2017-2018学年人教A版选修4-1课件:第三讲3.3平面与圆锥面的截线
人教版数学高二A版选修4-1目标导引第三讲三平面与圆锥面的截线

高中数学-打印版三平面与圆锥面的截线一览众山小学习目标1.了解不平行于底面的平面截圆锥的形状是椭圆、抛物线、双曲线.2.通过电脑演示,感受平面截圆锥的形状,并从理论上证明.3.通过Dandelin双球探求双曲线的性质,理解这种证明问题的方法.学法指导学习本节内容之前,可先复习立体几何中平面截圆锥的截面形状,复习选修1-1的圆锥曲线的知识.对于平面截圆锥面的形状,可以借助于电脑,增强形象性的理解,对于圆锥形物体的斜截口是椭圆、双曲线、抛物线的证明,可先理解平面上的情况,再推广到空间,这样在学习中能够降低难度.诱学指导材料:我们生活的地球每时每刻都在环绕太阳的椭圆轨迹上运行,太阳系其他行星也如此,太阳则位于椭圆的一个焦点上.如果这些行星运行速度增大到某种程度,它们就会沿抛物线或双曲线运行.人类发射人造地球卫星或人造行星就要遵照这个原理.相对于一个物体,按万有引力定律受它吸引的另一物体的运动,不可能有任何其他的轨道了.因而,圆锥曲线在这种意义上讲,它构成了我们宇宙的基本形式.问题:将双曲线、抛物线分别绕其虚轴旋转,得到什么形状的图形,用一个平面去截一个双圆锥面,会得到什么图形?导入:由抛物线绕其轴旋转,可得到一个叫做旋转物面的曲面.它也有一条轴,即抛物线的轴.在这个轴上有一个具有奇妙性质的焦点,任何一条过焦点的直线由抛物面反射出来以后,都成为平行于轴的直线.这就是我们为什么要把探照灯反光镜做成旋转抛物面的道理.图3-3-1由双曲线绕其虚轴旋转,可以得到单叶双曲面,它又是一种直纹曲面,由两组母直线族组成,各组内母直线互不相交,而与另一组母直线却相交.人们在设计高大的立塔时,就采取单叶双曲面的体形,既轻巧又坚固.用一个平面去截一个双圆锥面,会得到圆、椭圆、抛物线、双曲线以及它们的退化形式:两相交直线,一条直线和一个点,如图3-3-1所示.精心校对完整版。
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)

返回
[悟一法]
借助条件中已经建立的直角坐标系,通过相关平面图 形转换确定椭圆的长、短轴的长是关键.
返回
[通一类] 1.平面内两个定点的距离为8,动点M到两个定点的距离 的和为10,求动点M的轨迹方程.
解:以两点的连线段所在的直线为 x 轴,线段的中垂线 为 y 轴建立直角坐标系,则由椭圆的定义知,动点的轨 x2 y2 迹是椭圆,设所求椭圆方程为 2+ 2=1. a b ∵2a=10,2c=8,∴a=5,c=4.则 b2=9. x2 y2 故所求椭圆的方程为 + =1. 25 9
返回
[研一题]
[例1] 已知圆柱底面半径为,平面β与圆柱母线夹
角为60°,在平面β上以G1G2所在直线为横轴,以 G1G2中点为原点,建立平面直角坐标系,求平面β与
圆柱截口椭圆的方程.
返回
分析:本题考查平面与圆柱面的截线.解答本题需要根
据题目条件确定椭圆的长轴和短轴.
解:过 G1 作 G1H⊥BC 于 H. ∵圆柱底面半径为 3, ∴AB=2 3. ∵四边形 ABHG1 是矩形, ∴AB=G1H=2 3. G1H 2 3 在 Rt△G1G2H 中,G1G2= = =4. sin∠G1G2H 3 2 又椭圆短轴长等于底面圆的直径 2 3, x2 y2 ∴椭圆的标准方程为 + =1. 4 3
曲线的形状,尤其是焦点的确定更加不容易,但可以采 用与上节中定理1的证明相同的方法,即Danelin双球法, 这时较容易确定椭圆的焦点,学生也容易入手证明,使 问题得到解决.
返回
[通一类] 2.在空间中,取直线l为轴,直线l′与l相交于O点,夹角
为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任
2 解:由题意知,椭圆的长半轴长 a= =2 2, sin 45° 短半轴长 b=2,则半焦距 c= a2-b2= 8-4=2. 所以焦距 2c=4.
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)

返回
在 Rt△PBQ1 中,PB=PQ1cos α. PQ1 cos β ∴ = . PA cos α PF1 又∵PQ1=PF1,α=β,∴ =1, PA 即 PF1=PA, 动点 P 到定点 F1 的距离等于它到定直线 m 的距 离,故当 α=β 时,平面与圆锥的交线为抛物线.
返回
本课时考点在高考中很少考查.2012年梅州模拟以
返回
[悟一法]
借助条件中已经建立的直角坐标系,通过相关平面图 形转换确定椭圆的长、短轴的长是关键.
返回
[通一类] 1.平面内两个定点的距离为8,动点M到两个定点的距离 的和为10,求动点M的轨迹方程.
解:以两点的连线段所在的直线为 x 轴,线段的中垂线 为 y 轴建立直角坐标系,则由椭圆的定义知,动点的轨 x2 y2 迹是椭圆,设所求椭圆方程为 2+ 2=1. a b ∵2a=10,2c=8,∴a=5,c=4.则 b2=9. x2 y2 故所求椭圆的方程为 + =1. 25 9
0),则
①β>α ②β=α ③ β<α ,平面π与圆锥的交线为椭圆; ,平面π与圆锥的交线为抛物线; ,平面π与圆锥的交线为双曲线.
返回
[小问题·大思维] 用平面截球面和圆柱面所得到的截线分别是什么 形状?
提示:联想立体图形及课本方法,可知用平面截
球面所得截线的形状是圆;用平面截圆柱面所得截线 的形状是圆或椭圆.
返回
[读教材·填要点]
1.平面与圆柱面的截线
(1)椭圆组成元素: F1,F2 叫椭圆的焦点; F1F2 叫椭圆 的焦距;AB叫椭圆的 长轴 ;CD叫椭圆 的 短轴 .
如果长轴为2a,短轴为2b,那么焦 2 a2-b2 . 距2c=
返回
(2)如图(1),AB、CD是两个等圆的直径,AB∥CD,
2018学年高中数学人教A版选修4-1课件:3.1+2+3 平行射

【解析】 显然 A 正确;由于任一轴截面过轴线,故轴截面与圆柱的直截 面垂直,B 正确;C 显然正确;D 中短轴长应为圆柱面的直径长,故不正确. 【答案】 D
[ 质疑· 手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流: 疑问 1:_______________________________________________________ 解惑:________________________________________________________ 疑问 2:_______________________________________________________ 解惑:________________________________________________________ 疑问 3:_______________________________________________________ 解惑:________________________________________________________
点 A′为 给定一个平面 α,从一点 A 作平面 α 的垂线,垂足为点 A′,称_______
点 A 在平面 α 上的正射影.
各点在平面 α 上的正射影 所组成的图形,称为这个图形在 一个图形上__________________________
平面 α 上的正射影.
2.平行射影
直线l的方向 设直线 l 与平面 α 相交(如图 311),称______________
π ∴∠VOE=∠AVO=∠BVO=4, π ∴∠VEO=2,即 VE⊥OE. 又∵AB⊥CD,VO⊥CD,∴CD⊥平面 VA B. ∵VE⊂平面 VAB,∴VE⊥CD. 又∵OE∩CD=O,OE⊂平面 CDE,CD⊂平面 CDE, ∴∠VOE 是截面与轴线的夹角, π ∴截面与轴线夹角大小为4. 由圆锥的半顶角与截面与轴线的夹角相等,知截面 CDE 与圆锥面的截线为 一抛物线.
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)

返回
当β>α时,由上面的讨论可知,平面π与圆锥的交线是一个
封闭曲线.设两个球与平面π的切点分别为F1、F2,与圆锥相切 于圆S1、S2. 在截口的曲线上任取一点P,连接PF1、PF2.过P作母线交S1 于Q1,交S2于Q2,于是PF1和PQ1是从P到上方球的两条切线,因
此PF1=PQ1.同理,PF2=PQ2.
返回
①G2F1+G2F2= AD;②G1G2= AD; G2F1 =cosφ=sinθ. ③ G2E (3)如图(2),将两个圆拓广为球面,将矩形 ABCD 看 成是圆柱面的轴截面,将 EB、DF 拓广为两个平面 α、β, EF 拓广为平面 γ,则平面 γ 与圆柱面的截线是 椭圆 .即 得定理 1:圆柱形物体的斜截口是椭圆.
取平面π,若它与轴l的交角为β(当π与l平行时,记β=0), 求证:β=α时,平面π与圆锥的交线是抛 物线.(如图)
返回
证明:如图,设平面 π 与圆锥内切球相切于点 F1,球与圆 锥的交线为圆 S,过该交线的平面为 π′,π 与 π′相交于 直线 m. 在平面 π 与圆锥的截线上任取一点 P,连接 PF1.过点 P 作 PA⊥m,交 m 于点 A,过点 P 作 π′的垂线,垂足为 B,连 接 AB,则 AB⊥m,∴∠PAB 是 π 与 π′所成二面角的平面 角.连接点 P 与圆锥的顶点,与 S 相交于点 Q1,连接 BQ1, 则∠BPQ1=α,∠APB=β. 在 Rt△APB 中,PB=PAcos β.
2 解:由题意知,椭圆的长半轴长 a= =2 2, sin 45° 短半轴长 b=2,则半焦距 c= a2-b2= 8-4=2. 所以焦距 2c=4.
返回
点击下图进入“创新演练”
返回
返回
在 Rt△PBQ1 中,PB=PQ1cos α. PQ1 cos β ∴ = . PA cos α PF1 又∵PQ1=PF1,α=β,∴ =1, PA 即 PF1=PA, 故当 α=β 时,平面与圆锥的交线为抛物线.
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)

0),则
①β>α ②β=α ③ β<α ,平面π与圆锥的交线为椭圆; ,平面π与圆锥的交线为抛物线; ,平面π与圆锥的交线为双曲线.
返回
[小问题·大思维] 用平面截球面和圆柱面所得到的截线分别是什么 形状?
提示:联想立体图形及课本方法,可知用平面截
球面所得截线的形状是圆;用平面截圆柱面所得截线 的形状是圆或椭圆.
返回
当β>α时,由上面的讨论可知,平面π与圆锥的交线是一个
封闭曲线.设两个球与平面π的切点分别为F1、F2,与圆锥相切 于圆S1、S2. 在截口的曲线上任取一点P,连接PF1、PF2.过P作母线交S1 于Q1,交S2于Q2,于是PF1和PQ1是从P到上方球的两条切线,因
此PF1=PQ1.同理,PF2=PQ2.
曲线的形状,尤其是焦点的确定更加不容易,但可以采 用与上节中定理1的证明相同的方法,即Danelin双球法, 这时较容易确定椭圆的焦点,学生也容易入手证明,使 问题得到解决.
返回
[通一类] 2.在空间中,取直线l为轴,直线l′与l相交于O点,夹角
为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面,任
返回
[研一题]
[例1] 已知圆柱底面半径为,平面β与圆柱母线夹
角为60°,在平面β上以G1G2所在直线为横轴,以 G1G2中点为原点,建立平面直角坐标系,求平面β与
圆柱截口椭圆的方程.
返回
分析:本题考查平面与圆柱面的截线.解答本题需要根
据题目条件确定椭圆的长轴和短轴.
解:过 G1 作 G1H⊥BC 于 H. ∵圆柱底面半径为 3, ∴AB=2 3. ∵四边形 ABHG1 是矩形, ∴AB=G1H=2 3. G1H 2 3 在 Rt△G1G2H 中,G1G2= = =4. sin∠G1G2H 3 2 又椭圆短轴长等于底面圆的直径 2 3, x2 y2 ∴椭圆的标准方程为 + =1. 4 3
人教版数学高二A版选修4-1温故知新第三讲三平面与圆锥面的截线
高中数学-打印版
三平面与圆锥面的截线
温故知新
新知预习
1.在空间中,取直线l为轴,直线l′与l相交于点O,夹角为α,l′围绕l旋转得到以O为顶点,l′为母线的圆锥面.任取平面π,若它与轴l的交角为β(当π与l平行时,记β=0),则
(1)β>α,平面π与圆锥的交线为;
(2)β=α,平面π与圆锥的交线为;
(3)β<α,平面π与圆锥的交线为.
2.双曲线上任意一点到两定点距离为常数.
知识回顾
1.类比的思想.
2.分类讨论的思想.
当面临的问题不宜用一种方法处理或不宜用同一种形式叙述时,就把问题按照一定的原则或标准分为若干类,然后逐个进行讨论,再把这几类的结论汇总得出问题的答案,这种解决问题的思想方法就是分类讨论的思想方法.
精心校对完整版。
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)
返回
当β>α时,由上面的讨论可知,平面π与圆锥的交线是一个
封闭曲线.设两个球与平面π的切点分别为F1、F2,与圆锥相切 于圆S1、S2. 在截口的曲线上任取一点P,连接PF1、PF2.过P作母线交S1 于Q1,交S2于Q2,于是PF1和PQ1是从P到上方球的两条切线,因
此PF1=PQ1.同理,PF2=PQ2.
选择题的形式考查了平面与圆柱面的截线的形状,是
高考模拟命题的一个新动向.
返回
[考题印证]
(2012· 梅州模拟)已知半径为 2 的圆柱面, 一平面与圆 柱面的轴线成 45° 角,则截线椭圆的焦距为 A.2 2 C.4 B.2 D.4 2 ( )
[命题立意]
本题主要考查平面与圆柱面的截线问题,
同时考查椭圆的相关性质.
返回
①G2F1+G2F2= AD;②G1G2= AD; G2F1 =cosφ=sinθ. ③ G2E (3)如图(2),将两个圆拓广为球面,将矩形 ABCD 看 成是圆柱面的轴截面,将 EB、DF 拓广为两个平面 α、β, EF 拓广为平面 γ,则平面 γ 与圆柱面的截线是 椭圆 .即 得定理 1:圆柱形物体的斜截口是椭圆.
0),则
①β>α ②β=α ③ β<α ,平面π与圆锥的交线为椭圆; ,平面π与圆锥的交线为抛物线; ,平面π与圆锥的交线为双曲线.
返回
[小问题·大思维] 用平面截球面和圆柱面所得到的截线分别是什么 形状?
提示:联想立体图形及课本方法,可知用平面截
球面所得截线的形状是圆;用平面截圆柱面所得截线 的形状是圆或椭圆.
返回
[研一题] [例2] 证明:定理2的结论(1),即β>α时,平面π与圆 锥的交线为椭圆. 分析:本题考查平面与圆锥面的截线.解答本题需要 明确椭圆的定义,利用椭圆的定义证明.
上课用高二数学33平面与圆锥面的截线(选修4-1)
S1 于Q1 ,交S2于Q2 ,于是 PF1和 PQ1是从P到上方球的两条切 线,因此PF1 PQ1. 同理, PF2 PQ2.所以PF1 PF2
S1 Q1 F1
F2 P S2
Q2
PQ1 PQ2 Q1Q2 . 由正圆锥的对称性, Q1Q2长度
图3 11
等于两圆S1、S2 所在平行平面间的母线段的
G1 ,交BC于G2 ,设EF 与BC,CD的交角分别
为φ,θ。
G1 F1
D
F2Φ G2
ΘF
O2
C
(1)G2F1 G2F2 AD
G2F1 G2F2 G2B G2C BC AD
(2)AD G1G2
G1G2 G1D F2G2
EA
G1D G2C
G1D G1A ?
G1 F1
AD
任 意 一 点 到 两 个 定 点即 双 曲 线 的 两 个 焦 点
的 距 离 之 差 的 绝 对 值 为常 数.
拋物线焦点的产生 球面与圆锥面相切(切点圆) 含切点圆的平面
(切点面) 內切球面
圆锥面
由截面截出的拋物线
截面与切点面交线 (准线)
对称轴 球的切点
(焦点)
截面
复习回顾——平行射影的概念:
直线 l与平面α相交------ l的方向称投影方向。 点的平行射影:过点A作平行于 l 的直线(称
投影线)必交α于一点A´,称点A´为A沿 l的方向
在平面 α上的平行射影。
l
A
A
图形的平行射影:
一个图形上各点在平面 α上的平行射影所 组成的图形,叫做这个图形的平行射影。
双球,一个位于平面 的上方, 一个位于平面 的下方,并且 与平面 及圆锥均相切.
2.2-2.3 平面与圆柱面的截线 平面与圆锥面的截线 课件(人教A选修4-1)
返回
[研一题]
[例1] 已知圆柱底面半径为,平面β与圆柱母线夹
角为60°,在平面β上以G1G2所在直线为横轴,以 G1G2中点为原点,建立平面直角坐标系,求平面β与
圆柱截口椭圆的方程.
返回
分析:本题考查平面与圆柱面的截线.解答本题需要根
据题目条件确定椭圆的长轴和短轴.
解:过 G1 作 G1H⊥BC 于 H. ∵圆柱底面半径为 3, ∴AB=2 3. ∵四边形 ABHG1 是矩形, ∴AB=G1H=2 3. G1H 2 3 在 Rt△G1G2H 中,G1G2= = =4. sin∠G1G2H 3 2 又椭圆短轴长等于底面圆的直径 2 3, x2 y2 ∴椭圆的标准方程为 + =1. 4 3
返回
[读教材·填要点]
1.平面与圆柱面的截线
(1)椭圆组成元素: F1,F2 叫椭圆的焦点; F1F2 叫椭圆 的焦距;AB叫椭圆的 长轴 ;CD叫椭圆 的 短轴 .
如果长轴为2a,短轴为2b,那么焦 2 a2-b2 . 距2c=
返回
(2)如图(1),AB、CD是两个等圆的直径,AB∥CD,
AD、BC与两圆相切,作两圆的公切线EF,切点分别为F1、 F2,交BA、DC的延长线于E、F,交AD于G1,交BC于G2. 设EF与BC、CD的交角分别为φ、θ.
取平面π,若它与轴l的交角为β(当π与l平行时,记β=0), 求证:β=α时,平面π与圆锥的交线是抛 物线.(如图)
返回
证明:如图,设平面 π 与圆锥内切球相切于点 F1,球与圆 锥的交线为圆 S,过该交线的平面为 π′,π 与 π′相交于 直线 m. 在平面 π 与圆锥的截线上任取一点 P,连接 PF1.过点 P 作 PA⊥m,交 m 于点 A,过点 P 作 π′的垂线,垂足为 B,连 接 AB,则 AB⊥m,∴∠PAB 是 π 与 π′所成二面角的平面 角.连接点 P 与圆锥的顶点,与 S 相交于点 Q1,连接 BQ1, 则∠BPQ1=α,∠APB=β. 在 Rt△APB 中,PB=PAcos β.