽。煤化程度越高,光泽越强;矿物质含量越多,光泽越暗;风、氧化程度越深,光泽越暗,直到完全消失。 3.粉色 指将煤研成粉末的颜色或煤在抹上釉的瓷板上刻划时留下的痕迹,所以又称为条痕色。呈浅棕色—黑色。一般是煤化程度越高,粉色越深。 4.比重和容重 煤的比重又称煤的密度,它是不包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重又称煤的体重或假比重,它是包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重是计算煤层储量的重要指标。褐煤的容重一般为1.05~1.2,烟煤为1.2~1.4,无烟煤变化范围较大,可由1.35~1.8。煤岩组成、煤化程度、煤中矿物质的成分和含量是影响比重和容重的主要因素。在矿物质含量相同的情况下,煤的比重随煤化程度的加深而增大。 5.硬度 是指煤抵抗外来机械作用的能力。根据外来机械力作用方式的不同,可进一步将煤的硬度分为刻划硬度、压痕硬度和抗磨硬度三类。煤的硬度与煤化程度有关,褐煤和焦煤的硬度最小,约2~2.5;无烟煤的硬度最大,接近4。 6.脆度 是煤受外力作用而破碎的程度。成煤的原始物质、煤岩成分、煤化程度等都对煤的脆度有影响。在不同变质程度的煤中,长焰煤和气煤的脆度较小,肥煤、焦煤和瘦煤的脆度最大,无烟煤的脆度最小。 7.断口 是指煤受外力打击后形成的断面的形状。在煤中常见的断口有贝壳状断口、参差状断口等。煤的原始物质组成和煤化程度不同,断口形状各异。 8.导电性 是指煤传导电流的能力,通常用电阻率来表示。褐煤电阻率低。褐煤向烟煤过渡时,电阻率剧增。烟煤是不良导体,随着煤化程度增高,电阻率减小,至无烟煤时急剧下降,而具良好的导电性。 (二) 煤的化学组成

煤的热稳定性

煤的热稳定性 煤的热稳定性是指煤在高温燃烧或气化过程中对热的稳定程度,也就是煤块在高温作用下保持其原来粒度的性质。热稳定性好的煤,在燃烧或气化过程中能以其原来的粒度燃烧或气化掉而不碎成小块,或破碎较少;热稳定性差的煤在燃烧或气化过程中则迅速裂成小块或煤粉。这样,轻则炉内结渣,增加炉内阻力和带出物,降低燃烧或气化效率,重则破坏整个气化过程,甚至造成停炉事故。因此,要求煤有足够的热稳定性。 各种工业锅炉和气化炉对煤的粒度有不同的要求,因此测定煤的热稳定性的方法也有所不同。常用的有下列两种: (1)13~25毫米级块煤测定法。该法是把煤样放在预热到850℃的马弗炉热处理15分钟,求出各筛级占总残焦的百分数;以各级累计百分数与筛级(1、3、6、13毫米)作出曲线。以大于13毫米级残焦的百分数S+13 作为热稳定性指标,以小于1毫米级残焦的百分数S-1及热稳定性曲线作为辅助指标。 (2)6~13毫米级块煤测定法。取6~13毫米级块煤500立方厘米,称出其重量,放入预热致到850℃的马弗炉中加热90分钟,然后取出称重,筛分。将所得〈6毫米,〈3毫米,及〈1毫米的残焦总重量的百分数作为稳定性指标KP6、KP3及KP1指标数值越大,表明热稳定性越差。 煤的热稳定性分级 级别热稳定性碇KP6,% 热稳定性好≤30 热稳定性中等﹥30~45 热稳定性差﹥45 我国大多数无烟煤的热稳定性较好,KP6均在35%以下,但在高变质无烟煤中也有少数煤热稳定性不好。无烟煤的热稳定性差,是由于其结构致密,加热时内外温度差很大,引起膨胀不同而破裂。热稳定性不好的无烟煤预热处理后,其热稳定性可显著改善。

煤的基本特征

各类煤的基本特征如下: (1)无烟煤(WY)。无烟煤固定碳含量高,挥发分产率低,密度大,硬度大,燃点高,燃烧时不冒烟。01号无烟煤为年老无烟煤;02号无烟煤为典型无烟煤;03号无烟煤为年轻无烟煤。如北京、晋城、阳泉分别为01、02、03号无烟煤。 (2)贫煤(PM)。贫煤是煤化度最高的一种烟煤,不粘结或微具粘结性。在层状炼焦炉中不结焦。燃烧时火焰短,耐烧。 (3)贫瘦煤(PS)。贫瘦煤是高变质、低挥发分、弱粘结性的一种烟煤。结焦较典型瘦煤差,单独炼焦时,生成的焦粉较多。 (4)瘦煤(SM)。瘦煤是低挥发分的中等粘结性的炼焦用煤。在炼焦时能产生一定量的胶质体。单独炼焦时,能得到块度大、裂纹少、抗碎性较好的焦炭,但焦炭的耐磨性较差。 (5)焦煤(JM)。焦煤是中等及低挥发分的中等粘结性及强粘结性的一种烟煤。加热时能产生热稳定性很高的胶质体。单独炼焦时能得到块度大、裂纹少、抗碎强度高的焦炭,其耐磨性也好。但单独炼焦时,产生的膨胀压力大,使推焦困难。 (6)肥煤(FM)。肥煤是低、中、高挥发分的强粘结性烟煤。加热时能产生大量的胶质体。单独炼焦时能生成熔融性好、强度较高的焦炭,其耐磨性有的也较焦煤焦炭为优。缺点是单独炼出的焦炭,横裂纹较多,焦根部分常有蜂焦。 (7)1/3焦煤(1/3JM)。1/3焦煤是新煤种,它是中高挥发分、强粘结性的一种烟煤,又是介于焦煤、肥煤、气煤三者之间的过渡煤。单独炼焦能生成熔融性较好、强度较高的焦炭。 (8)气肥煤(QF)。气肥煤是一种挥发分和胶质层都很高的强粘结性肥煤类,有的称为液肥煤。炼焦性能介于肥煤和气煤之间,单独炼焦时能产生大量的气体和液体化学产品。 (9)气煤(QM)。气煤是一种煤化度较浅的炼焦用煤。加热时能产生较高的挥发分和较多的焦油。胶质体的热稳定性低于肥煤,能够单独炼焦。但焦炭多呈细长条而易碎,有较多的纵裂纹,因而焦炭的抗碎强度和耐磨强度均较其他炼焦煤差。 (10)1/2中粘煤(1/2ZN)。1/2中粘煤是一种中等粘结性的中高挥发分烟煤。其中有一部分在单独炼焦时能形成一定强度的焦炭,可作为炼焦配煤的原料。粘结性较差的一部分煤在单独炼焦时,形成的焦炭强度差,粉焦率高。 (11)弱粘煤(RN)。弱粘煤是一种粘结性较弱的从低变质到中等变质程度的烟煤。加热时,产生较少的胶质体。单独炼焦时,有的能结成强度很差的小焦块,有的则只有少部分凝结成碎焦屑,粉焦率很高。 (12)不粘煤(BN)。不粘煤是一种在成煤初期已经受到相当氧化作用的低变质程度到中等变质程度的烟煤。加热时,基本上不产生胶质体。煤的水分大,有的还含有一定的次生腐植酸,含氧量较多,有的高达10%以上。 (13)长焰煤(CY)。长焰煤是变质程度最低的一种烟煤,从无粘结性到弱粘结性的都有。其中最年轻的还含有一定数量的腐植酸。贮存时易风化碎裂。煤化度较高的年老煤,加热时能产生一定量的胶质体。单独炼焦时也能结成细小的长条形焦炭,但强度极差,粉焦率很高。(14)褐煤(HM)。褐煤分为透光率Pm<30%的年轻褐煤和Pm>30~50%的年老褐煤两小类。褐煤的特点为:含水分大,密度较小,无粘结性,并含有不同数量的腐植酸,煤中氧含量高。常达15~30%左右。化学反应性强,热稳定性差,块煤加热时破碎严重。存放空气中易风化变质、破碎成效块甚至粉末状。发热量低,煤灰熔点也低,其灰中含有较多的CaO,而有较少的Al2O3。 发电用煤的质量要求: 电厂煤粉炉对煤种的适用范围较广,它既可以设计成燃用高挥发分的褐煤,也可设计成燃用

煤的水分

煤的水分、灰分、挥发分和发热量对燃烧性能的影响(一) 们通常把开发煤炭资源的企业称作煤矿,把开采出来的煤矿产品称为煤炭。我国古代曾称煤炭为石涅,或称石炭。它是植物遗体埋藏在地下经过漫长复杂的生物化学、地球化学和物理化学作用转化而成的一种固体可燃矿产。它不仅是工农业和人民生活不可缺少的主要燃料,而且还是冶金、化工、医药等部门的重要原料。据统计,在我国能源生产和消费构成中,煤炭一直居于主导地位,1995年,生产占75.5%,消费占75.0%。在国民经济中,工业、农业、交通运输的发展都离不开煤炭。随着近代科学技术的发展和新工艺、新方法的应用,煤炭的用途和综合利用价值将会越来越大。可以预计,在未来相当长的时期内,煤炭在我国国民经济中都将占有相当重要的地位。 一、矿物原料特点 (一) 煤的物理性质 煤的物理性质是煤的一定化学组成和分子结构的外部表现。它是由成煤的原始物质及其聚积条件、转化过程、煤化程度和风、氧化程度等因素所决定。包括颜色、光泽、粉色、比重和容重、硬度、脆度、断口及导电性等。其中,除了比重和导电性需要在实验室测定外,其他根据肉眼观察就可以确定。煤的物理性质可以作为初步评价煤质的依据,并用以研究煤的成因、变质机理和解决煤层对比等地质问题。 1.颜色 是指新鲜煤表面的自然色彩,是煤对不同波长的光波吸收的结果。呈褐色—黑色,一般随煤化程度的提高而逐渐加深。 2.光泽 是指煤的表面在普通光下的反光能力。一般呈沥青、玻璃和金刚光泽。煤化程度越高,光泽越强;矿物质含量越多,光泽越暗;风、氧化程度越深,光泽越暗,直到完全消失。 3.粉色 指将煤研成粉末的颜色或煤在抹上釉的瓷板上刻划时留下的痕迹,所以又称为条痕色。呈浅棕色—黑色。一般是煤化程度越高,粉色越深。 4.比重和容重 煤的比重又称煤的密度,它是不包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重又称煤的体重或假比重,它是包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重是计算煤层储量的重要指标。褐煤的容重一般为1.05~1.2,烟煤为1.2~1.4,无烟煤变化范围较大,可由1.35~1.8。煤岩组成、煤化程度、煤中矿物质的成分和含量是影响比重和容重的主要因素。在矿物质含量相同的情况下,煤的比重随煤化程度的加深而增大。 5.硬度 是指煤抵抗外来机械作用的能力。根据外来机械力作用方式的不同,可进一步将煤的硬度分为刻划硬度、压痕硬度和抗磨硬度三类。煤的硬度与煤化程度有关,褐煤和焦煤的硬度最小,约2~2.5;无烟煤的硬度最大,接近4。 6.脆度 是煤受外力作用而破碎的程度。成煤的原始物质、煤岩成分、煤化程度等都对煤的脆度有影响。在不同变质程度的煤中,长焰煤和气煤的脆度较小,肥煤、焦煤和瘦煤的脆度最大,无烟煤的脆度最小。 7.断口 是指煤受外力打击后形成的断面的形状。在煤中常见的断口有贝壳状断口、参差状断口等。

煤的水分灰分挥发分和发热量对燃烧性能影响精选版

煤的水分灰分挥发分和发热量对燃烧性能影响 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

煤的水分、灰分、挥发分和发热量对燃烧性能的影响 人们通常把开发煤炭资源的企业称作煤矿,把开采出来的煤矿产品称为煤炭。我国古代曾称煤炭为石涅,或称石炭。它是植物遗体埋藏在地下经过漫长复杂的生物化学、地球化学和物理化学作用转化而成的一种固体可燃矿产。它不仅是工和人民生活不可缺少的主要燃料,而且还是冶金、化工、医药等部门的重要原料。据统计,在我国能源生产和消费构成中,煤炭一直居于主导地位,1995年,生产占%,消费占%。在国民经济中,工业、农业、交通运输的发展都离不开煤炭。随着近代科学技术的发展和新工艺、新方法的应用,煤炭的用途和综合利用价值将会越来越大。可以预计,在未来相当长的时期内,煤炭在我国国民经济中都将占有相当重要的地位。 一、矿物原料特点 (一)煤的物理性质 煤的物理性质是煤的一定化学组成和分子结构的外部表现。它是由成煤的原始物质及其聚积条件、转化过程、煤化程度和风、氧化程度等因素所决定。包括颜色、光泽、粉色、比重和容重、硬度、脆度、断口及导电性等。其中,除了比重和导电性需要在实验室测定外,其他根据肉眼观察就可以确定。煤的物理性质可以作为初步评价煤质的依据,并用以研究煤的成因、变质机理和解决煤层对比等地质问题。 1.颜色 是指新鲜煤表面的自然色彩,是煤对不同波长的光波吸收的结果。呈褐色—黑色,一般随煤化程度的提高而逐渐加深。 2.光泽 是指煤的表面在普通光下的反光能力。一般呈沥青、玻璃和金刚光泽。煤化程度越高,光泽越强;矿物质含量越多,光泽越暗;风、氧化程度越深,光泽越暗,直到完全消失。 3.粉色 指将煤研成粉末的颜色或煤在抹上釉的瓷板上刻划时留下的痕迹,所以又称为条痕色。呈浅棕色—黑色。一般是煤化程度越高,粉色越深。 4.比重和容重 煤的比重又称煤的密度,它是不包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重又称煤的体重或假比重,它是包括孔隙在内的一定体积的煤的重量与同温度、同体积的水的重量之比。煤的容重是计算煤层储量的重要指标。褐煤的容重一般为~,烟煤为~,变化范围较大,可由~。煤岩组成、煤化程度、煤中矿物质的成分和含量是影响比重和容重的主要因素。在矿物质含量相同的情况下,煤的比重随煤化程度的加深而增大。 5.硬度 是指煤抵抗外来机械作用的能力。根据外来机械力作用方式的不同,可进一步将煤的硬度分为刻划硬度、压痕硬度和抗磨硬度三类。煤的硬度与煤化程度有关,褐煤和焦煤的硬度最小,约2~;无烟煤的硬度最大,接近4。 6.脆度

煤炭的质量和稳定性

煤炭的质量和稳定性 煤炭质量是指煤炭的物理、化学特性及其适用性,其主要指标有灰分、水分、硫分、发热量、挥发分、块煤限率、含肝率以及结焦性、粘结性等。 1、产品质量。产品质量是企业赖以生存和发展的基础,是企业各项工作的综合反映。生产适销对路、品种优良的产品,是社会主义生产企业的重要任务和社会主义生产目的的客观要求。 产品质量是指产品、过程或服务满足规定或潜在要求(或需要)的特征或特性的总和。质量有狭义质量和广义质量之分。狭义质量是指产品质量和有关的工作质量;广义质量不仅指产品质量和有关的工作质量,而且还包括产品形成的过程质量和服务质量等,它把产品质量、过程质量和服务质量三者放在同等重要的地位加以考虑,更加体现了在市场经济条件下,人们对产品质量的高度重视和质量在竞争中的决定作用。 从产品质量的定义可以看出,它包含两层涵义:一是指产品自身所具有的特征和特性,即产品的客观属性;另一是指产品在使用过程中用户需求的满足程度,即产品的适用性。当二者有机结合时,产品的特征和特性得以充分利用,用户的需求得以充分的满足;社会的生产目的得以实现。如无烟块煤用于合成氨生产,就便煤炭的特性与适用性达到了较好的结合。但若将无烟块煤用作普通锅炉燃料,就失去了其适用性。可见,对产品质量高低的评价是由用户的不同需求来确定的。[1] 1)产品质量特性。社会主义的生产目的就是为了满足人民日益增长的物质和文化生活的需要。也就是说,任何产品都是为了满足一定的用户(或消费者)的需求而生产的。不仅不同的用户对产品质量的要求不同,而且同一用户在不同的时期对产品质量的要求也有较大差异。由此可见,产品的质量特性是根据产品的用途来确定的。如层燃锅炉燃烧用煤,要求粒度更均匀,块度要合适,限下率要低,发热量要高,而且还要有较高的灰熔点和较低的灰分;冶金焦生产用煤要求原料煤有较好的粘结性和结焦性,硫分和磷分的含量要低,灰分含量不宜太高,且成焦率和化产回收率要高;铁路机车用煤除了要具有合适的粒度和灰分外,还要有较高的发热量,以保证机车大供气率时作功的需要。另外,在隧道较多的铁路路段,还要严格控制煤炭的含硫量,以避免因燃用含硫过高的煤而腐蚀隧道内的设备或造成人员中毒。

煤的发热量

煤的发热量 (邓奕鹏、何维民、谭林、胡雅婷、卢清荣) 摘要:发热量不仅是火电厂进煤的计价依据,也是火电厂计算标准煤耗率的主要参数。同时,根据发热量可以求出各种不同种类的煤混合燃烧时的参配比例以及计算出锅炉的热强度。此外,发热量是表征煤质的一项重要特性,依据发热量可以粗略推测煤的变质程度以及和变质程度有关的某些特性,如粘结性、结焦性等。因此发热量的准确测定对于电厂的安全生产和经济运行具有双重意义[1]。 关键词:发热量;氧弹热量计;冷却校正;热容量 0前言 发热量测定在煤质分析中是一个很重要的项目。它不仅是评价燃料煤品质的最主要的参数,并且能为煤质变化规律、煤炭分类的研究提供依据。煤炭的发热量是燃料利用的一个重要特性指标。燃料的商务管理火力发电厂的生产运行电厂燃料消耗定额的编制和供应计划、发电成本核算及能量利用效率的统计等等,都必须以煤的发热量为依据。煤炭的定价及结算采用的是以发热量为主的计价体系准确测定煤炭的发热量,对于厂矿的安全生产和经济运行具有重要意义[2]。 1、发热量概述 1.1 定义 (1)热量热量指的是由于温差的存在而导致的能量转化过程中所转移的能量。热量的单位为焦耳,焦耳的符号为J。 (2)发热量单位质量的物质完全燃烧时所放出的热量,称为该物质的发热量(或称热值)。发热量是以焦/克(J/g)或兆焦/千克(MJ/kg)为单位。1MJ/kg=1000J/g。 注意:热量和发热量(或称热值)是两个不同概念。 (3)量热体系量热体系是指热容量标定和发热量测试过程中,试样放出的热

量所能达到的各个部件。它们包括内筒中的水、内筒、氧弹及搅拌器、感温探头浸没在水中的部分等。 (4)量热仪的有效热容量 量热体系产生单位温升所需要的热量,称为量热仪的有效热容量,用E 表示,单位为J/℃或J/K 。 1.2热容量的标定 (1)定义 用一种已知热值的物质来测量整个量热体系温度升高1℃所需的热量,即测得量热仪的热容量。已知热值的物质,现在常用的是一种由权威机构已经定值的叫做苯甲酸的基准量热物质,二等或二等以上[3]。 (2)计算公式 E ——热容量(J/℃ 或J/K ) m ——试样质量(g ) Q ——苯甲酸热值(J/g ) q1——点火丝热量(J ) qn ——硝酸生成热(J ) qn= Q ×m ×0.0015 △——主期温升(K 或℃) C ——温升冷却校正值(K 或℃) (3)热容量的有效期[4] 热容量标定值的有限期为三个月,超过此期限时应重新标定。但有下列情况时应立即重标: a.更换温度计; b.更换量热仪的大部件,如氧弹头.连接环(密封圈.电极柱.螺母等小部件不在此列); c.标定热容量和测发热量时的内筒水温相差超过5K ; d.量热仪经过较大的搬动 如果量热仪的量热系统没有显著改变,重新标定的热容量与前一次的热容量相差不应大于0.25%,否则,应找出原因,解决后再重新标定。 3.发热量的测定[5] (1)定义 当要测某种可燃物质的热值时,只需将一定量的该物质置于量热体系中燃烧,测出量热体系的温升值,即可算出该物质的热值。 C q q m Q C t t q q m Q E n o n n +?++?=+-++?=11)(

煤炭发热量指标

煤炭指标解释 第一个指标:水分。煤中水分分为内在水分、外在水分、结晶水和分解水。煤中水分过大是,不利于加工、运输等,燃烧时会影响热稳定性和热传导,炼焦时会降低焦产率和延长焦化周期。现在我们常报的水份指标有:1、全水份(Mt),是煤中所有内在水份和外在水份的总和,也常用Mar表示。通常规定在8%以下。2、空气干燥基水份(Mad),指煤炭在空气干燥状态下所含的水份。也可以认为是内在水份,老的国家标准上有称之为“分析基水份”的 第二个指标:灰分指煤在燃烧的后留下的残渣。不是煤中矿物质总和,而是这些矿物质在化学和分解后的残余物。灰分高,说明煤中可燃成份较低。发热量就低。同时在精煤炼焦中,灰分高低决定焦炭的灰分。能常的灰分指标有空气干燥基灰分(Aad)、干燥基灰分(Ad)等。也有用收到基灰分的(Aar)。 第三指标:挥发份(全称为挥发份产率)V指煤中有机物和部分矿物质加热分解后的产物,不全是煤中固有成分,还有部分是热解产物,所以称挥发份产率。挥发份大小与煤的变质程度有关,煤炭变质量程度越高,挥发份产率就越低。在燃烧中,用来确定锅炉的型号;在炼焦中,用来确定配煤的比例;同时更是汽化和液化的重要指标。常使用的有空气干燥基挥发份(Vad)、干燥基挥发份(Vd)、干燥无灰基挥发份(Vdaf)和收到基挥发份(Var)。其中Vdaf是煤炭分类的重要指标之一。 第四个指标:固定碳不同于元素分析的碳,是根据水分、灰分和挥发份计算出来的。 FC+A+V+M=100相关公式如下:FCad=100-Mad-Aad-Vad FCd=100-Ad-Vd FCdaf=100-Vdaf 第五个指标:全硫St是煤中的有害元素,包括有机硫、无机硫。1%以下才可用于燃料。部分地区要求在0.6和0.8以下,现在常说的环保煤、绿色能源均指硫份较低的煤。常用指标有:空气干燥基全硫(St,ad)、干燥基全硫(St.d)及收到基全硫(St,ar)。 第六指标:煤的发热量煤的发热量,又称为煤的热值,即单位质量的煤完全燃烧所发出的热量。煤的发热量时煤按热值计价的基础指标。煤作为动力燃料,主要是利用煤的发热量,发热量愈高,其经济价值愈大。同时发热量也是计算热平衡、热效率和煤耗的依据,以及锅炉设计的参数。煤的发热量表征了煤的变质程度(煤化度),这里所说的煤的发热量,是指用1.4比重液分选后的浮煤的发热量(或灰分不超过10%的原煤的发热量)。成煤时代最晚煤化程度最低的泥炭发热量最低,一般为20.9~25.1MJ/Kg,成煤早于泥炭的褐煤发热量增高到25~31MJ/Kg,烟煤发热量继续增高,到焦煤和瘦煤时,碳含量虽然增加了,但由于挥发分的减少,特别是其中氢含量比烟煤低的多,有的低于1%,相当于烟煤的1/6,所以发热量最高的煤还是烟煤中的某些煤种。鉴于低煤化度煤的发热量,随煤化度的变化较大,所以,一些国家常用煤的恒湿无灰基高位发热量作为区分低煤化度煤类别的指标。我国采用煤的恒湿无灰基高位发热量来划分褐煤和长焰煤。(1)发热量的单位热量的表示单位主要有焦耳(J)、卡(cal)和英制热量单位Btu。焦耳,是能量单位。1焦耳等于1牛顿(N)力在力的方向上通过1米的位移所做的功。1J=1N×0J 1MJ=1000KJ 焦耳时国际标准化组织(ISO)所采用的热量单位,也是我国1984年颁布的,1986年7月1日实施的法定计量热量的单位。煤的热量表示单位:J/g、KJ/g、MJ/Kg 卡(cal)是我国建国后长期采用的一种热量单位。1cal是指1g纯水从19.5C加热到20.5C时所吸收的热量。欧美一些国家多采用15Ccal,即1g纯水从14.5C加热到15.5C时所吸收的热量。 1cal(20Ccal)=4.1816J 1cal(15Ccal)=4.1855J 答案补充

相关文档
最新文档