贵州省贵阳市第一中学2018届高三12月月考数学(理)试题

合集下载

贵州省贵阳市第一中学2018届高三12月月考理科综合物理试卷(word版含答案)

贵州省贵阳市第一中学2018届高三12月月考理科综合物理试卷(word版含答案)

贵州省贵阳市第一中学2018届高三12月月考理科综合物理试题一、选择题:本题共8小题,每小题6分。

在每小题给出的四个选项中,第14-18题只有一项符合题目要求;第19-21题有多项符合题目要求,全部选对的得6分,选对但不全的得3分,有选错的得0分。

1. 汽车从A点由静止开始做匀加速直线运动,速度达到12m/s,后做匀速直线运动,最后到达B点。

AB间的距离为90m。

已知汽车加速运动的时间与匀速运动的时间相等,则汽车加速过程中的加速度大小为A. 2.0m/s2B. 2.4m/s2C. 3.6m/s2D. 4.0m/s2【答案】B【解析】设匀加速运动的时间为t,平均速度为v/2,由解得t=5s,,故B正确,ACD错误。

故选:B。

2. 如图5所示,竖直面内固定一段半圆弧轨道,两端点A,B连线水平。

将一轻质小环P套在轨道上,一细线穿过轻环,一端系一质量为m的小球,另一端固定于B点。

不计所有摩擦,重力加速度为g,平衡时轻环所受圆弧轨道的弹力大小A. 一定等于mgB. 一定等于mgC. 可能大于mgD. 可能等于2mg【答案】B【解析】平衡时,直线OP一定位于BPm的平分线上,一定有OBP=OPB=OPm=30°,根据受力平衡,F N=2mgcos30°=mg,故B正确,ACD错误。

故选:B。

3. 如图所示,等量异号点电荷连线上及延长线上有a、b、c三点,其中a、c两点关于连线中点O对称,d点位于中垂线上。

下列说法正确的是A. a、c两点场强相等,电势也相等B. 将一正点电荷q1沿虚线由b经O移到d,q1所受电场力先增大后减小C. 将一负点电荷q2沿虚线由b经O移到d,电场力先做负功,后做正功D. 同一正点电荷在d点具有的电势能大于在c点具有的电势能【答案】D【解析】A.根据等量异种电荷的等势线分布,a点电势高于c点,故A错误;B.将一正点电荷q1沿虚线由b经O移到d,q1所受电场力一直减小,故B错误;C.将一负点电荷q2沿虚线由b经O移到d,电场力先做负功,后不做功,故C错误;D.d点电势高于c点,正电荷在d点的电势能较大,故D正确。

贵州省贵阳市第一中学2018届高三上学期适应性月考(一)理综化学试题

贵州省贵阳市第一中学2018届高三上学期适应性月考(一)理综化学试题

7.下列叙述正确的是A.煤经过气化、液化等物理变化可转变为清洁燃料B.棉、麻、丝、有机玻璃都是天然高分子材料C. PM2.5颗粒(微粒直径约为2.5×10-6m )分散在空气中形成气溶胶D.青铜、黄铜、碳素钢都属于合金8.下列物质分类正确的是① 化合物:CaCl2、烧碱、聚乙烯、HD② 同素异形体:C60、C70、金刚石、石墨③ 混合物:盐酸、铝热剂、福尔马林、水玻璃④ 电解质:明矾、绿矾、冰醋酸、硫酸钡⑤ 同系物:CH2O2、C2H4O2、C3H6O2、C4H8O2A.②③④ B.①②④ C.①③⑤ D.②④⑤9.下列说法用离子方程式表达正确的是A.向明矾溶液中滴加Ba (OH)2溶液,恰好使SO42-沉淀完全:2Al3++3SO42-+3Ba2++ 6OH-=2Al(OH)3↓+3BaSO4↓B. Fe(NO3)2溶液中滴加少量稀盐酸:Fe2++ NO3-+4H+=Fe3++ NO↑+2H2OC. Ca (HCO3)2溶液与少量NaOH溶液反应:HCO3-+Ca2++ OH -=CaCO3↓+H2O D.向Mg (HCO3)2溶液中加入少量的NaOH溶液:Mg2++HCO3-+4OH-=Mg (OH)2↓+2CO32-+ 2H2O10.下列有关有机物的说法正确的是A.三种有机化合物:丙烯、氯乙烯、苯,其分子内所有原子均在同一平面上B.有机物的分子式是C10H18OC.相同条件下,新戊烷、异戊烷、正丁烷的沸点依次增大D.由1-溴丙烷水解制1-丙醇;由丙烯与水反应制丙醇,属于同一反应类型11.12.根据图4判断,下列说法正确的是A. 2H2(g)+O2(g)=2H2O(g) △H1>0B.氢气的燃烧热为△H2= -241. 8kJ/molC.上述A、B选项中的△H1>△H2D.液态水分解的热化学方程式为2H2O(l)= 2H2(g)+O2(g) △H=+571.6kJ/mol13.将1000mLNH4HCO3和K2CO3的混合溶液分成十等份,取一份加入含a mol NaOH的烧碱溶液,恰好完全反应;另取一份加入含b mol HCl的盐酸,恰好完全反应。

贵州省贵阳市第一中学2025届高三上学期高考适应性月考(二)数学答案

贵州省贵阳市第一中学2025届高三上学期高考适应性月考(二)数学答案

数学参考答案·第1页(共8页)贵阳第一中学2025届高考适应性月考卷(二)数学参考答案一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 题号 1 2 3 4 5 6 7 8 答案 DCDACBBC【解析】1.因为B A ⊆,所以m 的取值范围是(5]-∞-,,故选D. 2.由百分位数的定义,故选C .3.令213x -=,则2x =,则2(3)24f ==,故选D.4.2π3AOC ∠=∵,弧长为8π3,4OA =∴. 又2OB =∵,∴扇环的面积为2212π(42)4π23⨯⨯-=,故选A . 5.当1y xx =-与1y kx =-相交和相切时有唯一公共点,公共点分别为(10)A ,或322A ⎛⎫⎪⎝⎭,,则sin 0θ=或3sin 5θ=,故选C.6.当2n ≥时,1n n n bT T-=-=即=. 由数1=1==,即数列是首项为1,公差为1的等差数列,n =,1n =-,2n ≥. 当2n ≥时,21n b n =+=-;当1n =时,12111b =⨯-=成立,所以21n b n =-,2039b =,故选B .7.将4名教师和6名学生分成2个组,再将两组分别安排到两所高校共有:2346C C 120=种分配方式;甲和乙不去同一所高校共有:122244C C C 72=种方法,所以,学生甲和乙不去同一所高校的概率为:7231205=,故选B. 8.(1)f x -关于直线1x =对称,则()fx 是偶函数,当x ∈(0)+∞,时,()0f x '>,函数在(0)+∞,上单调递增. 由21>,ln 3ln e 1>=,112-<2和ln 3的大小,构造函数ln ()xf x x=2>ln 3,所以a b c >>,故选C .数学参考答案·第2页(共8页)二、多项选择题(本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分)题号 9 10 11 答案 BDBCDACD【解析】9.根据题意,依次分析选项:A .函数1()2x f x a -=-,当10x -=,即1x =时,()121f x =-=-,则函数()f x 的图象恒过定点(11)-,,A 错误,不符合题意;B .2050x x -⎧⎨+⎩≥,≥,解得2x ≥,所以函数的定义域为[2)+∞,,B 正确;C .()f x =t =则9y t t =+,又由5t =,结合对勾函数的性质可得9y tt =+在区间[5)+∞,上递增,则9()55f x +≥,C 错误,不符合题意;D .函数1()2f x ⎛= ⎪⎝⎭220x x --+≥,解得21x -≤≤,即函数的定义域为[2-,1];设t =则12ty ⎛⎫= ⎪⎝⎭,在区间122⎡⎤--⎢⎥⎣⎦,上,t 为增函数,在区间112⎡⎤-⎢⎥⎣⎦,上,t 为减函数,由于12ty⎛⎫= ⎪⎝⎭为定义域为R 的减函数,故有112x ⎡⎤∈-⎢⎥⎣⎦,,故函数1()2f x ⎛=⎪⎝⎭的单调增区间为112⎡⎤-⎢⎥⎣⎦,,D 正确,符合题意,故选BD .10.对于A ,离心率为2=解得:124m c ==,,12||||||4MF MF -=,则2||9MF =或1.又因为2||2MF c a -=≥,∴2||9MF =,故A 错;对于B ,假设存在点(1P为线段AB 的中点,则OP k =,又223OP ABb k k a⨯==∵,AB k =∴,线段AB :1)y x =-联立AB :y =-221412x y -=,整理计算得,0∆<,矛盾,所以不存在点(1P 为AB 中点的弦,故B正确(方法2,数形结合);对于C ,由于双曲线的渐近线斜率为,结合图象易知,直线l 与双曲线C 的两支各有1个交点,则直线 l 的斜率(k ∈,故C 正确;对于D ,12MF F △的内切圆与x 轴相切于点0(0)H x ,,则由双曲线定义得:2a =1212||||||||||||MF MF HF HF -=-000|()()|2||x c c x x =+--=,所以02x a =±=±,即12MF F △内切圆圆心的横坐标为2±,所以D 正确,故选BCD.数学参考答案·第3页(共8页)11.A .因为0ω>,所以2π3πT ω=,解得203ω<≤所以A 正确;B .由曲线()y f x =关于直线π4x =对称,得πππ()42k k ω=+∈Z ,解得24()k k ω=+∈Z ,所以“2ω=”是“曲线()y f x =关于直线π4x =对称”的充分不必要条件,所以B 错误;C .因为图象平移后令π()sin 6g x x ωω⎛⎫=+ ⎪⎝⎭,在区间π06⎡⎤⎢⎥⎣⎦,上单调递增,令πππ622x ωω⎡⎤+∈-⎢⎥⎣⎦,,所以ππ62πππ662ωωω⎧-⎪⎪⎨⎪+⎪⎩≥,即33.2ωω-⎧⎪⎨⎪⎩≥,≤又因为0ω>,所以302ω<≤,所以C 正确;D .因为1212(0π)()x x x x ∈<,,,又因为sin(π)sin x x-=,所以12πx x +=,则211111sin()sin(π2)sin 22sin cos x x x x x x -=-==,因为11sin 3x =,所以1cos x =211sin()2339x x -=⨯⨯=,所以D 正确,故选ACD. 三、填空题(本大题共3小题,每小题5分,共15分)题号 12 1314 答案 241-1【解析】12.二项式5ax ⎛⎫ ⎝的展开式通项为2555533155C ()C rr rr r rr T ax x a x ----+⎛⎫== ⎪ ⎪⎝⎭,由于该二项式的展开式中常数项为40,则55C 405503r r a r -⎧=⎪⎨-=⎪⎩,,解得32r a =⎧⎨=⎩,,2a =∴. 13.先作出()f x 的大致图象,如图1,令()f x t =,则2()0g t t at b =++=,根据()f x 的图象可知:要满足题意必须()0g t =有两个不等根1212()t t t t <,,且1()f x t =有两个整数根,2()f x t =有三个整数根,结合对勾函数和对数函数的图象与性质知,两函数图1数学参考答案·第4页(共8页)14y t y x x ==+,相切时符合题意.因为44x x +=≥,当且仅当2x =时取得等号,又22log ||log ()(0)y x x x ==-<,易知其定义域内单调递减,即1()4f x t ==,此时有两个整数根2x =或16x =-,而要满足2()f x t =有三个整数根,结合()f x 的图象知必有一根小于2,显然只有1x =符合题意,当1x =时,有(1)5f =,则25t =,解方程45x x+=,得25t =的另一个正根为4x =.又2log (32)5x x -==-⇒,此时五个整数根依次是3216124x =--,,,,,显然根和为41-.14.设AB 的直线方程为x ty n =+,11()A x y ,,22()B x y ,,则由AB 与抛物线的方程消x 得:2220y ty n --=,122y y t +=∴,122y y n =-. 121222x xy y P ++⎛⎫ ⎪⎝⎭,∵,2()P t n t +∴,. AB CD ⊥∵,同理可得:211Q n t t ⎛⎫+- ⎪⎝⎭,,1||||2MPQ S MP MQ == △1=,当且仅当221t t =,即1t =±时,面积有最小值为1. 四、解答题(共77分.解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)解:(1)因为2100n a n =-≥,解得5n ≥, 所以151215||||||S a a a =+++12345615()a a a a a a a =-+++++++ …………………………………………(2分) 1151415415()4()22130.22a a a a S S ++=-=-⨯= ………………………………………(4分) (2)15b =, ∵321215555n n b b b b n -++++= , 当2n ≥时,3121225(1)555n n b b b b n --++++=- , 两式相减,得155nn b -=,即5.n n b = …………………………………………………(6分) 又当1n =时,15b =符合题意, 所以5.n n b =数学参考答案·第5页(共8页)2105n n na nb -=, 2111(8)(6)(210)555nn T n ⎛⎫⎛⎫=-⨯+-⨯++-⨯ ⎪ ⎪⎝⎭⎝⎭ , …………………………………(8分)故2311111(8)(6)(210)5555n n T n +⎛⎫⎛⎫⎛⎫=-⨯+-⨯++-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, …………………………(9分)两式作差得231411111(8)222(210)555555nn n T n +⎛⎫⎛⎫⎛⎫⎛⎫=-⨯+⨯+⨯++⨯--⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…………………………………………………………………………………………(10分)即11211255481(210)155515n n n T n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+--⨯ ⎪⎝⎭-, ………………………………(11分)(1)解:()e 4e f x a =-+-,令e x t =,即()4f t t t a =-+-, 令11e x t =,22e x t =,则1t ,2t 是方程240t t a -+=的两个正根, 则2Δ(4)41640a a =--=->,即4a <,有124t t +=,120t t a =>,即04a <<. ……………………………………………(6分) (2)证明:(1)ln 20(04)a a a a ---<<<, 令(1)ln 2(04)()g x x x x x =---<<, 则111ln ln ()x g x x x x x '-⎛⎫=-+=- ⎪⎝⎭.令1ln (04)()h x x x x =-<<,则2110()xx h x '=--<, 则()g x '在(04),上单调递减. ………………………………………………………(9分) 又1ln111(1)g =-=',1ln 202(2)g =-<',数学参考答案·第6页(共8页)则00000000011()()(1)ln 2(1)23g x g x x x x x x x x x =---=--⨯-=+-≤. 又0(12)x ∈,,则001522x x ⎛⎫+∈ ⎪⎝⎭,,故0001()30g x x x =+-<,即()0g x <. ………………………………………………………………………(15分) 17.(本小题满分15分)(1)证明:因为112A E AB =,112A D AC =,所以11A A AB ⊥,11AA AC ⊥. 又因为111A B A C A = ,所以1AA ⊥平面1A BC . ……………………………………(6分) (2)解:如图2,点O 为坐标原点,建立空间直角坐标系, 三角形的边长为2,则1002E ⎛⎫ ⎪⎝⎭,,1002D ⎛⎫- ⎪⎝⎭,,102B ⎛⎫ ⎪ ⎪⎝⎭,,102C ⎛⎫- ⎪ ⎪⎝⎭,. 设1()A x y z ,,,因为11A E =,1A O =, 所以2222222210123344x x y z y z x y z ⎧⎛⎫=⎧-++=⎪ ⎪⎪⎪⎝⎭⇒⎨⎨+=⎪⎪⎩++=⎪⎩,,, 所以1(0)A y z ,,,112A E yz ⎛⎫=-- ⎪⎝⎭ ,,10.2CD ⎛⎫= ⎪ ⎪⎝⎭,所以1063A ⎛⎫- ⎪ ⎪⎝⎭,,,11263A D ⎛=--⎝⎭,. 设111()m x y z =⊥,,平面1EA D ,所以11010026330102636x x y z A D m y A E m x y z z ⎧⎪=⎧⎪-+-=⎪⎧=⎪⎪⎪⇒⇒=⎨⎨⎨=⎪⎪⎪⎩+-=⎪⎪⎩=⎪⎩,,, 图2数学参考答案·第7页(共8页)2⎝⎭,2⎝⎭,令12t P P =,1439t ⎡⎤∈⎢⎥⎣⎦,,则2841614()33392739P h t t t t t ⎛⎫⎛⎫==-+=--+ ⎪ ⎪⎝⎭⎝⎭≤≤,数学参考答案·第8页(共8页)19.(本小题满分17分)(1)解:因为等边12FF F △的重心坐标为0⎫⎪⎪⎝⎭,(2)证明:设()P x y ,,则2222222()||1()24a c b a c PN x y x a c x b c ⎛⎫--⎛⎫=-+=---++ ⎪ ⎪⎝⎭⎝⎭, 0c x -≤≤.………………………………………………………………(7分)2210b -<∵,开口向下,||PN 取得最小值时,即P 在点1B ,2B 或1A 处. ……………………………………(10分) (3)解:由题可知,直线HK 的斜率0k =,则设直线y t =,b t b -<<, 设H 在22221(0)x y x +=≥上,设K 在半椭圆221(0)x y x +=≤上,即线段HK 中点的轨迹方程为:221(0)2x y x b a c +=>-⎛⎫⎪⎝⎭. …………………………(17分)。

2023届贵州省贵阳市高考12月模拟性联考 数学(文)试题【含答案】

2023届贵州省贵阳市高考12月模拟性联考 数学(文)试题【含答案】

2023届贵州省贵阳市第一中学高考12月备考模拟性联考文科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,则表示的集合为(){}{}1,0,1,2,2xA B y y =-==A B ⋂A. B. C. D. {}1-{1,0}-{1,2}{0,1,2}2. 复数,则( )3i11i z -=-+||z =C. 2D. 53. 某医疗公司引进新技术设备后,销售收入(包含医疗产品收人和其他收入)逐年翻一番,据统计该公司销售收入情况如图所示,则下列说法错误的是()A. 该地区2021年的销售收入是2019年的4倍B. 该地区2021年的医疗产品收入比2019年和2020年的医疗产品收入总和还要多C. 该地区2021年其他收人是2020年的其他收入的3倍D. 该地区2021年的其他收入是2019年的其他收人的6倍4. 我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“阳马”意指底面为矩形,一侧棱垂直于底面的四棱锥.某“阳马”的三视图如图所示,则它的最长侧棱与底面所成角的正切值为()A. B. 1125. 已知焦点在坐标轴上且中心在原点的双曲线的一条渐近线方程为,若该双曲线2y x =过点,则它的方程为()(1,1)A.B.C.D.2243y x -=2243x y -=2221y x -=2221x y -=6. 若不等式组所表示的平面区域被直线分成面积相等的两部分,0,2,35,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩(2)x m y =-则实数m 的值为()A. 1B. C. D. 1213147. 已知直线与圆,则下列(2)(1)210()m x m y m m ++---=∈R 22:40C x x y -+=说法错误的是( )A. 对,直线恒过一定点m ∀∈RB. ,使直线与圆相切m ∃∈R C. 对,直线与圆一定相交m ∀∈R D. 直线与圆相交且直线被圆所截得的最短弦长为8. 以下关于的命题,正确的是( )21()sin cos cos 2f x x x x =-+A. 函数在区间上单调递增()f x 2π0,3⎛⎫ ⎪⎝⎭B. 直线是函数图象的一条对称轴π8x =()y f x =C. 点是函数图象的一个对称中心π,04⎛⎫ ⎪⎝⎭()y f x =D. 将函数图象向左平移个单位,可得到的图象()y f x =π82y x=9. 在中,分别为角的对边,且满足,则的ABC ,,a b c ,,A B C 22sin 2Cb a b -=ABC 形状为()A. 直角三角形B. 等边三角形C 直角三角形或等腰三角形D. 等腰直角三角形10. 小明家订了一份牛奶,送奶人可能在早上6:30~7:00之间把牛奶送到小明家,小明出门去上学的时间在早上6:50~7:10之间,则小明在离开家之前能得到牛奶的概率是( )A. B. C. D. 1122378111211. 已知符号函数,函数满足1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩()f x ,当时,,则( )(1)(1),(2)()f x f x f x f x -=++=[0,1]x ∈π()sin 2f x x ⎛⎫= ⎪⎝⎭A. B. sgn(())0f x >404112f ⎛⎫= ⎪⎝⎭C. D. sgn((2))0(Z)f k k =∈sgn((2))|sgn |(Z)f k k k =∈12. 已知直线l 与曲线相切,切点为P ,直线l 与x 轴、y 轴分别交于点A ,B ,O 为e xy =坐标原点.若的面积为,则点P 的个数是( )OAB 1e A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,每小题5分,共20分)13. 已知向量,若,则___________.(1,3),(3,4)a b == ()//()ma b a b -+ m =14. 153与119的最大公约数为__________.15. 若,则a 的值为___________.a =16. 如图,已知正方体的棱长为2,M ,N ,P 分别为棱1111ABCD A B C D -的中点,Q 为该正方体表面上的点,若M ,N ,P ,Q 四点共面,则点Q 的11,,AA CC AD 轨迹围成图形的面积为___________.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17. 随着人民生活水平的不断提高,“衣食住行”愈发被人们所重视,其中对饮食的要求也愈来愈高.某地区为了解当地餐饮情况,随机抽取了100人对该地区的餐饮情况进行了问卷调查.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图),解决下列问题.组别分组频数频率第1组[)50,60140.14第2组[)60,70m第3组[)70,80360.36第4组[)80,900.16第5组[)90,1004n合计(1)求m ,n ,x ,y 的值;(2)求中位数;(3)用分层抽样的方式从第四、第五组抽取5人,再从这5人中随机抽取2人参加某项美食体验活动,求抽到的2人均来自第四组的概率.18. 已知数列是递增的等比数列.设其公比为,前项和为,并且满足{}n a q n n S ,是与的等比中项.1534a a +=82a 4a (1)求数列的通项公式;{}n a (2)若,是的前项和,求使成立的最大正整数的n n b n a =⋅n T n b n 12100n n T n +-⋅>-n 值.19. 如图,在四棱锥中,底面是平行四边形,平面P ABCD -ABCD PD ⊥.,1,ABCD AD BD AB ===(1)求证:平面平面;PBD ⊥PBC (2)若二面角的大小为,求点D 到的距离.P BC D --60︒PBC 20. 已知椭圆过点.2222:1(0,0)x y C a b a b +=>>⎛ ⎝(1)求椭圆C 的方程;(2)已知直线与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,:2l y mx =+使且,若存在,求出该直线的方程;若不存在,请说明理由.MP MQ =MP MQ ⊥21. 已经函数.22e ()ln 2,()2()xf x a x xg x x ax a x =+=--∈R (1)求函数的单调性;()f x (2)若,求当时,a 的取值范围.()()()F x f x g x =+()0F x ≥请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂題题目的题号一致,在答题卡选答区城指定位置答题.如果多做,则按所做的第一题计分.22. 在平面直角坐标系中,曲线C 的参数方程为(为参数),xOy cos )cos )x y θθθθ⎧=-⎪⎨=+⎪⎩θ以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为O x l.πcos 4ρθ⎛⎫+=⎪⎝⎭(1)求直线和曲线的直角坐标方程;l C (2)从原点引一条射线分别交曲线和直线于两点,求的最O C l ,M N 22121||||OM ON +大值.23. 已知函数.()||2af x x a x =++-(1)当时,求不等式的解集;2a =()5f x ≤(2)设且的最小值为m ,若,求的最小值.0,0a b >>()f x 332m b +=32a b +2023届贵州省贵阳市第一中学高考12月备考模拟性联考文科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知集合,则表示的集合为(){}{}1,0,1,2,2xA B y y =-==A B ⋂A. B. C. D. {}1-{1,0}-{1,2}{0,1,2}【答案】C 【解析】【分析】由指数函数值域得,再根据交集的含义即可得到答案.{0}B yy =>∣【详解】根据指数函数值域可知,{0}B y y =>∣表示的集合为,A B ∴ {}1,2故选:C.2. 复数,则( )3i11i z -=-+||z =C. 2D. 5【答案】C 【解析】【分析】根据复数运算规则计算即可.【详解】 ,()221i 3i 3i 1i 22i 12i 1i 1i 1i 2z ------=-====-+++ ;2z ∴=故选:C.3. 某医疗公司引进新技术设备后,销售收入(包含医疗产品收人和其他收入)逐年翻一番,据统计该公司销售收入情况如图所示,则下列说法错误的是()A. 该地区2021年的销售收入是2019年的4倍B. 该地区2021年的医疗产品收入比2019年和2020年的医疗产品收入总和还要多C. 该地区2021年其他收人是2020年的其他收入的3倍D. 该地区2021年的其他收入是2019年的其他收人的6倍【答案】D 【解析】【分析】设该地区2019年销售收入为,a 则由销售收入(包含医疗产品收人和其他收入)逐年翻一番,所以该地区2020年销售收入为,2a 该地区2021年销售收入为,4a 然后逐项分析即可.【详解】设该地区2019年销售收入为,a 则由销售收入(包含医疗产品收人和其他收入)逐年翻一番,所以该地区2020年销售收入为,2a 该地区2021年销售收入为,4a 选项A :该地区2021年的销售收入是2019年的4倍,故选项A 正确;选项B :由图可得该地区2021年的医疗产品收入为,40.7 2.8a a ⨯=该地区2019年的医疗产品收入为,0.90.9a a ⨯=该地区2020年的医疗产品收入为,20.8 1.6a a ⨯=由,0.9 1.6 2.5 2.8a a a a +=<故选项B 正确;选项C :该地区2021年的其他收入为,40.3 1.2a a ⨯=2020年的其他收入为,20.20.4a a ⨯=所以该地区2021年其他收人是2020年的其他收入的3倍,故选项C 正确;选项D :该地区2021年的其他收入为,40.3 1.2a a ⨯=2019年的其他收入为,0.10.1a a ⨯=所以该地区2021年的其他收入是2019年的其他收人的12倍,故选项D 不正确.故选:D.4. 我国古代数学名著《九章算术》对立体几何有深入的研究,从其中一些数学用语可见,譬如“阳马”意指底面为矩形,一侧棱垂直于底面的四棱锥.某“阳马”的三视图如图所示,则它的最长侧棱与底面所成角的正切值为()A. B. 112【答案】C 【解析】【分析】首先还原几何体,并得到最长侧棱,根据线面角的定义,求线面角的正切值.【详解】如下图,还原几何体,其中平面,底面为矩形,SA ⊥ABCD,,,,1AB =2BC =AC =1SA =SB ==, SD==SC===SC 与底面所成的角是,SC SCA∠tanSASCAAC∠===故选:C5. 已知焦点在坐标轴上且中心在原点的双曲线的一条渐近线方程为,若该双曲线2y x=过点,则它的方程为()(1,1)A. B. C. D.2243y x-=2243x y-=2221y x-=2221x y-=【答案】A【解析】【分析】根据渐近线设双曲线方程为,代入点坐标,计算得到答案.224y xλ-=【详解】双曲线的一条渐近线方程为,设双曲线方程为,2y x=224y xλ-=该双曲线过点,则,故双曲线方程为,(1,1)413λ-==2243y x-=故选:A6. 若不等式组所表示的平面区域被直线分成面积相等的两部分,0,2,35,xx yx y≥⎧⎪+≥⎨⎪+≤⎩(2)x m y=-则实数m的值为()A 1 B. C. D.121314【答案】A【解析】【分析】画出不等式组所表示的平面区域,利用三角形面积公式,选择同一条边为底,高为一半即可.【详解】如图所示,不等式组所表示的平面区域为,0,2,35,x x y x y ≥⎧⎪+≥⎨⎪+≤⎩ABC 为的中点,M BC 解得:、、、()0,2A 31,22B ⎛⎫ ⎪⎝⎭()0,5C 311,44M ⎛⎫ ⎪⎝⎭,此直线过定点.(2)x m y =-∴A 只要直线过点,(2)x m y =-M 就可以将分成面积相等的两部分.ABC 设直线的斜率为,k 则,即,解得.1124134k -==11m =1m =故选:A.7. 已知直线与圆,则下列(2)(1)210()m x m y m m ++---=∈R 22:40C x x y -+=说法错误的是( )A. 对,直线恒过一定点m ∀∈RB. ,使直线与圆相切m ∃∈RC. 对,直线与圆一定相交m ∀∈R D.直线与圆相交且直线被圆所截得的最短弦长为【答案】B 【解析】【分析】首先求出直线过定点,则可判断A ,求出圆心,,则()1,1P ()2,0C 2r =,根据点在圆内,则直线与圆一定相交,故可判断B,C ,对D选项,||2PC =<()1,1P 分析出时弦长最短,则.PC l ⊥l =【详解】直线,即,(2)(1)210m x m y m ++---=(2)210m x y x y +-+--=令,解得,即直线恒过定点,故A 正确;20210x y x y +-=⎧⎨--=⎩11x y =⎧⎨=⎩()1,1P 圆,即圆,圆心,半径,22:40C x x y -+=22:(2)4C x y -+=()2,0C 2r =则,即点在圆内,所以直线与圆一定相交,故B错||2PC ==<()1,1P 误,故C 正确,当时直线与圆相交且直线被圆所截得的弦长最短,最短弦长PCl ⊥,故D正确,l ==故选:B.8. 以下关于的命题,正确的是( )21()sin cos cos 2f x x x x =-+A. 函数在区间上单调递增()f x 2π0,3⎛⎫ ⎪⎝⎭B. 直线是函数图象的一条对称轴π8x =()y f x =C. 点是函数图象的一个对称中心π,04⎛⎫ ⎪⎝⎭()y f x =D. 将函数图象向左平移个单位,可得到的图象()y f x=π82y x=【答案】D【分析】根据三角函数恒等变换化简为21()sin cos cos 2f x x x x =-+,计算出,根据正弦函数的单调性,可判断π())4f x x =-ππ13π2(,4412x -∈-A;采用代入验证的方法可判断;根据三角函数的平移变换可得平移后的函数解析式,判B,C 断D.【详解】由题意得,2111π()sin cos cos sin 2cos 2)2224f x x x x x x x =-+=-=-当时,,由于函数在不单调,2π0,3x ⎛⎫∈ ⎪⎝⎭ππ13π2(,4412x -∈-sin y x =π13π(,)412-故函数在区间上不是单调递增函数,A 错误;()f x 2π0,3⎛⎫⎪⎝⎭当时,,故直线不是函数图象的对称轴,π8x =ππ8(4)f x⨯-==π8x =()y f x =B 错误;当时,,故点不是函数图象的对称中心,π4x =ππ1)42()4f x ⨯-==π,04⎛⎫ ⎪⎝⎭()y f x =C 错误;将函数图象向左平移个单位,可得到的()y f x =π8ππ)284y x x=+-=图象,D 正确,故选:D9. 在中,分别为角的对边,且满足,则的ABC ,,a b c ,,A B C 22sin 2Cb a b -=ABC 形状为()A. 直角三角形B. 等边三角形C. 直角三角形或等腰三角形D. 等腰直角三角形【解析】【分析】根据三角恒等变换得,再由余弦定理解决即可.cos a b C =【详解】由题知,,22sin 2C b a b -=所以,21cos sin 222b a C Cb --==所以,得,cos b a b b C -=-cos a b C =所以,得,2222a b c a b ab +-=⋅222a cb +=所以的形状为直角三角形,ABC 故选:A10. 小明家订了一份牛奶,送奶人可能在早上6:30~7:00之间把牛奶送到小明家,小明出门去上学的时间在早上6:50~7:10之间,则小明在离开家之前能得到牛奶的概率是( )A. B. C. D. 11223781112【答案】D 【解析】【分析】根据题意,设送奶人到达时间为,小明出门去上学的时间为,则可以看x y (,)x y 成平面中的点,分析可得由试验的全部结果所构成的区域并求出其面积,同理可得事件所构成的区域及其面积,由几何概型公式,计算可得结果.A 【详解】设送奶人到达时间为,小明出门去上学的时间为,x y 记小明在离开家之前能得到牛奶为事件,A 以横坐标表示送奶人到达时间,以纵坐标表示小明出门去上学的时间,建立平面直角坐标系,小明在离开家之前能得到牛奶的事件构成的区域如图所示:由于随机试验落在长方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影 部分,就表示小明在离开家之前能得到牛奶,即事件发生,A所以,120301010112()203012P A ⨯-⨯⨯==⨯故选:.D 11. 已知符号函数,函数满足1,0sgn 0,01,0x x x x >⎧⎪==⎨⎪-<⎩()f x ,当时,,则( )(1)(1),(2)()f x f x f x f x -=++=[0,1]x ∈π()sin 2f x x ⎛⎫= ⎪⎝⎭A. B. sgn(())0f x >404112f ⎛⎫= ⎪⎝⎭C. D. sgn((2))0(Z)f k k =∈sgn((2))|sgn |(Z)f k k k =∈【答案】C 【解析】【分析】计算得到A 错误,根据周期计算B 错误,根sgn((0))0f =40412f ⎛⎫= ⎪⎝⎭据定义计算C 正确,取,得到D 不正确,得到答案.1k =【详解】对选项A :,错误;()sgn((0))sgn 00f ==对选项B :,函数周期为,,错误;(2)()f x f x +=240411πsin 224f f ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭对选项C :,正确;()()sgn((2))sgn sin πsgn 00(Z)f k k k ===∈对选项D :取,,,不正确.1k =()sgn((2))sgn((0))sgn 00f f ===|sgn1|1=故选:C12. 已知直线l 与曲线相切,切点为P ,直线l 与x 轴、y 轴分别交于点A ,B ,O 为e xy =坐标原点.若的面积为,则点P 的个数是( )OAB 1e A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】设出切点坐标,利用导数求切线斜率,写出切线方程,求出点A ,B 的坐标,表示的面积函数,求面积函数与直线有几个交点.OAB 1e y =【详解】设直线l 与曲线相切于,又,e xy =00(,)P x y e xy '=所以直线l 的斜率为,方程为,0e x k =000e e ()x x y x x -=-令,;令,,即,.0x =00(1)e xy x =-0y =01x x =-0(1,0)A x -00(0,(1)e )x B x -所以.0020001111(1)e (1)e 222x x OAB S OA OB x x x =⨯⨯=⨯-⨯-=-△设,则.21()(1)e 2x f x x =-[]211()2(1)(1)e (1)(1)e 22x xf x x x x x '⎡⎤=--+-=+-⎣⎦由,解得或;由,解得.()0f x '>1x <-1x >()0f x '<11x -<<所以在,上单调递增,在上单调递减.()f x ()1-∞-,()1+∞,()11-,,,,,且恒有21(1)e e f -=>43252511(4)2e 2e e e f -==⨯<(1)0f =2e 1(2)2e f =>成立,()0f x ≥如图,函数与直线有3个交点.()f x 1e y =所以点P 的个数为3.故选:C .二、填空题(本大题共4小题,每小题5分,共20分)13. 已知向量,若,则___________.(1,3),(3,4)a b == ()//()ma b a b -+m =【答案】1-【解析】【分析】根据平面向量的坐标运算以及向量平行的坐标表示可求出结果.【详解】因为,(1,3),(3,4)a b ==所以,,(3,34)ma b m m -=-- (4,7)a b +=因为,所以,解得.()//()ma b a b -+7(3)4(34)0m m ---=1m =-故答案为:.1-14. 153与119的最大公约数为__________.【答案】17【解析】【详解】因为,153119134,11934317,34172=⨯+=⨯+=⨯所以153与119的最大公约数为17.答案:1715. 若,则a 的值为___________.a =【答案】1【解析】【分析】利用对数的运算性质分别对分子分母化简即可得到结果.【详解】原式()()266666612log 3log 3log log 6332log 2-++⋅⨯=()()22666612log 3log 31log 32log 2-++-=.()666666621log 3log 6log 3log 212log 2log 2log 2--====故答案为:116. 如图,已知正方体的棱长为2,M ,N ,P 分别为棱1111ABCD A B C D -的中点,Q 为该正方体表面上的点,若M ,N ,P ,Q 四点共面,则点Q 的11,,AA CC AD轨迹围成图形的面积为___________.【答案】【解析】【分析】根据题意找出点Q 的轨迹围成图形为正六边形即可求解.PENFGM 【详解】如图,取的中点分别为,1111,,CD B C A B EFG 则点Q 的轨迹围成图形为正六边形,PENFGM,所以点Q的轨迹围成图形的面积为,6=故答案为:三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17. 随着人民生活水平的不断提高,“衣食住行”愈发被人们所重视,其中对饮食的要求也愈来愈高.某地区为了解当地餐饮情况,随机抽取了100人对该地区的餐饮情况进行了问卷调查.请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图),解决下列问题.组别分组频数频率第1组[)50,60140.14第2组[) 60,70m第3组[)70,80360.36第4组[)80,900.16第5组[)90,1004n 合计(1)求m,n,x,y的值;(2)求中位数;(3)用分层抽样的方式从第四、第五组抽取5人,再从这5人中随机抽取2人参加某项美食体验活动,求抽到的2人均来自第四组的概率.【答案】(1)30;0.04;0.030;0.004(2)71.67(3)35【解析】【分析】(1)根据频率分布表可求得,根据频率分布直方图中的含义即可求得其,m n ,x y 值;(2)根据频率分布直方图,利用中位数的估计方法,可计算得答案;(3)用分层抽样的方式从第四、第五组抽取5人,确定每组中的人数,列举从这5人中随机抽取2人参加某项美食体验活动的所有基本事件,列举出抽到的2人均来自第四组的基本事件,根据古典概型的概率公式,即可求得答案.【小问1详解】由题意可知,第四组的人数为,1000.1616⨯=故,;100143616430m =----=40.04100n ==又内的频率为 ,∴;[)60,70300.30100=0.300.03010x ==∵内的频率为 ,∴.[)90,1000.040.040.00410y ==【小问2详解】由频率分布直方图可知第一、二组频率之和为,0.140.300.44+=前三组频率之和为,0.140.300.360.80++=故中位数为:.0.500.447071.670.036-+≈【小问3详解】由题意可知,第4组共有16人,第5组共有4人,用分层抽样的方式从第四、第五组抽取5人,则第四、第五组抽取人数为4人和1人,设第4组的4人分别为 ,第5组的1人分别为A,a b c d ,,,则从中任取2人,所有基本事件为:共10个,(,),(,),(,),(,),(,),(,),(,),(,),(,),(,)a b a c a d a A b c b d b A c d c A d A又抽到的2人均来自第四组的基本事件有∶共6个,(,),(,),(,),(,),(,),(,)a b a c a d b c b d c d 故抽到的2人均来自第四组的的概率为.63105=18. 已知数列是递增的等比数列.设其公比为,前项和为,并且满足{}n a q n n S ,是与的等比中项.1534a a +=82a 4a (1)求数列的通项公式;{}n a (2)若,是的前项和,求使成立的最大正整数的n n b n a =⋅n T n b n 12100n n T n +-⋅>-n 值.【答案】(1)()2n n a =*n ∈N (2)5【解析】【分析】(1)根据等比数列的性质结合条件是与的等比中项得到,联立82a 4a 1564a a =条件得到和,根据题目条件和等比数列的通项公式即可求解.1532a a +=1a 5a (2)根据(1)求得,利用错位相减求和得到,从而得到,通过2nn b n =⋅n T 12n n T n +-⋅函数法判断出是单调递减数列,即可求解.12n n T n +-⋅【小问1详解】因为是与的等比中项,所以,82a 4a 224864a a ==则由题意得:,即,解得:或,15243464a a a a +=⎧⎨=⎩15153464a a a a +=⎧⎨=⎩15232a a =⎧⎨=⎩15322a a =⎧⎨=⎩因为数列是递增的等比数列,所以,即,,{}n a 1451232a a a q =⎧⎨==⎩12a =2q =所以,111222n n nn a a q --==⨯=故数列的通项公式为().{}n a 2n na=*n ∈N 【小问2详解】由(1)得:(),2n n n b n a n =⋅=⨯*n ∈N则123n nT b b b b =++++ ,①1231222322n n =⨯+⨯+⨯++⨯ 即,②234121222322n n T n +=⨯+⨯+⨯++⨯ 则得:-①②123122222n n nT n +-=++++-⨯ 即(),()11122212212n n n n T n n +++-=⨯-=-+-*n ∈N 所以(),()11112122222n n n n n T n n n ++++-⋅=-+-⋅=-*n ∈N 设,则(),12n n n C T n +=-⋅122n n C +=-*n ∈N 因为在上单调递减,122x y +=-()0,∞+所以是单调递减数列,122n n C +=-又有,,652262100C =-=->-7622126100C =-=-<-所以当且时,成立,5n ≤*n ∈N 12100n nT n +-⋅>-故使成立的最大正整数的值为.12100n n T n +-⋅>-n 519. 如图,在四棱锥中,底面是平行四边形,平面P ABCD -ABCD PD ⊥.,1,ABCD AD BD AB ===(1)求证:平面平面;PBD ⊥PBC (2)若二面角的大小为,求点D 到的距离.P BC D --60︒PBC 【答案】(1)证明见解析;(2【解析】【分析】(1)利用线面垂直及面面垂直的判定定理可得结果;(2)根据等体积法即可求得点到平面的距离.C PBD 【小问1详解】在中, ,ADB1,===AD BD AB ,∴,222AD BD AB ∴+=AD BD ⊥∵平面,平面,∴.PD ⊥ABCD AD ⊂ABCD PD AD ⊥又∵,平面,∴平面,PD BD D ⋂=,PD DB ⊂PBD AD ⊥PBD 又,∴平面,//AD BC BC⊥PBD 又平面,所以平面平面BC ⊂PBC PBD ⊥PBC 【小问2详解】由(1)知平面,,,BC⊥PBD PB BC ∴⊥DB BC ⊥∴为二面角的平面角,∴.PBD ∠P BC D --60PBD ∠=在中, ,Rt PDB1,2===PD BD PB 所以,,111122=⨯⨯= BDC S 11212=⨯⨯= PBC S 设点D 到的距离,PBC d 由,有,P BCDD PBC V V --=1133△△⋅⋅=⋅⋅BDC PBCSPD S d即,解得1111323⨯=⨯⨯d d =即点D 到PBC20. 已知椭圆过点.2222:1(0,0)x y C a b a b +=>>⎛ ⎝(1)求椭圆C 的方程;(2)已知直线与椭圆交于不同的两点P ,Q ,那么在x 轴上是否存在点M ,:2l y mx =+使且,若存在,求出该直线的方程;若不存在,请说明理由.MP MQ =MP MQ ⊥【答案】(1)22142x y +=(2)详见解析【解析】【分析】(1)根据条件得到关于的方程组,即可求得椭圆方程;,,a b c (2)首先直线与椭圆方程联立,利用韦达定理表示线段中点坐标PQ ,再根据,以及,转化为坐标表示,代入韦2242,1212mN m m -⎛⎫ ⎪++⎝⎭MN PQ ⊥MP MQ ⊥达定理后,即可求,m n 【小问1详解】由条件可知,,解得:,,222221312a b c a a b c ⎧+=⎪⎪⎪=⎨⎪=+⎪⎪⎩24a =222b c ==所以椭圆C 的方程是;22142x y +=【小问2详解】假设在轴上存在点,使且,x (),0M n MP MQ =MP MQ ⊥联立,设,,222142y mx x y =+⎧⎪⎨+=⎪⎩()11P x y ()22,Q x y 方程整理为,()2212840m xmx +++=,解得:或,()226416120m m∆=-+>m>m <,,122812m x x m -+=+122412x x m =+1224212x x mm +-=+则线段的中点的横坐标是,中点纵坐标,PQ 2412mx m -=+2224221212m y m m -=+=++即中点坐标,,2242,1212mN m m -⎛⎫ ⎪++⎝⎭(),0M n 则,即,化简为,①MN PQ ⊥222112412m m m n m +=---+2220m n m n ++=又,0MP MQ ⋅= 则,,()()12120x n x n y y --+=()()()()1212220x n x n mx mx --+++=整理为,()()()2212121240m x x m n x x n ++-+++=,()()22224812401212m mm n n m m -+⨯+-⨯++=++化简为②()222124880n m m mn +-++=由①得,即,代入②得()2212mn m+=-()22212m n mn+=-,整理得③,又由①得,代224880mn m mn --++=22340m mn -++=2221mn m -=+入③得,即,222234021mm m m --+⋅+=+()()()222221324210m m m m m -++⋅-++=整理得,即.41m =1m =±当时,,当时,,满足,1m =23n =-1m =-23n =0∆>所以存在定点,此时直线方程是,当定点,此时直线方程是2,03M ⎛⎫- ⎪⎝⎭l 2y x =+2,03M ⎛⎫⎪⎝⎭l .2y x =-+21. 已经函数.22e ()ln 2,()2()xf x a x xg x x ax a x =+=--∈R (1)求函数的单调性;()f x (2)若,求当时,a 的取值范围.()()()F x f xg x =+()0F x ≥【答案】(1)见解析 (2)ea ≤【解析】【分析】(1)根据两种情况讨论.()24x af x x +'=0,0a a ≤>(2)求出,首先证明()ln e ()ln ln e xx xF x a x ax a x x x -=+-=-+()ln e e ln x x x x -≥-只需要求即可.()()ln e ln 0a x x x x -+-≥【小问1详解】()()2440a x af x x x x x+'=+=> (1)时,,所以在单调递增.0a ≥()240x a f x x +'=>()f x ()0,∞+(2)时,a<0()0,f x x '===时,时x ⎛∈ ⎝()0f x '<x ∞⎫∈+⎪⎪⎭()0f x ¢>所以在单调递减,在单调递增.()f x ⎛⎝∞⎫+⎪⎪⎭综上:时在单调递增0a ≥()f x ()0,∞+时在单调递减,在单调递增a<0()f x ⎛⎝∞⎫+⎪⎪⎭【小问2详解】()()()22e e ln 22ln x x F xf xg x a x x x ax a x axx x=+=++--=+-,要求,即求()()ln ln e ln ln e e xx xx a x x a x x -=-+=-+()0F x ≥()ln ln e 0x x a x x --+≥设,则,当,ln 1t x x =-+1110,1xt x x x -'=-===()()0,10,1,0x t x t ∞'∈∈+'><,所以在上单调递增,在单调递减,所以即t ()0,1()1,+∞ln1110t ≤-+=ln 1x x -≥设,,()()()e e 1,e e 0x x h x x x h x '=-≤-=-=()10x h x x '∴=<∈(],1-∞,所以在单调递减,在单调递增()[)01,h x x ∞∈'>+()h x (],1-∞[)1,+∞,故当且仅当时成立.所以当且()()1e e 0h x h ∴≥=-=e e xx ≥1x =()ln e e ln x x x x -≥-仅当即当且仅当时等号成立,ln 1x x -=1x =,又因为()()()ln ln e ln e ln 0x x a x x a x x x x --+≥-+-≥ln 1x x -≤-所以,所以.e 0a -≤e a ≤请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂題题目的题号一致,在答题卡选答区城指定位置答题.如果多做,则按所做的第一题计分.22. 在平面直角坐标系中,曲线C 的参数方程为(为参数),xOy cos )cos )x y θθθθ⎧=-⎪⎨=+⎪⎩θ以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为O x l.πcos 4ρθ⎛⎫+=⎪⎝⎭(1)求直线和曲线的直角坐标方程;l C (2)从原点引一条射线分别交曲线和直线于两点,求的最O C l ,M N 22121||||OM ON +大值.【答案】(1)直线的直角坐标方程为:,曲线的直角坐标方程为:l 10x y --=C.22164x y +=(2【解析】【分析】(1)消去参数可得曲线的直角坐标方程;利用两角和的余弦公式和θC ,可得直线的直角坐标方程;cos x ρθ=sin y ρθ=l (2)设射线方程为(),将曲线的直角坐标方程化为极坐标方程,θα=0,0πρθ≥≤<C 并将代入可得,将代入可得,再利用辅助角θα=||OM θα=cos sin 10ρθρθ--=||ON 公式可求出的最大值.22121||||OM ON +【小问1详解】由,得,cos )cos )x y θθθθ⎧=-⎪⎨=+⎪⎩2222(sin cos )(sin cos )32x y θθθθ+=-++2=即,22164x y +=所以曲线的直角坐标方程为:.C 22164x y +=由,πcos 4ρθ⎛⎫+= ⎪⎝⎭ππcos cos sin sin 44ρθρθ-=,cos sin θθ=cos sin 10ρθρθ--=将,代入得,cos x ρθ=sin y ρθ=10x y --=所以直线的直角坐标方程为:.l 10x y --=综上所述:直线的直角坐标方程为:,曲线的直角坐标方程为:l 10x y --=C .22164x y +=【小问2详解】设射线方程为(),θα=0,0πρθ≥≤<将,代入,得,cos x ρθ=sin y ρθ=22164x y +=2222cos sin 164ρθρθ+=得,2221cos sin 64θθρ=+将代入,得,得θα=2221cos sin 64θθρ=+2221cos sin 64ααρ=+21||OM ,22cos sin64αα=+由,πcos 4ρθ⎛⎫+=⎪⎝⎭1π4θρ=+将代入,得(),,得θα=1π)4θρ=+1π4αρ=+π5π[0,)(,2π)44α∈ ,221π2cos (||4ON α=+所以22121||||OM ON +222π2cos 3sin 2cos ()4ααα=+++2222cos 3sin 2(cos sin αααα=++-2222cos 3sin (cos sin )αααα=++-22222cos 3sin cos 2sin cos sin αααααα=++-+23sin sin 2αα=+-1cos 23sin 22αα-=+-17cos 2sin 222αα=--+72sin 22αα=++(其中,),7)2αϕ=-+sin ϕ=cos ϕ=tan 2ϕ=因为,所以,π5π[0,)(,2π)44α∈ π5π2[0,)(,4π)22α∈ 又,所以,ϕπ(0,)2∈ππ2(,)(2π,4π)22αϕ-∈- 所以当时,即,即(其中cos(2)1αϕ-=-2αϕ-=3π3π22ϕα=+sin ϕ=,)时,.cos ϕ=tan 2ϕ=22121||||OM ON +23. 已知函数.()||2a f x x a x =++-(1)当时,求不等式的解集;2a =()5f x ≤(2)设且的最小值为m ,若,求的最小值.0,0a b >>()f x 332m b +=32a b +【答案】(1)[3,2]-(2【解析】【分析】(1)分段讨论求解,(2)由绝对值三角不等式求最小值,再由基本不等式求解,m 【小问1详解】当时,,2a =21,2()213,2121,1x x f x x x x x x --<-⎧⎪=++-=-≤≤⎨⎪+>⎩故即或或,()5f x ≤2215x x <-⎧⎨--≤⎩2135x -≤≤⎧⎨≤⎩1215x x >⎧⎨+≤⎩解得,即原不等式的解集为32x -≤≤[3,2]-【小问2详解】由题意得,3()||||222a a f x x a x a a =++-≥+=即,,即,32m a =3333222m b a b +=+=2a b +=而即3232()()55b a a b a b a b ++=++≥+32b ab a =时等号成立,64a b =-=故32a b +。

贵阳市一中2018-2019学年上学期高二数学12月月考试题含解析

贵阳市一中2018-2019学年上学期高二数学12月月考试题含解析

贵阳市一中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 若函数f (x )=﹣2x 3+ax 2+1存在唯一的零点,则实数a 的取值范围为( )A .[0,+∞)B .[0,3]C .(﹣3,0]D .(﹣3,+∞)2. 已知全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},则集合{2,7,8}是( ) A .M ∪NB .M ∩NC .∁I M ∪∁I ND .∁I M ∩∁I N3. 已知双曲线的渐近线与圆x 2+(y ﹣2)2=1相交,则该双曲线的离心率的取值范围是( )A .(,+∞) B .(1,) C .(2.+∞) D .(1,2)4. 已知f (x )=m •2x +x 2+nx ,若{x|f (x )=0}={x|f (f (x ))=0}≠∅,则m+n 的取值范围为( ) A .(0,4) B .[0,4) C .(0,5] D .[0,5]5. 直线的倾斜角是( )A .B .C .D .6. 不等式ax 2+bx+c <0(a ≠0)的解集为R ,那么( ) A .a <0,△<0 B .a <0,△≤0C .a >0,△≥0D .a >0,△>07. 已知函数f (x )=a x +b (a >0且a ≠1)的定义域和值域都是[﹣1,0],则a+b=( )A .﹣B .﹣C .﹣D .﹣或﹣8. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .kB .﹣kC .1﹣kD .2﹣k9. 已知点P (1,﹣),则它的极坐标是( )A .B .C .D .10.设函数f (x )的定义域为A ,若存在非零实数l 使得对于任意x ∈I (I ⊆A ),有x+l ∈A ,且f (x+l )≥f (x ),则称f (x )为I 上的l 高调函数,如果定义域为R 的函数f (x )是奇函数,当x ≥0时,f (x )=|x ﹣a 2|﹣a 2,且函数f (x )为R 上的1高调函数,那么实数a 的取值范围为( )A .0<a <1B .﹣≤a ≤C .﹣1≤a ≤1D .﹣2≤a ≤211.已知函数()cos (0)f x x x ωωω=+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=12.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是( )A .2+B .1+C .D .二、填空题13.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .14.已知f (x )=,则f[f (0)]= .15.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .16.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 .17.【泰州中学2018届高三10月月考】设函数()f x '是奇函数()f x 的导函数,()10f -=,当0x >时,()()0xf x f x -<',则使得()0f x >成立的x 的取值范围是__________.18.已知a 、b 、c 分别是ABC ∆三内角A B C 、、的对应的三边,若C a A c cos sin -=,则3s i n c o s ()4A B π-+的取值范围是___________. 【命题意图】本题考查正弦定理、三角函数的性质,意在考查三角变换能力、逻辑思维能力、运算求解能力、转化思想.三、解答题19.已知圆的极坐标方程为ρ2﹣4ρcos (θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P 在该圆上,求线段OP 的最大值和最小值.20.已知函数f(x)=.(1)求f(f(﹣2));(2)画出函数f(x)的图象,根据图象写出函数的单调增区间并求出函数f(x)在区间(﹣4,0)上的值域.21.已知函数f(x)=alnx﹣x(a>0).(Ⅰ)求函数f(x)的最大值;(Ⅱ)若x∈(0,a),证明:f(a+x)>f(a﹣x);(Ⅲ)若α,β∈(0,+∞),f(α)=f(β),且α<β,证明:α+β>2α22.在数列中,,,其中,.(Ⅰ)当时,求的值;(Ⅱ)是否存在实数,使构成公差不为0的等差数列?证明你的结论;(Ⅲ)当时,证明:存在,使得.23.已知定义域为R的函数是奇函数.(1)求f(x);(2)判断函数f(x)的单调性(不必证明);(3)解不等式f(|x|+1)+f(x)<0.24.已知集合A={x|1<x<3},集合B={x|2m<x<1﹣m}.(1)若A⊆B,求实数m的取值范围;(2)若A∩B=∅,求实数m的取值范围.贵阳市一中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:令f(x)=﹣2x3+ax2+1=0,易知当x=0时上式不成立;故a==2x﹣,令g(x)=2x﹣,则g′(x)=2+=2,故g(x)在(﹣∞,﹣1)上是增函数,在(﹣1,0)上是减函数,在(0,+∞)上是增函数;故作g(x)=2x﹣的图象如下,,g(﹣1)=﹣2﹣1=﹣3,故结合图象可知,a>﹣3时,方程a=2x﹣有且只有一个解,即函数f(x)=﹣2x3+ax2+1存在唯一的零点,2.【答案】D【解析】解:∵全集I={1,2,3,4,5,6,7,8},集合M={3,4,5},集合N={1,3,6},∴M∪N={1,2,3,6,7,8},M∩N={3};∁I M∪∁I N={1,2,4,5,6,7,8};∁I M∩∁I N={2,7,8},故选:D.3.【答案】C【解析】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.【点评】本题主要考查了双曲线的简单性质,直线与圆的位置关系,点到直线的距离公式等.考查了学生数形结合的思想的运用.4.【答案】B【解析】解:设x1∈{x|f(x)=0}={x|f(f(x))=0},∴f(x1)=f(f(x1))=0,∴f(0)=0,即f(0)=m=0,故m=0;故f(x)=x2+nx,f(f(x))=(x2+nx)(x2+nx+n)=0,当n=0时,成立;当n≠0时,0,﹣n不是x2+nx+n=0的根,故△=n2﹣4n<0,故0<n<4;综上所述,0≤n+m<4;【点评】本题考查了函数与集合的关系应用及分类讨论的思想应用,同时考查了方程的根的判断,属于中档题.5.【答案】A【解析】解:设倾斜角为α,∵直线的斜率为,∴tanα=,∵0°<α<180°,∴α=30°故选A.【点评】本题考查了直线的倾斜角与斜率之间的关系,属于基础题,应当掌握.6.【答案】A【解析】解:∵不等式ax2+bx+c<0(a≠0)的解集为R,∴a<0,且△=b2﹣4ac<0,综上,不等式ax2+bx+c<0(a≠0)的解集为的条件是:a<0且△<0.故选A.7.【答案】B【解析】解:当a>1时,f(x)单调递增,有f(﹣1)=+b=﹣1,f(0)=1+b=0,无解;当0<a<1时,f(x)单调递减,有f(﹣1)==0,f(0)=1+b=﹣1,解得a=,b=﹣2;所以a+b==﹣;故选:B8.【答案】D【解析】解:∵f(x)=ax3+bx+1(ab≠0),f(2016)=k,∴f(2016)=20163a+2016b+1=k,∴20163a+2016b=k﹣1,∴f(﹣2016)=﹣20163a﹣2016b+1=﹣(k﹣1)+1=2﹣k.故选:D.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.9.【答案】C【解析】解:∵点P的直角坐标为,∴ρ==2.再由1=ρcosθ,﹣=ρsinθ,可得,结合所给的选项,可取θ=﹣,即点P的极坐标为(2,),故选C.【点评】本题主要考查把点的直角坐标化为极坐标的方法,属于基础题.10.【答案】B【解析】解:定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2=图象如图,∵f(x)为R上的1高调函数,当x<0时,函数的最大值为a2,要满足f(x+l)≥f(x),1大于等于区间长度3a2﹣(﹣a2),∴1≥3a2﹣(﹣a2),∴﹣≤a≤故选B【点评】考查学生的阅读能力,应用知识分析解决问题的能力,考查数形结合的能力,用图解决问题的能力,属中档题.11.【答案】D 【解析】试题分析:由已知()2sin()6f x x πω=+,T π=,所以22πωπ==,则()2sin(2)6f x x π=+,令 2,62x k k Z πππ+=+∈,得,26k x k Z ππ=+∈,可知D 正确.故选D .考点:三角函数()sin()f x A x ωϕ=+的对称性. 12.【答案】A【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形, ∴原四边形为直角梯形,且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,∴直角梯形ABCD 的面积为,故选:A .二、填空题13.【答案】.【解析】解:∵直线3ax+y﹣1=0与直线(1﹣2a)x+ay+1=0平行,∴3aa=1(1﹣2a),解得a=﹣1或a=,经检验当a=﹣1时,两直线重合,应舍去故答案为:.【点评】本题考查直线的一般式方程和平行关系,属基础题.14.【答案】1.【解析】解:f(0)=0﹣1=﹣1,f[f(0)]=f(﹣1)=2﹣1=1,故答案为:1.【点评】本题考查了分段函数的简单应用.15.【答案】.【解析】解:已知数列1,a1,a2,9是等差数列,∴a1+a2 =1+9=10.数列1,b1,b2,b3,9是等比数列,∴=1×9,再由题意可得b2=1×q2>0 (q为等比数列的公比),∴b2=3,则=,故答案为.【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.16.【答案】 .【解析】解:由题意知点P 的坐标为(﹣c ,)或(﹣c ,﹣), ∵∠F 1PF 2=60°,∴=,即2ac=b 2=(a 2﹣c 2).∴e 2+2e ﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.17.【答案】()(),10,1-∞-⋃ 【解析】18.【答案】(1,2【解析】三、解答题19.【答案】【解析】解:(1)ρ2﹣4ρcos(θ﹣)+6=0,展开为:ρ2﹣4×ρ(cosθ+sinθ)+6=0.化为:x2+y2﹣4x﹣4y+6=0.(2)由x2+y2﹣4x﹣4y+6=0可得:(x﹣2)2+(y﹣2)2=2.圆心C(2,2),半径r=.|OP|==2.∴线段OP的最大值为2+=3.最小值为2﹣=.20.【答案】【解析】解:(1)函数f(x)=.f(﹣2)=﹣2+2=0,f(f(﹣2))=f(0)=0.3分(2)函数的图象如图:…单调增区间为(﹣∞,﹣1),(0,+∞)(开区间,闭区间都给分)…由图可知:f(﹣4)=﹣2,f(﹣1)=1,函数f(x)在区间(﹣4,0)上的值域(﹣2,1].…12分.21.【答案】【解析】解:(Ⅰ)令,所以x=a.易知,x∈(0,a)时,f′(x)>0,x∈(a,+∞)时,f′(x)<0.故函数f(x)在(0,a)上递增,在(a,+∞)递减.故f(x)max=f(a)=alna﹣a.(Ⅱ)令g(x)=f(a﹣x)﹣f(a+x),即g(x)=aln(a﹣x)﹣aln(a+x)+2x.所以,当x∈(0,a)时,g′(x)<0.所以g(x)<g(0)=0,即f(a+x)>f(a﹣x).(Ⅲ)依题意得:a<α<β,从而a﹣α∈(0,a).由(Ⅱ)知,f(2a﹣α)=f[a+(a﹣α)]>f[a﹣(a﹣α)]=f(α)=f(β).又2a﹣α>a,β>a.所以2a﹣α<β,即α+β>2a.【点评】本题考查了利用导数证明不等式的问题,一般是转化为函数的最值问题来解,注意导数的应用.22.【答案】【解析】【知识点】数列综合应用【试题解析】(Ⅰ),,.(Ⅱ)成等差数列,,即,,即.,.将,代入上式,解得.经检验,此时的公差不为0.存在,使构成公差不为0的等差数列.(Ⅲ),又,令.由,,……,将上述不等式相加,得,即.取正整数,就有23.【答案】【解析】解:(1)因为f(x)是R上的奇函数,所以f(0)=0,即=0,解得b=1;从而有;…经检验,符合题意;…(2)由(1)知,f(x)==﹣+;由y=2x的单调性可推知f(x)在R上为减函数;…(3)因为f(x)在R上为减函数且是奇函数,从而不等式f(1+|x|)+f(x)<0等价于f(1+|x|)<﹣f(x),即f(1+|x|)<f(﹣x);…又因f(x)是R上的减函数,由上式推得1+|x|>﹣x,…解得x∈R.…24.【答案】【解析】解:(1)由A⊆B知:,得m≤﹣2,即实数m的取值范围为(﹣∞,﹣2];(2)由A∩B=∅,得:①若2m≥1﹣m即m≥时,B=∅,符合题意;②若2m<1﹣m即m<时,需或,得0≤m<或∅,即0≤m<,综上知m≥0.即实数m的取值范围为[0,+∞).【点评】本题主要考查集合的包含关系判断及应用,交集及其运算.解答(2)题时要分类讨论,以防错解或漏解.。

贵阳市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

贵阳市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案

贵阳市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 设1m >,在约束条件,,1.y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数z x my =+的最大值小于2,则m 的取值范围为()A.(1,1+ B.(1)+∞C. (1,3)D .(3,)+∞2. 特称命题“∃x ∈R ,使x 2+1<0”的否定可以写成()A .若x ∉R ,则x 2+1≥0B .∃x ∉R ,x 2+1≥0C .∀x ∈R ,x 2+1<0D .∀x ∈R ,x 2+1≥03. 设F 1,F 2分别是椭圆+=1(a >b >0)的左、右焦点,过F 2的直线交椭圆于P ,Q 两点,若∠F 1PQ=60°,|PF 1|=|PQ|,则椭圆的离心率为( )A .B .C .D .4. 若某几何体的三视图 (单位:cm ) 如图所示,则此几何体的体积是( )cm3A .πB .2πC .3πD .4π5. 已知定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (ax+1)≤f (x ﹣2)对任意都成立,则实数a 的取值范围为( )A .[﹣2,0]B .[﹣3,﹣1]C .[﹣5,1]D .[﹣2,1)6. 在△ABC 中,内角A ,B ,C 的对边分别是a ,b ,c ,若a 2﹣b 2=bc ,sinC=2sinB ,则A=()A .30°B .60°C .120°D .150°7. 已知F 1、F 2是椭圆的两个焦点,满足=0的点M 总在椭圆内部,则椭圆离心率的取值范围是()A .(0,1)B .(0,]C .(0,)D .[,1)8. 从一个边长为的等边三角形的中心、各边中点及三个顶点这个点中任取两个点,则这两点间的距离小27于的概率是()1班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________A . B . C .D .717374769. 若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A .(2,+∞)B .(0,2)C .(4,+∞)D .(0,4)10.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天.甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( )A .2日和5日B .5日和6日C .6日和11日D .2日和11日11.已知椭圆,长轴在y 轴上,若焦距为4,则m 等于()A .4B .5C .7D .812.已知长方体ABCD ﹣A 1B 1C 1D 1中,AB=BC=1,AA 1=2,E 是侧棱BB 1的中点,则直线AE 与平面A 1ED 1所成角的大小为( )A .60°B .90°C .45°D .以上都不正确二、填空题13.已知实数a >b ,当a 、b 满足 条件时,不等式<成立.14.某几何体的三视图如图所示,则该几何体的体积为 15.设α为锐角, =(cos α,sin α),=(1,﹣1)且•=,则sin (α+)= .16.对于集合M ,定义函数对于两个集合A ,B ,定义集合A △B={x|f A (x )f B (x )=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A △B 的结果为 . 17.长方体ABCD ﹣A 1B 1C 1D 1的8个顶点都在球O 的表面上,E 为AB 的中点,CE=3,异面直线A 1C 1与CE 所成角的余弦值为,且四边形ABB 1A 1为正方形,则球O 的直径为 .18.如图,在平面直角坐标系xOy 中,将直线y=与直线x=1及x 轴所围成的图形旋转一周得到一个圆锥,圆锥的体积V 圆锥=π()2dx=x 3|=.据此类推:将曲线y=x 2与直线y=4所围成的图形绕y 轴旋转一周得到一个旋转体,该旋转体的体积V= .三、解答题19.(本小题满分12分)已知椭圆:的左、右焦点分别为,过点作垂直1C 14822=+y x 21F F 、1F 于轴的直线,直线垂直于点,线段的垂直平分线交于点.2l P 2PF 2l M (1)求点的轨迹的方程;M 2C (2)过点作两条互相垂直的直线,且分别交椭圆于,求四边形面积2F BD AC 、D C B A 、、、ABCD 的最小值.20.已知{a n }为等比数列,a 1=1,a 6=243.S n 为等差数列{b n }的前n 项和,b 1=3,S 5=35.(1)求{a n }和{B n }的通项公式;(2)设T n =a 1b 1+a 2b 2+…+a n b n ,求T n . 21.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C 的方程和离心率;(Ⅱ) 设动直线与y 轴相交于点,点关于直线的对称点在椭圆上,求的最小值.22.如图,在三棱柱ABC ﹣A 1B 1C 1中,侧棱垂直于底面,AB ⊥BC ,,E ,F 分别是A 1C 1,AB 的中点.(I )求证:平面BCE ⊥平面A 1ABB 1;(II )求证:EF ∥平面B 1BCC 1;(III )求四棱锥B ﹣A 1ACC 1的体积.23.【南师附中2017届高三模拟二】已知函数.()()323131,02f x x a x ax a =+--+>(1)试讨论的单调性;()()0f x x ≥(2)证明:对于正数,存在正数,使得当时,有;a p []0,x p ∈()11f x -≤≤(3)设(1)中的的最大值为,求得最大值.p ()g a ()g a24.(本题满分12分)已知向量,,,记函数(sin cos ))a x x x =+r )cos sin ,(cos x x x -=R x ∈.x f ⋅=)((1)求函数的单调递增区间;)(x f (2)在中,角的对边分别为且满足,求的取值范围.ABC ∆C B A ,,c b a ,,C a c b cos 22=-)(B f【命题意图】本题考查了向量的内积运算,三角函数的化简及性质的探讨,并与解三角形知识相互交汇,对基本运算能力、逻辑推理能力有一定要求,但突出了基础知识的考查,仍属于容易题.贵阳市第一高级中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1. 【答案】A 【解析】考点:线性规划.【方法点晴】本题是一道关于线性规划求最值的题目,采用线性规划的知识进行求解;关键是弄清楚的几何意义直线z x my =+截距为zm,作0my x :L =+,向可行域内平移,越向上,则的值越大,从而可得当直线直线z x my =+过点A 时取最大值,⎩⎨⎧==+00001mx y y x 可求得点A 的坐标可求的最大值,然后由z 2,>解不等式可求m 的范围.2. 【答案】D【解析】解:∵命题“∃x∈R,使x2+1<0”是特称命题∴否定命题为:∀x∈R,都有x2+1≥0.故选D.3.【答案】D【解析】解:设|PF1|=t,∵|PF1|=|PQ|,∠F1PQ=60°,∴|PQ|=t,|F1Q|=t,由△F1PQ为等边三角形,得|F1P|=|F1Q|,由对称性可知,PQ垂直于x轴,F2为PQ的中点,|PF2|=,∴|F1F2|=,即2c=,由椭圆定义:|PF1|+|PF2|=2a,即2a=t=t,∴椭圆的离心率为:e===.故选D.4.【答案】B【解析】解:由三视图可知:此几何体为圆锥的一半,∴此几何体的体积==2π.故选:B.5.【答案】A【解析】解:∵偶函数f (x )在[0,+∞)上是增函数,则f (x )在(﹣∞,0)上是减函数,则f (x ﹣2)在区间[,1]上的最小值为f (﹣1)=f (1)若f (ax+1)≤f (x ﹣2)对任意都成立,当时,﹣1≤ax+1≤1,即﹣2≤ax ≤0恒成立则﹣2≤a ≤0故选A 6. 【答案】A 【解析】解:∵sinC=2sinB ,∴c=2b ,∵a 2﹣b 2=bc ,∴cosA===∵A 是三角形的内角∴A=30°故选A .【点评】本题考查正弦、余弦定理的运用,解题的关键是边角互化,属于中档题. 7. 【答案】C【解析】解:设椭圆的半长轴、半短轴、半焦距分别为a ,b ,c ,∵=0,∴M 点的轨迹是以原点O 为圆心,半焦距c 为半径的圆.又M 点总在椭圆内部,∴该圆内含于椭圆,即c <b ,c 2<b 2=a 2﹣c 2.∴e 2=<,∴0<e <.故选:C .【点评】本题考查椭圆的基本知识和基础内容,解题时要注意公式的选取,认真解答. 8. 【答案】A【解析】两点间的距离小于共有3种情况,1分别为中心到三个中点的情况,故两点间的距离小于的概率.127317P C ==9. 【答案】C【解析】解:令f (x )=x 2﹣mx+3,若方程x 2﹣mx+3=0的两根满足一根大于1,一根小于1,则f (1)=1﹣m+3<0,解得:m ∈(4,+∞),故选:C.【点评】本题考查的知识点是方程的根与函数零点的关系,二次函数的图象和性质,难度中档.10.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.11.【答案】D【解析】解:将椭圆的方程转化为标准形式为,显然m﹣2>10﹣m,即m>6,,解得m=8故选D【点评】本题主要考查了椭圆的简单性质.要求学生对椭圆中对长轴和短轴即及焦距的关系要明了.12.【答案】B【解析】解:∵E是BB1的中点且AA1=2,AB=BC=1,∴∠AEA1=90°,又在长方体ABCD﹣A1B1C1D1中,AD⊥平面ABB1A1,∴A1D1⊥AE,∴AE⊥平面A1ED1,故选B【点评】本题考查线面角的求法,根据直线与平面所成角必须是该直线与其在这个平面内的射影所成的锐角,还有两个特殊角,而立体几何中求角的方法有两种,几何法和向量法,几何法的思路是:作、证、指、求,向量法则是建立适当的坐标系,选取合适的向量,求两个向量的夹角.二、填空题13.【答案】 ab>0 【解析】解,当ab>0时,∵a>b,∴>,即>,当ab<0时,∵a>b,∴<,即<,综上所述,当a、b满足ab>0时,不等式<成立.故答案为:ab>0,.【点评】本题考查二类不等式饿性质,属于基础题.14.【答案】 26 【解析】解:由三视图知几何体为为三棱柱,去掉一个三棱锥的几何体,如图:三棱柱的高为5,底面是直角边为4,3,去掉的三棱锥,是底面是直角三角形直角边为4,3,高为2的三棱锥.∴几何体的体积V==26.故答案为:26.【点评】本题考查由三视图求几何体的体积,解题的关键是由三视图判断几何体的形状及数据所对应的几何量.15.【答案】:.【解析】解:∵•=cosα﹣sinα=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.16.【答案】 {1,6,10,12} .【解析】解:要使f A(x)f B(x)=﹣1,必有x∈{x|x∈A且x∉B}∪{x|x∈B且x∉A}={6,10}∪{1,12}={1,6,10,12,},所以A△B={1,6,10,12}.故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题. 17.【答案】 4或 .【解析】解:设AB=2x,则AE=x,BC=,∴AC=,由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.18.【答案】 8π .【解析】解:由题意旋转体的体积V===8π,故答案为:8π.【点评】本题给出曲线y=x 2与直线y=4所围成的平面图形,求该图形绕xy 轴转一周得到旋转体的体积.着重考查了利用定积分公式计算由曲边图形旋转而成的几何体体积的知识,属于基础题. 三、解答题19.【答案】(1);(2).x y 82=964【解析】试题分析:(1)求得椭圆的焦点坐标,连接,由垂直平分线的性质可得,运用抛物线的定2MF 2MF MP =义,即可得到所求轨迹方程;(2)分类讨论:当或中的一条与轴垂直而另一条与轴重合时,此时四AC BD 边形面积.当直线和的斜率都存在时,不妨设直线的方程为,则直ABCD 22b S =AC BD AC ()2-=x k y 线的方程为.分别与椭圆的方程联立得到根与系数的关系,利用弦长公式可得,BD ()21--=x ky AC .利用四边形面积即可得到关于斜率的式子,再利用配方和二次函数的最值求法,BD ABCD BD AC S 21=即可得出.(2)当直线的斜率存在且不为零时,直线的斜率为,,,则直线的斜率为,AC AC ),(11y x A ),(22y x C BD k1-直线的方程为,联立,得.111]AC )2(-=x k y ⎪⎩⎪⎨⎧=+-=148)2(22y x x k y 0888)12(2222=-+-+k x k x k ∴,.2221218k k x x +=+22212188k k x x +-=.由于直线的斜率为,用代换上式中的。

贵州省贵阳市第十八中学2018年高三数学理测试题含解析

贵州省贵阳市第十八中学2018年高三数学理测试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数的图象大致为参考答案:D解析:令,,所以函数是奇函数,故排除选项A,又在区间时,,故排除选项B,当时,,故排除选项C;故选D.2. 设定义域为R的函数若函数有7个零点,则实数的值为()A.0B.C.D.参考答案:D代入检验,当时,,有2个不同实根,有4个不同实根,不符合题意;当时,,有3个不同实根,有2个不同实根,不符合题意;当时,,作出函数的图象,得到有4个不同实根,有3个不同实根,符合题意. 选D.3. 已知的值是A. B. C. D.参考答案:B略4. 已知函数,则将的图象向右平移个单位所得曲线的一条对称轴的方程是(A)(B)(C)(D)参考答案:A略5. 下列命题中的假命题是A., B., C., D.,参考答案:C略6. 若函数是R是的单调递减函数,则实数的取值范围是()A. B. C. D.参考答案:D略7. 函数的图像大致是( )A. B. C.D.参考答案:A函数的定义域为,当时,,当时,,当时,,综上可知选A.8. 设集合,,则()A. B.C. D.参考答案:C求解二次不等式可得:,结合交集的定义可得:.本题选择C选项.9. 已知向量满足,,,则与的夹角为( )A.B.C.D.参考答案:D考点:数量积表示两个向量的夹角.专题:平面向量及应用.分析:设与的夹角为θ,由数量积的定义代入已知可得cosθ,进而可得θ解答:解:设与的夹角为θ,∵,,,∴=||||cosθ=1×2×cosθ=,∴cosθ=﹣,∴θ=故选:D点评:本题考查数量积与向量的夹角,属基础题.10. 下列四个函数中,在区间,上是减函数的是( )....参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 若,则向量在向量方向上的投影为 . 参考答案:12. 函数的定义域是______________.参考答案:{x | x >1 }略13. 4cos50°﹣tan40°=.参考答案:【考点】三角函数的化简求值;两角和与差的正弦函数.【专题】计算题;三角函数的求值.【分析】表达式第一项利用诱导公式化简,第二项利用同角三角函数间的基本关系切化弦,通分后利用同分母分式的减法法则计算,再利用诱导公式及两角和与差的正弦函数公式化简,整理后利用两角和与差的余弦函数公式化为一个角的余弦函数,约分即可得到结果.【解答】解:4cos50°﹣tan40°=4sin40°﹣tan40°======.故答案为:.【点评】本题考查了两角和与差的正弦、余弦函数公式,同角三角函数间的基本关系,以及诱导公式的作用,熟练掌握公式是解本题的关键.14. 等比数列{a n}的前n项和为S n.已知,,则_________.参考答案:511等比数列{a n}的前n项和为.所以还是等比数列。

贵州省贵阳市第一中学2018届高三5月月考数学(文)试题扫描版含答案

文科数学参考答案一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.因为,,所以,故子集的个数是4个,故选C.2.由,得,故选B.3.因为,所以,由指数函数的性质得,故选D.4.因为时,,所以是真命题;又,所以是真命题,所以是真命题,故选C.5.由题意易得,即,又椭圆的通径,故选D.6.由已知得,公差,所以,又,故选B.7.输入,则,,不符合;,则,,不符合;,则,,所以输出,故选B.8.因为由可行区域知,故选D.9.,向右平移个单位长度后得,又因为平移后的图象关于轴对称,所以是偶函数,时,取得最小值,故选B.10.三棱锥的体积,又又由正弦定理可求,故选A.11.由题意M在圆上,得OM⊥PF,则F到渐近线:的距离又,在中,由射影定理知:,故选D.12.由题意是等比数列,又所以公比,则,故选A.二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.∵角的终边经过点,∴,,∴,14.如图1,设正方形的边长为,正方形内切圆的半径为,则小豆落在白色区域的概率=1−小豆落在黑色区域的概率15.如图2,,又,所以2,,所以.16.令,得;令;令,可得;令,可得,故,即,又存在,使得成立,得三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)解:由………………………………………………………(4分)(Ⅰ)最小正周期…………………………………………………(6分)(Ⅱ)又因为由,得,所以,即……………………………………………………(8分)又的外接圆的半径为,所以,………………(9分)由余弦定理得当且仅当时取等号,………………………………………(10分)故……………………(12分)18.(本小题满分12分)解:(Ⅰ)由折线图可以判断,适宜作为服装年销售量关于年广告费的回归方程类型.……………………………………………………………(2分)(Ⅱ)令,先建立关于的线性回归方程,由于,,所以关于的线性回归方程为,因此关于的回归方程为.……………………(7分)(Ⅲ)根据(Ⅱ)的结果知,年利润的预报值所以当时,取得最大值,故年广告费为184.96千元时,年利润的预报值最大.……………………(12分)19.(本小题满分12分)(Ⅰ)证明:如图3,在矩形中,,为的中点,,都是等腰直角三角形,且,,∴.………………………………………(2分)又平面平面,∴平面.……………………(4分)又平面,∴平面平面………………………………(6分)(Ⅱ)解:如图4,取的中点,连接,由(Ⅰ)知,平面,∵,∴,∴,又,∴………………………………(8分)…………………………………………………(10分).………………………………………………………(12分)20.(本小题满分12分)解:(Ⅰ)设动点点到直线的距离为,则满足条件……………(4分)其方程表示抛物线.……………………………………………………(5分)(Ⅱ)设由得………………………………………………………………………(6分)①…………(8分)由题意直线的斜率存在,故直线的方程为,即…………………………………………………………………………(9分)解方程组得代入①式,……………………………………(10分)故为定值,定值为0.……………………(12分)21.(本小题满分12分)解:(Ⅰ)由,……………(2分)或又……………………………………………………………(3分)所以的增区间是;减区间是…………………………………………………………………………………(5分)(Ⅱ)………………………………………………………………………(6分)因为有两个极值点,所以,即方程有两个根…………………………………(8分)所以…………………………………………………………………………(9分)又设,即求的最值,由在上递减………………(10分)…………………(12分)22.(本小题满分10分)【选修4−4:坐标系与参数方程】解:(Ⅰ)的普通方程为,…………………………(2分)得直线的普通方程是,…………………………(4分)极坐标方程是……………………………………(5分)(Ⅱ)由的极坐标方程为得普通方程:,圆心……………………………………………………………………(6分)则,……………………………………(7分)设为曲线上一点,则………………………………………………………………………(8分)∵,∴当时,有最大值……………………(9分)∴的最大值为,最小值为0.……………………(10分)23.(本小题满分10分)【选修4−5:不等式选讲】解:(Ⅰ)因为,所以,即,整理得.讨论:①当时,,即,解得又,所以;②当时,,即,解得,又,所以.综上,所求不等式的解集为…………………………(5分)(Ⅱ)据题意,存在,使得成立,即存在,使得成立,又因为所以,解得,所以所求实数的最小值为……………………………………………(10分)。

教育最新K12贵州省贵阳市第十二中学2018届高三数学上学期开门考试题 理(无答案)

贵阳市第十二中学2018届高三上学期高三开门考试试题高三理科数学 试卷第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若集合在复平面内,复数10i 3+i对应的点的坐标为( ) A 、(1,3) B 、(3,1) C 、(-1, 3) D 、(3,-1)2.已知集合{}2,1,0,1,2,3,4A =--,{}2|20B x x x =-->,则A B ⋂=( ) A .{}0,1 B .{}1,0- C .{}2,3,4- D . {}2,3,4om]3. sin165sin 75sin105sin15︒⋅︒+︒⋅︒的值是( )A .0B .21-C . 1D .214. 已知p :“a =,q :“直线0x y +=与圆22()1x y a +-=相切”,则p 是q 的( )A 、充分非必要条件B 、必要非充分条件C 、充要条件D 、既非充分也非必要条件5.边长为2的正方体挖去一个几何体后的三视图如图所示,则剩余部分的体积是( )6.已知,则sin2x 的值等于( )7.右边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为( )A 、4B 、2C 、14D 、08.若实数x ,y 满足,则Z =x +2y +a 的最小值是2,则实数a 的值为( )A ·OB .32C 、2D 一l 9.已知a 、b 表示两条不同的直线,表示两个不同的平面,则下列命题正确的是( ) A .若α ∥ β,a ∥ α,b ∥ β,则a ∥ bB .若a ⊂α,b ⊂β,a ∥ b ,则α ∥ β10、曲线y =xsinx 在点处的切线与x 轴·直线所围成的三角形的面积为( )11、已知函数)cos()(ϕ+ω=x A x f 的图象如图所示,32)2(-=πf ,则=)0(f ( ) A .32- B .21- C . 21 D .32 12、设f (x )是R 上以2为周期的奇函数,已知当,则f (x )在区间(l ,2)上是( )A .增函数,且f (x )<0B .增函数,且f (x )>OC .减函数,且f (x )<0D .减函数,且f (x )>0第II 卷二、填空题:本大题共4小题,每小题5分。

贵阳市第一中学2018-2019学年高三上学期11月月考数学试卷含答案

贵阳市第一中学2018-2019学年高三上学期11月月考数学试卷含答案一、选择题1. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题;②“全等三角形的面积相等”的否命题;③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题.其中真命题为( )A .①②B .①③C .②③D .③④2. 若三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,SA=2,AB=1,AC=2,∠BAC=60°,则球O 的表面积为( )A .64πB .16πC .12πD .4π3. 执行如图所示的程序框图,若输出的S=88,则判断框内应填入的条件是()A .k >7B .k >6C .k >5D .k >4 4. 双曲线上一点P 到左焦点的距离为5,则点P 到右焦点的距离为( )A .13B .15C .12D .115. 椭圆的左右顶点分别为,点是上异于的任意一点,且直线斜率的22:143x y C +=12,A A P C 12,A A 1PA 取值范围是,那么直线斜率的取值范围是( )[]1,22PA A . B . C . D .31,42⎡⎤--⎢⎥⎣⎦33,48⎡⎤--⎢⎥⎣⎦1,12⎡⎤⎢⎥⎣⎦3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.班级_______________ 座号______ 姓名_______________ 分数__________________________________________________________________________________________________________________6.过抛物线y=x2上的点的切线的倾斜角()A.30°B.45°C.60°D.135°7.垂直于同一条直线的两条直线一定()A.平行B.相交C.异面D.以上都有可能8.设a是函数x的零点,若x0>a,则f(x0)的值满足()A.f(x0)=0B.f(x0)<0C.f(x0)>0D.f(x0)的符号不确定9.已知等比数列{a n}的公比为正数,且a4•a8=2a52,a2=1,则a1=()A.B.2C.D.10.已知△ABC是锐角三角形,则点P(cosC﹣sinA,sinA﹣cosB)在()A.第一象限B.第二象限C.第三象限D.第四象限11.已知PD⊥矩形ABCD所在的平面,图中相互垂直的平面有()A.2对B.3对C.4对D.5对12.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值是()A.2B.C.D.3二、填空题13.若函数f(x)=3sinx﹣4cosx,则f′()= .14.已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则= .15.设A={x|x≤1或x≥3},B={x|a≤x≤a+1},A∩B=B,则a的取值范围是 .16.如图,在棱长为1的正方体ABCD﹣A1B1C1D1中,M、N分别是A1B1和BB1的中点,那么直线AM和CN 所成角的余弦值为 .17.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .18.已知||=1,||=2,与的夹角为,那么|+||﹣|= .三、解答题19.已知函数f(x)=ax2+2x﹣lnx(a∈R).(Ⅰ)若a=4,求函数f(x)的极值;(Ⅱ)若f′(x)在(0,1)有唯一的零点x0,求a的取值范围;(Ⅲ)若a∈(﹣,0),设g(x)=a(1﹣x)2﹣2x﹣1﹣ln(1﹣x),求证:g(x)在(0,1)内有唯一的零点x1,且对(Ⅱ)中的x0,满足x0+x1>1.20.已知椭圆,过其右焦点F且垂直于x轴的弦MN的长度为b.(Ⅰ)求该椭圆的离心率;(Ⅱ)已知点A的坐标为(0,b),椭圆上存在点P,Q,使得圆x2+y2=4内切于△APQ,求该椭圆的方程.21.求下列曲线的标准方程:(1)与椭圆+=1有相同的焦点,直线y=x为一条渐近线.求双曲线C的方程.(2)焦点在直线3x﹣4y﹣12=0 的抛物线的标准方程.22.某电脑公司有6名产品推销员,其工作年限与年推销金额的数据如表:推销员编号12345工作年限x/年35679推销金额y/万元23345(1)以工作年限为自变量x,推销金额为因变量y,作出散点图;(2)求年推销金额y关于工作年限x的线性回归方程;(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.23.关于x的不等式a2x+b2(1﹣x)≥[ax+b(1﹣x)]2(1)当a=1,b=0时解不等式;(2)a,b∈R,a≠b解不等式.24.已知全集U=R,集合A={x|x2﹣4x﹣5≤0},B={x|x<4},C={x|x≥a}.(Ⅰ)求A∩(∁U B);(Ⅱ)若A⊆C,求a的取值范围.贵阳市第一中学2018-2019学年高三上学期11月月考数学试卷含答案(参考答案)一、选择题1.【答案】B【解析】解:①由于“若a2+b2=0,则a,b全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x2+2x+q=0有实根,则△=4﹣4q≥0,解得q≤1,因此“若“q≤1”,则x2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B.【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.2.【答案】A【解析】解:如图,三棱锥S﹣ABC的所有顶点都在球O的球面上,∵AB=1,AC=2,∠BAC=60°,∴BC=,∴∠ABC=90°.∴△ABC截球O所得的圆O′的半径r=1,∵SA⊥平面ABC,SA=2∴球O的半径R=4,∴球O的表面积S=4πR2=64π.故选:A.【点评】本题考查球的表面积的求法,合理地作出图形,数形结合求出球半径,是解题的关键.3.【答案】C【解析】解:程序在运行过程中各变量值变化如下表:K S 是否继续循环循环前1 0第一圈2 2 是第二圈3 7 是第三圈4 18 是第四圈5 41 是第五圈6 88 否故退出循环的条件应为k>5?故答案选C.【点评】算法是新课程中的新增加的内容,也必然是新高考中的一个热点,应高度重视.程序填空也是重要的考试题型,这种题考试的重点有:①分支的条件②循环的条件③变量的赋值④变量的输出.其中前两点考试的概率更大.此种题型的易忽略点是:不能准确理解流程图的含义而导致错误.4.【答案】A【解析】解:设点P到双曲线的右焦点的距离是x,∵双曲线上一点P到左焦点的距离为5,∴|x﹣5|=2×4∵x>0,∴x=13故选A.5.【答案】B6.【答案】B【解析】解:y=x2的导数为y′=2x,在点的切线的斜率为k=2×=1,设所求切线的倾斜角为α(0°≤α<180°),由k=tanα=1,解得α=45°.故选:B.【点评】本题考查导数的运用:求切线的斜率,考查直线的倾斜角的求法,考查运算能力,属于基础题.7.【答案】D【解析】解:分两种情况:①在同一平面内,垂直于同一条直线的两条直线平行;②在空间内垂直于同一条直线的两条直线可以平行、相交或异面.故选D【点评】本题主要考查在空间内两条直线的位置关系.8.【答案】C【解析】解:作出y=2x和y=log x的函数图象,如图:由图象可知当x0>a时,2>log x0,∴f(x0)=2﹣log x0>0.故选:C.9.【答案】D【解析】解:设等比数列{a n}的公比为q,则q>0,∵a4•a8=2a52,∴a62=2a52,∴q2=2,∴q=,∵a2=1,∴a1==.故选:D10.【答案】B【解析】解:∵△ABC是锐角三角形,∴A+B>,∴A>﹣B,∴sinA>sin(﹣B)=cosB,∴sinA﹣cosB>0,同理可得sinA﹣cosC>0,∴点P在第二象限.故选:B11.【答案】D【解析】解:∵PD⊥矩形ABCD所在的平面且PD⊆面PDA,PD⊆面PDC,∴面PDA⊥面ABCD,面PDC⊥面ABCD,又∵四边形ABCD为矩形∴BC⊥CD,CD⊥AD∵PD⊥矩形ABCD所在的平面∴PD⊥BC,PD⊥CD∵PD∩AD=D,PD∩CD=D∴CD⊥面PAD,BC⊥面PDC,AB⊥面PAD,∵CD⊆面PDC,BC⊆面PBC,AB⊆面PAB,∴面PDC⊥面PAD,面PBC⊥面PCD,面PAB⊥面PAD综上相互垂直的平面有5对故答案选D12.【答案】D【解析】解:根据三视图判断几何体为四棱锥,其直观图是:V==3⇒x=3.故选D.【点评】由三视图正确恢复原几何体是解题的关键.二、填空题13.【答案】 4 .【解析】解:∵f′(x)=3cosx+4sinx,∴f′()=3cos+4sin=4.故答案为:4.【点评】本题考查了导数的运算法则,掌握求导公式是关键,属于基础题. 14.【答案】 ﹣5 .【解析】解:求导得:f′(x)=3ax2+2bx+c,结合图象可得x=﹣1,2为导函数的零点,即f′(﹣1)=f′(2)=0,故,解得故==﹣5故答案为:﹣515.【答案】 a≤0或a≥3 .【解析】解:∵A={x|x≤1或x≥3},B={x|a≤x≤a+1},且A∩B=B,∴B⊆A,则有a+1≤1或a≥3,解得:a≤0或a≥3,故答案为:a≤0或a≥3.16.【答案】 .【解析】解:如图,将AM平移到B1E,NC平移到B1F,则∠EB1F为直线AM与CN所成角设边长为1,则B1E=B1F=,EF=∴cos∠EB1F=,故答案为【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题. 17.【答案】 x﹣y﹣2=0 .【解析】解:直线AB的斜率k AB=﹣1,所以线段AB的中垂线得斜率k=1,又线段AB的中点为(3,1),所以线段AB的中垂线得方程为y﹣1=x﹣3即x﹣y﹣2=0,故答案为x﹣y﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.18.【答案】 .【解析】解:∵||=1,||=2,与的夹角为,∴==1×=1.∴|+||﹣|====.故答案为:.【点评】本题考查了数量积的定义及其运算性质,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】满分(14分).解法一:(Ⅰ)当a=4时,f(x)=4x2+2x﹣lnx,x∈(0,+∞),.…(1分)由x∈(0,+∞),令f′(x)=0,得.当x变化时,f′(x),f(x)的变化如下表:xf′(x)﹣0+f(x)↘极小值↗故函数f(x)在单调递减,在单调递增,…(3分)f(x)有极小值,无极大值.…(4分)(Ⅱ),令f′(x)=0,得2ax2+2x﹣1=0,设h(x)=2ax2+2x﹣1.则f′(x)在(0,1)有唯一的零点x0等价于h(x)在(0,1)有唯一的零点x0当a=0时,方程的解为,满足题意;…(5分)当a>0时,由函数h(x)图象的对称轴,函数h(x)在(0,1)上单调递增,且h(0)=﹣1,h(1)=2a+1>0,所以满足题意;…(6分)当a<0,△=0时,,此时方程的解为x=1,不符合题意;当a<0,△≠0时,由h(0)=﹣1,只需h(1)=2a+1>0,得.…(7分)综上,.…(8分)(说明:△=0未讨论扣1分)(Ⅲ)设t=1﹣x,则t∈(0,1),p(t)=g(1﹣t)=at2+2t﹣3﹣lnt,…(9分),由,故由(Ⅱ)可知,方程2at2+2t﹣1=0在(0,1)内有唯一的解x0,且当t∈(0,x0)时,p′(t)<0,p(t)单调递减;t∈(x0,1)时,p′(t)>0,p(t)单调递增.…(11分)又p(1)=a﹣1<0,所以p(x0)<0.…(12分)取t=e﹣3+2a∈(0,1),则p(e﹣3+2a)=ae﹣6+4a+2e﹣3+2a﹣3﹣lne﹣3+2a=ae﹣6+4a+2e﹣3+2a﹣3+3﹣2a=a(e﹣6+4a﹣2)+2e﹣3+2a>0,从而当t∈(0,x0)时,p(t)必存在唯一的零点t1,且0<t1<x0,即0<1﹣x1<x0,得x1∈(0,1),且x0+x1>1,从而函数g(x)在(0,1)内有唯一的零点x1,满足x0+x1>1.…(14分)解法二:(Ⅰ)同解法一;…(4分)(Ⅱ),令f′(x)=0,由2ax2+2x﹣1=0,得.…(5分)设,则m∈(1,+∞),,…(6分)问题转化为直线y=a与函数的图象在(1,+∞)恰有一个交点问题.又当m∈(1,+∞)时,h(m)单调递增,…(7分)故直线y=a与函数h(m)的图象恰有一个交点,当且仅当.…(8分)(Ⅲ)同解法一.(说明:第(Ⅲ)问判断零点存在时,利用t→0时,p(t)→+∞进行证明,扣1分)【点评】本题考查函数与导数等基本知识,考查推理论证能力和运算求解能力,考查函数与方程的思想、化归与转化的思想、数形结合的思想,考查运用数学知识分析和解决问题的能力.20.【答案】【解析】解:(Ⅰ)设F(c,0),M(c,y1),N(c,y2),则,得y1=﹣,y2=,MN=|y1﹣y2|==b,得a=2b,椭圆的离心率为:==.(Ⅱ)由条件,直线AP、AQ斜率必然存在,设过点A且与圆x2+y2=4相切的直线方程为y=kx+b,转化为一般方程kx﹣y+b=0,由于圆x2+y2=4内切于△APQ,所以r=2=,得k=±(b>2),即切线AP、AQ关于y轴对称,则直线PQ平行于x轴,∴y Q=y P=﹣2,不妨设点Q在y轴左侧,可得x Q=﹣x P=﹣2,则=,解得b=3,则a=6,∴椭圆方程为:.【点评】本题考查了椭圆的离心率公式,点到直线方程的距离公式,内切圆的性质.21.【答案】【解析】解:(1)由椭圆+=1,得a2=8,b2=4,∴c2=a2﹣b2=4,则焦点坐标为F(2,0),∵直线y=x为双曲线的一条渐近线,∴设双曲线方程为(λ>0),即,则λ+3λ=4,λ=1.∴双曲线方程为:;(2)由3x﹣4y﹣12=0,得,∴直线在两坐标轴上的截距分别为(4,0),(0,﹣3),∴分别以(4,0),(0,﹣3)为焦点的抛物线方程为:y2=16x或x2=﹣12y.【点评】本题考查椭圆方程和抛物线方程的求法,对于(1)的求解,设出以直线为一条渐近线的双曲线方程是关键,是中档题.22.【答案】【解析】解:(1)依题意,画出散点图如图所示,(2)从散点图可以看出,这些点大致在一条直线附近,设所求的线性回归方程为.则,∴年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.(3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.23.【答案】【解析】解:(1)当a=1、b=0时,原不等式化为x≥x2,(2分)即x(x﹣1)≤0;…(4分)解得0≤x≤1,∴原不等式的解集为{x|0≤x≤1};…(6分)(2)∵a2x+b2(1﹣x)≥[ax+b(1﹣x)]2,∴(a﹣b)2x≥(a﹣b)2x2,(10分)又∵a≠b,∴(a﹣b)2>0,∴x≥x2;即x(x﹣1)≤0,…(12分)解得0≤x≤1;∴不等式的解集为{x|0≤x≤1}.…(14分)【点评】本题考查了不等式的解法与应用问题,解题时应对不等式进行化简,再解不等式,是基础题. 24.【答案】【解析】解:(Ⅰ)∵全集U=R,B={x|x<4},∴∁U B={x|x≥4},又∵A={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},∴A∩(∁U B)={x|4≤x≤5};(Ⅱ)∵A={x|﹣1≤x≤5},C={x|x≥a},且A⊆C,∴a的范围为a≤﹣1.【点评】此题考查了交、并、补集的混合运算,以及集合的包含关系判断及应用,熟练掌握各自的定义是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

贵阳第一中学2018届高考适应性月考卷(四) 理科数学参考答案

一、选择题(本大题共12小题,每小题5分,共60分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B D A C C C B C A D D A 【解析】 1.错误!未找到引用源。,错误!未找到引用源。,图中阴影部分表示错误!未找到引用源。,故选B. 2.因为错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。 错误!未找到引用源。,故选D. 3.若错误!未找到引用源。,则错误!未找到引用源。,且错误!未找到引用源。,解得错误!未找到引用源。或错误!未找到引用源。,∴“错误!未找到引用源。”是“错误!未找到引用源。”的充分不必要条件,故选A. 4.分别设甲、乙两贫困户获得扶持资金为事件A,B,错误!未找到引用源。,错误!未找到引用源。,“这两户中至少有一户获得扶持资金”的对立事件是“这两户都没有获得扶持资金”,概率为错误!未找到引用源。,所以这两户中至少有一户获得扶持资金的概率为错误!未找到引用源。,故选C. 5.设向量错误!未找到引用源。与错误!未找到引用源。的夹角为错误!未找到引用源。,由错误!未找到引用源。得错误!未找到引用源。,所以错误!未找到引用源。,所以错误!未找到引用源。,∵错误!未找到引用源。错误!未找到引用源。,∴错误!未找到引用源。,故选C. 6.将函数错误!未找到引用源。的图象上所有点的横坐标伸长到原来的错误!未找到引用源。倍,再向右平移错误!未找到引用源。个单位长度,得到函数错误!未找到引用源。的图象,所以错误!未找到引用源。,令错误!未找到引用源。,得错误!未找到引用源。,错误!未找到引用源。,故选C. 7.由错误!未找到引用源。得错误!未找到引用源。,设错误!未找到引用源。,则错误!未找到引用源。,所以错误!未找到引用源。在R上是增函数, 且错误!未找到引用源。.不等式错误!未找到引用源。可化为错误!未找到引用源。,即错误!未找到引用源。,∴错误!未找到引用源。,故选B. 8.如图1所示,设错误!未找到引用源。,则错误!未找到引用源。,分别过错误!未找到引用源。,错误!未找到引用源。作准线的垂线,垂足分别为错误!未找到引用源。,错误!未找到引用源。,由抛物线的定义知,错误!未找到引用源。,错误!未找到引用源。,再过错误!未找到引用源。作错误!未找到 引用源。的垂线,垂足为错误!未找到引用源。,则错误!未找到引用源。,所以错误!未找到引用源。,则错误!未找到引用源。,故选C. 9.由三视图可知,该几何体是由正方体截去四个角后所得的正三棱锥,设正方体的棱长为错误!未找到引用源。,则该三棱锥的体积为错误!未找到引用源。,∴错误!未找到引用源。,因为该三棱锥的外接球就是正方体的外接球,∴该三棱锥的外接球的直径错误!未找到引用源。,所以该三棱锥的外接球的表面积为错误!未找到引用源。,故选A. 10.不妨设错误!未找到引用源。,由双曲线的定义,错误!未找到引用源。,又错误!未找到引用源。,联立解得错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,所以错误!未找到引用源。 错误!未找到引用源。,则△错误!未找到引用源。为直角三角形,错误!未找到引用源。,△错误!未找到引用源。的面积为错误!未找到引用源。 错误!未找到引用源。,所以错误!未找到引用源。,故选D. 11.错误!未找到引用源。,运行该程序得错误!未找到引用源。,当错误!未找到引用源。时,错误!未找到引用源。,错误!未找到引用源。不成立,继续循环;错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。成立,循环结束,输出的错误!未找到引用源。,故选D. 12.由题意,问题等价于方程错误!未找到引用源。在错误!未找到引用源。上有两个解,即方程错误!未找到引用源。在错误!未找到引用源。上有两个解. 设错误!未找到引用源。,则错误!未找到引用源。错误!未找到引用源。,所以当错误!未找到引用源。时,错误!未找到引用源。,错误!未找到引用源。单调递减;当错误!未找到引用源。时,错误!未找到引用源。,错误!未找到引用源。单调递增;于是错误!未找到引用源。有最小值为错误!未找到引用源。,又错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,由图可知,若方程错误!未找到引用源。在错误!未找到引用源。上有两个解,则错误!未找到引用源。,所以错误!未找到引用源。,故选A. 二、填空题(本大题共4小题,每小题5分,共20分) 题号 13 14 15 16 答案 错误!未找到引用源。 错误!未找到引用源。 错误!未找到引用源。 ③④ 【解析】 13.错误!未找到引用源。的展开式的通项错误!未找到引用

图1 源。.令错误!未找到引用源。,不合题意,舍去;令错误!未找到引用源。,得错误!未找到引用源。,所以错误!未找到引用源。的展开式中错误!未找到引用源。的系数是错误!未找到引用源。,得错误!未找到引用源。(舍负),所以错误!未找到引用源。.根据错误!未找到引用源。的几何意义是以原点为圆心,错误!未找到引用源。为半径的圆面积的错误!未找到引用源。,所以错误!未找到引用源。. 14.由约束条件作出可行域,如图2所示.错误!未找到引用源。表示可行域内的点错误!未找到引用源。到原点错误!未找到引用源。距离的平方,由图可知,错误!未找到引用源。. 15.∵错误!未找到引用源。,∴错误!未找到引用源。, 又错误!未找到引用源。,∴错误!未找到引用源。,所以错误!未找到引用源。且错误!未找到引用源。,故对任意错误!未找到引用源。,都有错误!未找到引用源。,∴错误!未找到引用源。. 16.画出函数错误!未找到引用源。的图象,如图3,由此判断③,④正确. 三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分) (Ⅰ)证明:由错误!未找到引用源。,得错误!未找到引用源。, 由正弦定理错误!未找到引用源。,化简得错误!未找到引用源。, 根据余弦定理错误!未找到引用源。, ∵错误!未找到引用源。,∴错误!未找到引用源。, 又错误!未找到引用源。,∴错误!未找到引用源。,所以角A,C,B成等差数列. ……………(6分) (Ⅱ)解:根据余弦定理得错误!未找到引用源。, ∴错误!未找到引用源。,当且仅当错误!未找到引用源。时“错误!未找到引用源。”成立, 则△错误!未找到引用源。的面积为错误!未找到引用源。, 所以△错误!未找到引用源。面积的最大值为错误!未找到引用源。. ……………………………………(12分) 18.(本小题满分12分) 解:(Ⅰ)由已知得,错误!未找到引用源。,错误!未找到引用源。,根据参考公式和数

图2 图3 据得 错误!未找到引用源。, ∴错误!未找到引用源。, ∴错误!未找到引用源。关于错误!未找到引用源。的线性回归方程为错误!未找到引用源。. …………………………………(6分) (Ⅱ)错误!未找到引用源。, ∵错误!未找到引用源。,∴对数函数回归模型更合适, 当错误!未找到引用源。万元时,预测A城市的销售额为错误!未找到引用源。万元. ……………………………………(12分) 19.(本小题满分12分) (Ⅰ)证明:∵四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°, ∴BC=DC,∠ADC=∠BCD=120°,∴∠CDB=30°, ∴∠ADB=90°,即BD⊥AD. 又AE⊥BD,错误!未找到引用源。=A,∴BD⊥平面AED, 又BD错误!未找到引用源。平面ABCD,∴平面AED⊥平面ABCD. 如图4,过E作EG⊥AD于G,则EG⊥平面ABCD, 又FC⊥平面ABCD,∴FC∥EG. 又EG错误!未找到引用源。平面AED,FC错误!未找到引用源。平面AED, ∴FC∥平面AED. ……………………(6分) (Ⅱ)解:如图5,连接AC,由(Ⅰ)知AC⊥BC, ∵FC⊥平面ABCD, ∴CA,CB,CF两两垂直. 以C为原点,建立空间直角坐标系C−xyz. 设BC错误!未找到引用源。,则AC错误!未找到引用源。,AB错误!未找到引用源。, 错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。, 错误!未找到引用源。,∴错误!未找到引用源。, 错误!未找到引用源。,错误!未找到引用源。.

图4 图5 设平面BDF的法向量为错误!未找到引用源。, 则错误!未找到引用源。 即错误!未找到引用源。 令错误!未找到引用源。,则错误!未找到引用源。,错误!未找到引用源。,则错误!未找到引用源。. 设直线AF与平面BDF所成角为错误!未找到引用源。,则错误!未找到引用源。, 故直线AF与平面BDF所成角的余弦值为错误!未找到引用源。. ……………………………(12分) 20.(本小题满分12分) 解:(Ⅰ)以原点为圆心,椭圆错误!未找到引用源。的短轴长为直径的圆的方程为错误!未找到引用源。, 由题意,错误!未找到引用源。,所以错误!未找到引用源。. ∵点错误!未找到引用源。在椭圆上,∴错误!未找到引用源。,解得错误!未找到引用源。, ∴椭圆C的方程为错误!未找到引用源。. …………………………………………………(4分) (Ⅱ)由错误!未找到引用源。, 根据椭圆定义,错误!未找到引用源。,所以错误!未找到引用源。, 于是求△错误!未找到引用源。内切圆面积的最大值即为求△错误!未找到引用源。面积的最大值. 设直线l的方程为错误!未找到引用源。,错误!未找到引用源。,错误!未找到引用源。,则错误!未找到引用源。 消去错误!未找到引用源。得错误!未找到引用源。,所以错误!未找到引用源。,错误!未找到引用源。. 因为错误!未找到引用源。,点错误!未找到引用源。到直线错误!未找到引用源。的距离为错误!未找到引用源。, 所以△错误!未找到引用源。的面积为错误!未找到引用源。错误!未找到引用源。错误!未找到引用源。.

相关文档
最新文档