膜片钳技术

合集下载

膜片钳技术的基本原理

膜片钳技术的基本原理

(一)膜片钳技术的基本原理:膜片钳技术是用尖端直径1~2μm的玻璃微电极吸管与经蛋白酶处理干净的细胞膜接触,通过20~30cm H2O的负压吸引造成电极尖端与细胞膜形成高阻封接(10~100GΩ),使电极尖端下的小块膜片与膜的其它部分在电学上绝缘,并在此基础上固定膜片电位,监测几个μm2膜片上1~3个离子通道活动的方法。

高阻封接的形成:高阻封接形成与否是记录细胞离子通道电流能否成功的前提,是进行膜片钳实验的关键一步。

微电极尖端与细胞膜形成封接的过程,可以采用软件或刺激器发出一个脉冲电压作用于微电极,造成膜两侧电位差发生变化,产生电极电流,再通过示波器或显示屏,观察电极电流幅度的变化来确定封接程度。

在电极未入溶液之前,在显示器或示波器上可见一直线。

当电极入液后,软件或刺激器发出的电脉冲经记录微电极、浴液及参考电极形成回路,1mV的封接电压流径5MΩ的电极阻抗,则会产生0.2nA的电流浮动,随着微电极尖端接近、接触细胞膜,电极电阻则进一步增加,而电流幅度则随之减小,当在显示器或示波器上看到电流方波变为直线时,则形成低阻封接(50MΩ),然后经微电极给予负压(-10~-30cm H2O),即可形成高阻封接。

再将电脉冲调为10mV,调节快、慢电容电流补偿,消除电容电流,就可进行细胞贴附式膜片钳实验,如果在此基础上再次给予负压或电脉冲,使微电极尖端下膜片破裂,则形成全细胞式。

进行高阻封接时,需注意的是:①在微电极未入液之前常施以正压,使电极内有液体从电极尖端流出,防止浴液表面灰尘或溶液中粒子附着于电极尖端,影响高阻封接。

②如果微电极尖端与细胞膜接触后,仍不能形成高阻封接,则电极即不能再用,需重新换一根微电极继续封接。

③电极尖端与细胞膜接触,稍加负压后电流波形变得平坦,此时,如使电极超极化,则有助于加速形成高阻封接。

④电极入液后封接的成功率与入浴液后的时间呈反比,电极内液中的肽类或蛋白质成分也会有碍于封接形成。

膜片钳技术

膜片钳技术
2
3
膜片钳技术
4
Hodgkin 和 Huxley 1952: 动作电位是神经细胞膜通透性改变的结果
• An electrical wave, which propagates along the nerve fiber • Caused by the sequential opening of Na+ and K+ channels • Being generated at the axon hillock by the integration of excitatory and
1. 贴附式记录模式 (Cell-attached or On cell mode) 2. 内膜向外记录模式 (Inside-out mode) 3. 外膜向外记录模式 (Outside-out mode) 4. 全细胞记录模式 (Whole-cell recording)
22
‘CELL-ATTACHED’
A
B
D
电极接触细胞
C
负压吸引形成Ω形膜囊泡
提起电极,囊泡与细胞脱离
33
‘OUTSIDE-OUT’
34
‘WHOLE-CELL’
35
Good and bad seals
36 05:44
穿孔膜片钳法
其特点是不打破电极腔下的细胞膜片,而代之 以利用在细胞膜上形成高离子通透的小孔来构成 可通透性电路。其方法是在电极内液中加入一种 多烯抗生素制酶菌素(nyatatin)或(二性酶素B) 等。他们可在细胞膜的双凝脂层中形成孔道。小 孔的大小只允许一价离子通过,而不允许大分子 通过,所以它具有不破坏细胞内环境的优点。
六、膜片钳技术
1
膜片钳技术运用微玻管电极(膜片电极 或膜片吸管)接触细胞膜,以千兆欧姆[giga ohm seal,1010欧姆(GΩ )]以上的阻抗使之 对接,使与电极尖开口处相接的细胞膜小片 区域(膜片)与其周围在电学上分隔,在此 基础上固定电位,对此膜片上的离子通道的 离子电流(pA级)进行检测记录。

膜片钳

膜片钳

㈢分析
1.事件检测方法——50%阈值检测法: 将阈值水平设在开放水平与关闭水平中间
2.单通道电流幅度和电导的分析 ➢目的:揭示通道的通透性机制;帮助区分通道的类 型、通道不同的亚单位组成以及突变等 ➢单通道电流的分析—— 幅度直方图 ➢单通道电导的计算 ⑴斜率电导:步阶电压(voltage step);斜坡电压 (voltage ramp) ⑵拟合电流幅度直方图:高斯拟合
Rs的影响:使膜电位对命令电压的反应时间延迟;产生 电压降,影响钳制电位的数值;与膜电容形成一个单极 RC滤波器,限制了摄取电流信号的频带宽。
膜电阻(Rm):指电流通过细胞膜时所遇到的阻力。 在静息状态下,Rm主要来自脂质双分子层的电阻。
3. 膜漏电流去除:
➢电容器(capacitor):
被绝缘体隔开的两个导体 的组合,其储存电荷的能 力用电容(capacitance) 表示。
㈡ Ag/AgCl电极
Ag + Cl-
电子从Ag/AgCl 电极流向浴液
AgCl +e电子从浴液流向Ag/AgCl电极
➢长时间导通电流,AgCl会消耗掉,要定期镀AgCl: 含Cl-的溶液,长度为1~1.5cm
➢玻璃微电极尾端烧灼,防止AgCl被刮掉
电极电阻
二、封接
测试脉冲(20mV) 产生的电极电流
原因:离子通道的开放导致膜电阻迅速降低,电流 和电压的关系偏离了欧姆定律。
分外向整流和内向整流
外向整流:指随膜电位的去极化,I-V曲线靠近y轴
内向整流:指随膜电位的去极化,I-V曲线靠近x轴
(2)离子通道的激活(activation) (3)离子通道的失活(inactivation) 衰减(decay):通道在激活因素持续存在条件下的 失活。用衰减的时间常数来表示 稳态失活(steady-state inactivaion):反映通道 失活数目的电压依赖性,可用失活曲线表示 (4)通道失活后的恢复 通道失活后,必须将激活因素去除并维持一定时间, 才能使通道脱离失活状态,再次给予激活因素时通道 才能恢复开放。维持时间即通道失活后的恢复时间。 (5)离子通道的去激活(deactivation) 指在激活因素结束时通道的关闭过程,所记录到的电 流称尾电流。有些离子通道的尾电流也具有电压依赖 性,关闭过程呈指数分布。

膜片钳技术概述

膜片钳技术概述

膜片钳技术概述12膜片钳记录基本步骤目录概述3 常用检测基本原理 4膜片钳技术应用PART 1概述研究离子通道生化确定蛋白质氨基酸序列+X 线衍射确定结构+…… 电生理技术(膜片钳+动态钳……)电生理技术+转基因技术+…… 1、结构 2、功能3、结构和功能/WOS_GeneralSearch_input. do?product=WOS&search_mode=GeneralSearch&SID=7A2Mq OMDSKr2rKYrDnH&preferencesSaved=•蒸汽机的出现推动了英国的工业革命•膜片钳技术打开了细胞电生理研究的大门离子通道是细胞膜上的一种特殊整合蛋白,对某些离子(K+/Na+/Ca2+)能选择通透,其功能是细胞生物电活动的基础。

特性:通透性(permeation)选择性(selectivity)门控性(gating)配体门控通道阳离子通道:乙酰胆碱、谷氨酸、五羟色胺受体阴离子通道:甘氨酸/GABA 受体膜片钳技术的发展历程•1963年,霍奇金和赫胥黎发现了电压钳技术,并获得了诺贝尔生理或医学奖膜片钳技术打开了细胞电生理研究的大门•1976年,德国马克斯普朗克生物物理化学研究所Erwin Neher和Bert Sakmann首次在青蛙肌细胞上用双电极钳制膜电位的同时,记录到Ach激活的单通道离子电流,从而产生了膜片钳技术。

•1981年,德国马克斯普朗克生物物理化学研究所Owen Hamill和Erwin Neher等对膜片钳技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1 pA 的电流灵敏度、1 μm的空间分辨率和10 μs的时间分辨率。

•1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。

•1991年,德国马克斯普朗克生物物理化学研究所Erwin Neher和Bert Sakmann也因其杰出的工作和突出贡献,荣获诺贝尔医学和生理学奖。

膜片钳技术的原理

膜片钳技术的原理

膜片钳技术的原理及应用(综述)Intro:细胞是构成生物体的基本单位。

细胞内和细胞之间的信号传导的重要途径是通过镶嵌在细胞膜上的离子通道蛋白进行的。

1976年,德国的两位细胞生物学家埃尔温. 内尔(Er win Neher)和贝尔特. 萨克曼(Bert Sakmann)建立了一种以记录通过离子通道的离子电流来反映细胞膜上单一或多数离子通道分子活动的技术,成为膜片钳技术(Patch Clamp)。

这一技术使对细胞电活动的研究精度提高到1pA的电流分辨率,1μm的空间分辨率和10μs的时间分辨率水平,是细胞和分子水平的生理学研究领域的一次革命性突破。

它与基因克隆技术(Gene Cloning)并驾齐驱,推动了生命科学研究的迅速发展。

为此,1991年的诺贝尔医学与生理学奖授予了这两位学者,以表彰他们的突出贡献。

这一能精确描述细胞通道特征的实验方法在问世后的短短十几年时间里,已经在生物学研究领域显示出了非常重要的意义和广阔的应用前景。

一. 膜片钳技术的基本原理膜片钳技术运用微玻管电极(膜片电极或膜片吸管)接触细胞膜,以千兆欧姆[gigaoh m seal,1010欧姆(GΩ)]以上的阻抗使之对接,使与电极尖开口处相接的细胞膜小片区域(膜片)与其周围在电学上分隔,在此基础上固定电位,对此膜片上的离子通道的离子电流(pA级)进行检测记录。

(如图1)图1 膜片钳技术原理图Rs是与膜片阻扰相串联的局部串联电阻(或称入路阻扰),Rseal是封接阻抗。

Rs通常为1-5MΩ,若Rseal高达1 0GΩ以上时成为Ip/I=Rseal/(Rs+Rseal)-1,此Ip可作为在I-V转换器(点线)内的高阻扰反馈电阻(Rf)的电压下降而被检出。

实际上这时场效应管运算放大器(A1)的输出中包括着膜电阻成分,这部分将在通过第二级场管效应运算放大器(A2)时被减掉。

用场效应管运算放大器(图1-A1)构成的I-V转换器[converter,即膜片钳放大器的前级探头(Head stage)]是整个测量回路的核心部分。

细胞生物学膜片钳电生理技术方案

细胞生物学膜片钳电生理技术方案

探密神经元:细胞生物学膜片钳电生理技术想要深入了解神经元的内部世界,细胞生物学膜片钳电生理技术是必不可少的工具。

本文将为您详细介绍这一技术的流程和应用。

一、细胞生物学膜片钳电生理技术的流程
1. 细胞分离:使用一定的方法,将某特定细胞(比如神经元)从组织中分离出来。

2. 制备膜片钳:将玻璃毛细管拉制成1-2微米孔径,然后加热拉扯形成一个特定形状的膜片钳。

这个过程需要高超的技术和经验。

3. 吸管过程:将制备好的膜片钳接在一根吸管上,启动吸管的吸气功能,使得膜片钳固定上细胞表面。

4. 测量:通过膜片钳的电学特性测量细胞膜上的电流、电势变化等信息,以了解神经元在不同环境下的生理活动情况。

二、细胞生物学膜片钳电生理技术的应用
1. 突触传递:了解神经元之间信号传递的机制,通过刺激突触区域,测量膜片钳电生理信号,可以得知该突触区域对应神经递质的释放和再吸收等生理和病理过程。

2. 离子通道:如钾、钠、钙等离子通过通道进出神经元,参与神经元兴奋、抑制等生理过程。

细胞生物学膜片钳电生理技术则可以揭示这些离子通道的运转方式和动力学特点。

三、细胞生物学膜片钳电生理技术的注意事项
1. 技术难度较大:这种技术需要较高的专业性和技术能力,并且需要功能完备的设备。

2. 实验操作需谨慎:对细胞的操作需要精确细致,防止对细胞产生不必要的损伤。

同时操作过程中注意安全,防止伤害自己和他人。

细胞生物学膜片钳电生理技术是目前神经元研究最重要的技术手段之一。

实践证明,通过这一技术手段,可以更好地探究神经元内部的运作机制和行为特点,以及有针对性地进行药物筛选等工作。

电压钳制和膜片钳制技术讲解

➢ 膜电位钳制的方法不同; ➢ 电位固定的细胞面积不同; ➢ 研究的离子通道数目不同;
膜片钳放大器主要组成:
电极电流监视器、灵敏度开关、滤
(1)测量部分: 波器开关、方式选择开关 。
(2)串联电阻补偿部分:用于于电校极正和全细细胞胞内记之录间时的通,路由
(3)电容补偿部分:用
ห้องสมุดไป่ตู้
电阻所造成的膜电位 来补偿电压突然改
(二)电压钳方法
电容器电流
电阻器上电流
Ic=d(CmV)/dt
IR
流过膜的电流总量 I
dv / dt = 0
所有的电流将都是流过 膜电阻的,这种电流将能反 映离子的流动。
电压钳技术的基本原理
电压源(SG)使膜电位固定在特定的水平,并以放 大器(AV)记录,该放大器与一个反馈放大器(AFB)连 接,这一反馈电流通过膜,正好抵消因加电压而引起的离 子电流,通过电流监视器测量电流。
(三) 细胞膜的空间常数(space constant)
空间常数,是度量电压的空间衰减,即标志 电压依距离而衰减的程度的一个常数。即: 膜电位通过膜电阻和纵向电阻所组成的分流 电路随距离的增大而按指数曲线规律衰减的 速度.或表示膜电位按指数曲线规律衰减到 37%所需要的距离。细胞直径越大,空间常 数越大。
膜片钳技术原理示意图
Rs是膜片阻抗相串联的局部串联电阻(输入阻抗),Rseal是 封接阻抗。Rs通常为1~5MΩ,如果Rseal高达10GΩ(1010Ω)以 上时,IP/I=Rseal/(Rs+ Rseal)-1。此Ip可为在I-V转换器(点线) 内的高阻抗负反馈电阻(Rf)的电压降而被检测出。
膜片钳与电压钳的区别
第二节 电压钳制技术
Voltage clamp technique

膜片钳记录和分析技术

九洲健康咨询台供膜片钳记录和分析技术细胞是动物和人体的基本组成单元,细胞与细胞内的通信,是依靠其膜上的离子通道进行的,离子和离子通道是细胞兴奋的基础,亦即产生生物电信号的基础,生物电信号通常用电学或电子学方法进行测量。

由此形成了一门细胞学科-电生理学(electrophysiology),即是用电生理的方法来记录和分析细胞产生电的大小和规律的科学。

早期的研究多使用双电极电压钳技术作细胞内电活动的记录。

现代膜片钳技术是在电压钳技术的基础上发展起来的。

1976年德国马普生物物理研究所Neher和Sakmann创建了膜片钳技术(patch clamp recording technique)。

这是一种以记录通过离子通道的离子电流来反映细胞膜单一的(或多个的离子通道分子活动的技术)。

以后由于吉欧姆阻抗封接(gigaohm seal, 109W)方法的确立和几种方法的创建。

这种技术点燃了细胞和分子水平的生理学研究的革命之火,它和基因克隆技术(gene cloning)并架齐驱,给生命科学研究带来了巨大的前进动力。

这一伟大的贡献,使Neher和Sakmann获得1991年度的诺贝尔生理学与医学奖。

一、膜片钳技术发展历史1976年德国马普生物物理化学研究所Neher和Sakmann首次在青蛙肌细胞上用双电极钳制膜电位的同时,记录到ACh激活的单通道离子电流,从而产生了膜片钳技术。

1980年Sigworth等在记录电极内施加5-50cmH2O的负压吸引,得到10-100GW10-100G?的高阻封接(Giga-seal),大大降低了记录时的噪声实现了单根电极既钳制膜片电位又记录单通道电流的突破。

1981年Hamill和Neher等对该技术进行了改进,引进了膜片游离技术和全细胞记录技术,从而使该技术更趋完善,具有1pA的电流灵敏度、1µm的空间分辨率和10µs的时间分辨率。

1983年10月,《Single-Channel Recording》一书问世,奠定了膜片钳技术的里程碑。

膜片钳技术实验报告

郭静1611210748 北大深圳医院一.概念:膜片钳技术是一种通过微电极与细胞膜之间形成紧密接触的方法,采用电压钳或电流钳技术对生物膜上离子通道的电活动(尤其是可对单通道电流)进行记录的微电极技术。

二.应用:在一个细胞上检测多种离子通道用于离子通道电生理特性的研究研究受体及第二信使对通道活性的作用生理、药理机制研究中的应用三.常用的记录形式:(1) 细胞贴附式:高阻封接后的状态即为细胞贴附式模式,是在细胞内成分保持不变的情况下研究离子通道的活动,进行单通道电流记录。

即使改变细胞外液对电极膜片也没有影响。

(2) 膜内面向外式:在细胞贴附式状态下将电极向上提,电极尖端的膜片被撕下与细胞分离,形成细胞膜内面向外模式。

此时膜片内面直接接触浴槽液,灌流液成分的改变则相当于细胞内液的改变。

可进行单通道电流记录。

此模式下细胞质容易渗漏,影响通道电流的变化,如Ca2+ 通道的run-down 现象。

(3) 全细胞式记录:在细胞贴附式状态下增加负压吸引或者给予电压脉冲刺激,使电极尖端膜片在管口内破裂,即形成全细胞记录模式。

此时电极内液与细胞内液相通成为和细胞内电极记录同样的状态,不仅能记录一个整体细胞产生的电活动,并且通过电极进行膜电位固定,也可记录到全细胞膜离子电流。

这种方式可研究直径小于20μm 以下的小细胞的电活动;也可在电流钳制下测定细胞内电位。

(4) 膜外面向外式(outside-out mode):在全细胞模式状态下将电极向上提,使电极尖端的膜片与细胞分离后又粘合在一起,此时膜内面对电极内液,膜外接触的是灌流液。

可在改变细胞外液的情况下记录单通道电流。

四.全细胞膜片钳的记录过程:1.DRG神经元的急性分离2.玻璃微电极的制备3.计算机操作(1)打开膜片钳放大器(2)打开计算机,进入Patchmaster操作界面。

(3)单击“store”,选择好文件名和保存路径,单击“save”(4)单击“current clamp”,编辑所需的刺激模式。

膜片钳技术在各学科研究中的应用

膜片钳技术在各学科研究中的应用在神经科学领域,膜片钳技术被广泛应用于研究神经元和突触的电生理特性。

通过使用膜片钳技术,科学家可以记录神经元膜通道的电流,研究神经信号的传递和调节机制。

例如,陈教授和他的研究团队利用膜片钳技术发现了一种新的神经调节机制,他们发现了一种离子通道蛋白,可以调节神经元的兴奋性,从而对神经信号的传递产生影响1。

在细胞生物学领域,膜片钳技术被用于研究细胞的跨膜运输和信号转导机制。

科学家可以记录细胞膜通道的开放和关闭,研究物质进出细胞的方式和调控机制。

例如,张教授和他的研究团队利用膜片钳技术发现了新的钙离子通道,并研究了其在对细胞生长和凋亡的调控中的作用2。

在代谢疾病领域,膜片钳技术也被用于研究代谢过程中细胞膜通道的变化。

例如,糖尿病患者的肾小管上皮细胞钠通道存在异常,导致钠重吸收增加,从而影响血糖的排泄和代谢。

李教授和他的研究团队利用膜片钳技术发现了这一现象,为糖尿病的治疗提供了新的思路3。

膜片钳技术在各学科研究中都具有广泛的应用前景。

然而,随着科学技术的发展,膜片钳技术仍然面临着一些挑战,例如通道蛋白多样性和复杂性的问题,以及实验数据的分析和解读问题。

未来,随着膜片钳技术的不断改进和新技术的应用,我们相信这些问题会逐渐得到解决。

微光学器件在光通信、生物医学、军事等领域的应用越来越广泛。

传统的微光学器件制造技术如光刻、干法刻蚀等存在加工成本高、设备复杂等问题,难以满足某些特定场景下的制造需求。

因此,研究一种新型的微光学器件制造技术具有重要的现实意义。

气动膜片式微滴喷射制造技术作为一种具有潜力实现微光学器件高效、低成本制造的技术,逐渐受到研究者的。

气动膜片式微滴喷射制造技术基于气动学原理,通过控制气体和液体的流速、压力等参数,实现液滴的精确喷射。

该技术具有以下优点:可实现高效、低成本的制造,有望替代传统微光学器件制造技术;可通过计算机控制系统实现精确控制,提高制造精度;适用范围广,可用于各种形状和材料的光学器件制造。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

From Hamill et al 1981
Celch-pipette
Cell membrane
Internal lipid External lipid Cell
Whole-cell recording
Patch-pipette
Cell membrane Cell
Preparations used
The main factor in determining whether one can make a patchclamp recording is how clean the surface of the cell is that is under investigation. If the membrane surface is ‘clean’ then recordings can be made from almost any cell. The most popular preparations are: Cultured cells Acutely isolated cells Cells in thin slices of brain tissue Cells that have been transfected with cloned ion channels
With patch-clamp recording we can observe the movement of single molecules (strictly macromolecular complexes) in real time. In 1991, Neher and Sakmann were rewarded for their pioneering efforts in patch-clamp recording when they jointly won the Nobel Prize in Physiology or Medicine.
What is patch-clamp?
Patch-clamping is an electrophysiological technique in which we are able to CLAMP the VOLTAGE of an isolated piece of cell membrane (or whole-cell). By clamping the voltage we are able to observe CURRENTS that flow through ION CHANNELS. It is the current that the patch-clamp amplifier supplies to hold the voltage steady (clamped) that we measure. Patch-clamp recording allows us to measure very small currents - in the pA range (10-12 A).
Inside-out recording
Patch-pipette
The internal face of the lipid bi-layer faces the bath solution
Outside-out recording
Patch-pipette
The external face of the lipid bi-layer faces the bath solution
The patch-clamp circuit
FBR
_
+
Amplifier
Technical The high gain operational amplifier is connected in the circuit so that the current flowing through the ion channel is measured as a voltage drop across the feedback resistor (FBR). The FBR has a resistance of 50 G allowing very small currents (10-12 A) to be measured.
Patch of cell membrane with ion channel
Patch clampers win Nobel Prize
Sakmann, Neher et al revolutionized the field of electrophysiology in 1981 with their paper “Improved patch-clamp techniques for high resolution current recording from cells and cell-free membrane patches” (Pflügers Arch. 391, 85-100).
It’s all to down to suction!
From Hamill et al 1981
By increasing the seal resistance we reduce the noise level and increase temporal resolution.
Patch-clamp configurations
Determining the holding potential
The calculation of the membrane or holding potential (the potential of the patch or cell at which a recording is being made) depends on the type of patch recording being made. We shall denote the membrane potential as Vm, the command potential supplied by the patch amplifier as Vcmd, and the resting membrane potential as RMP. For whole-cell and outside-out recordings: Vm = Vcmd For cell-attached patches: Vm = RMP - Vcmd For inside-out patches: Vm = -Vcmd
相关文档
最新文档