聚合物流变性能测试

聚合物流变性能测试
聚合物流变性能测试

聚合物流变性能测试

一、实验目的

1、熟悉和了解RHEOGRAPH25型流变仪的工作原理及操作方法。

2、掌握将计算机输出流动曲线(σ-γ曲线)转换为其他形式流动曲线(lg σ-lgγ)、(lg η-lgγ)的方法。

3、掌握非牛顿指数n的计算方法。

4、掌握利用Arrhenius方程计算粘流活化能Eη的方法。

二、RHEOGRAPH25型流变仪工作原理

毛细管流变仪是目前发展得最成熟、应用最广的流变测量仪之一,其主要优点在于操作简单,测量准确,测量范围宽(剪切速率γ:10-2~105s-1 )。

毛细管流变仪测试聚合物流变性能基本原理:在一个无限长的圆形毛细管中,聚合物熔体在管中的流动是一种不可收缩的粘性流体的稳定层流流动,毛细管两端分压力差为△P,由于流体具有粘性,它必然受到自管体与流动方向相反的作用力,根据粘滞阻力与推动力相平衡等流体力学原理推导,可得到毛细管管壁处的剪切应力σ和剪切速率γ与压力、熔体流率的关系。仪器通过自身软件计算出高聚物的表观粘度,并得到相应的剪切速率和剪切应力,表观粘度的关系曲线图。

三、实验仪器及材料

仪器:德国高特福RH25型毛细管流变仪、毛细管口模,长径比30:1,5:0.5,5:0.3;、活塞、转矩扳手、耐温润滑油、耐温手套、纯棉清洁布。

原料:PE、PP

四、实验内容

测定聚乙烯、聚丙烯树脂不同温度下流变性能,具体如下

第一组:PE,170℃,175℃,180℃,185℃。

第二组:PE,185℃,190℃,195℃,200℃。

第三组:PP,190℃,195℃,200℃,205℃。

第四组:PP,205℃,210℃,215℃,220℃。

五、操作步骤

1、开机

打开仪器,电脑,等候约一分钟,待初始化结束后,显示屏出现“Reference drive”;

2) 点击“Reference drive”进入操作界面。

2、程序设定

包括测试温度、熔融时间、活塞速度、毛细管的尺寸选择等参数的设置,

3、测试膛升温

编辑测试程序后,点击“parameter send”,开始升温,待温度达到测试温度并恒温10-15分钟;

4、毛细管安装

安装毛细管过程中,毛细管上的销钉必须在上方,安装时四个固定螺丝加抗磨糊后拧紧,再退回2圈,等候5-10分钟后再用扭矩扳手拧紧,扭矩扳手扭矩值设定为60N·m,PVT测试时设定为80 N.m;

5、压力传感器安装

选择合适的压力传感器,涂抹抗磨糊后小心插入压力传感器孔,用扳手拧紧后再退回2圈,等候5-10分钟待温度均匀后再拧紧,插上连接线;

6、校准零点

当插接上力传感器连接线时,仪器显示屏会自动弹出校准界面,进行传感器零点校准,或者

点击“service”—“calibrate” 进行校准;

7、加料

加料时尽量捣实,以免出现气泡,加至料桶上方斜面下方1cm处,放上活塞杆,关闭防护门;

8、测试

点击软件中“start test”,此时仪器显示屏中的“test”键变绿,点击, 测试开始,仪器自动采点并绘出σ-γ曲线,采点完毕重新设定测试程序,进行下一温度点测试。

9、数据处理

实验结束后,储存数据并进行处理分析。

10、清理

1)测试完毕后,压出测试膛中余料,若测试料熔点高,需用PE清洗后再清理料桶;

2)驱动活塞返回顶端,快速清理活塞;

3)小心旋出压力传感器,清理,传感器顶部铜膜须用软布趁热小心擦拭,不得用刷子等硬物强力清理。

4)拆除毛细管清理干净,注意毛细管脆性大,不要掉到地上以免摔破;

5)清理干净测试膛,以备下次测试。

六、数据处理

1、根据计算机输出数据绘制不同温度下lgσ-lgγ流动曲线。

2、计算不同温度下非牛顿指数n。

3、绘制不同温度下lgηα-lgγ流动曲线。

4、根据相同切变速率、不同温度下的η值,根据Arrhenius方程绘制lg η-(1/T)曲线,计算粘流活化能Eη。

七、注意事项及仪器日常维护

1)每次测量装填试样前要进行压力传感器和力传感器校准;

2)使用压力传感器时要考虑到压力传感器适用范围;以免过压造成破坏;

3)向下驱动活塞时,活塞要放正,速度不能过快,以免活塞放偏造成料桶损坏;

4)每次测量后要及时清理料桶,测量高温料后用PE料冲洗后再清理;

5)压力传感器要趁热用软棉布擦拟,不能用硬物刷。

八、思考题

1)为什么PE、PP高聚物熔体随着剪切速率增大,表观粘度下降?

2)测得流变曲线对纺丝工艺有何实际指导意义?

性能测试结果分析

性能测试结果分析 分析原则: 具体问题具体分析(这是由于不同的应用系统,不同的测试目的,不同的性能关注点) 查找瓶颈时按以下顺序,由易到难。 服务器硬件瓶颈-〉网络瓶颈(对局域网,可以不考虑)-〉服务器操作系统瓶颈(参数配置)-〉中间件瓶颈(参数配置,数据库,web服务器等)-〉应用瓶颈(SQL语句、数据库设计、业务逻辑、算法等) 注:以上过程并不是每个分析中都需要的,要根据测试目的和要求来确定分析的深度。对一些要求低的,我们分析到应用系统在将来大的负载压力(并发用户数、数据量)下,系统的硬件瓶颈在哪儿就够了。 分段排除法很有效 分析的信息来源: 1)根据场景运行过程中的错误提示信息 2)根据测试结果收集到的监控指标数据 一.错误提示分析 分析实例: 1)Error:Failed to connect to server “https://www.360docs.net/doc/f78219102.html,″: [10060] Connection Error:timed out Error: Server “https://www.360docs.net/doc/f78219102.html,″ has shut down the connection prematurely 分析: A、应用服务死掉。 (小用户时:程序上的问题。程序上处理数据库的问题) B、应用服务没有死 (应用服务参数设置问题)

例:在许多客户端连接Weblogic应用服务器被拒绝,而在服务器端没有错误显示,则有可能是Weblogic中的server元素的 AcceptBacklog属性值设得过低。如果连接时收到connection refused消息,说明应提高该值,每次增加25% C、数据库的连接 (1、在应用服务的性能参数可能太小了;2、数据库启动的最大连接数(跟硬件的内存有关)) 2)Error: Page download timeout (120 seconds) has expired 分析:可能是以下原因造成 A、应用服务参数设置太大导致服务器的瓶颈 B、页面中图片太多 C、在程序处理表的时候检查字段太大多 二.监控指标数据分析 1.最大并发用户数: 应用系统在当前环境(硬件环境、网络环境、软件环境(参数配置))下能承受的最大并发用户数。 在方案运行中,如果出现了大于3个用户的业务操作失败,或出现了服务器shutdown的情况,则说明在当前环境下,系统承受不了当前并发用户的负载压力,那么最大并发用户数就是前一个没有出现这种现象的并发用户数。 如果测得的最大并发用户数到达了性能要求,且各服务器资源情况良好,业务操作响应时间也达到了用户要求,那么OK。否则,再根据各服务器的资源情况和业务操作响应时间进一步分析原因所在。 2.业务操作响应时间: 分析方案运行情况应从平均事务响应时间图和事务性能摘要图开始。使用“事务性能摘要”图,可以确定在方案执行期间响应时间过长的事务。 细分事务并分析每个页面组件的性能。查看过长的事务响应时间是由哪些页面组件引起的?问题是否与网络或服务器有关? 如果服务器耗时过长,请使用相应的服务器图确定有问题的服务器度量并查明服务器性能下降的原因。如果网络耗时过长,请使用“网络监视器”图确定导致性能瓶颈的网络问题

W5500通讯性能测试

以太网TCP在W5500上的通讯性能测试 author: ANGRY KUA MAX QQ : 2518383357 Time : 2018-01-12 本文为原创,转载请通知作者,文中代码,请勿用于商业用途!

1. 概述 当前以太网在嵌入式系统中使用范围越来越广,而一个性能稳定,高效率的以太网传输 方式能大幅度降低产品开发周期与售后成本。 本文以作者工作环境中使用过的以太网芯片W5500 (硬件协议栈)与LWIP (软件协议 栈)作为测试对象,这次只测试W5500性能测试,下次再测试LWIP。 2. 测试环境 本次使用STM32F107搭配W5500进行带宽测试,W5500使用SPI 口通讯,时钟可以跑到80M,即理论可以速率为10MB ;下次也使用STM32F107搭配83848跑LWIP做验证测试。 (使用相同的MCU做数据分析才有对比价值,提前透漏,LWIP的性能比W5500要强一点,但W5500价格偏低,占用资源也少一些) STM32F107与W5500的通讯,采用SPI的DMA方式;初始化W5500为四个端口,各个收发缓存为(8K,4K,2K,2K),缓存对收发速度有影响。测试的端口收发缓存为 3. TCP测试数据 3.1. W5500上传数据函数 switch(getSn_SR(NET_TYPE_TCP)) { case SOCK_INIT: liste n( NET_TYPE_TCP); break; case SOCK_ESTABLISHED: if(getSn_IR(NET_TYPE_TCP) & Sn_IR_CON) { setSn_IR(NET_TYPE_TCB n」R_CON); } len=getSn_RX_RSR(NET_TYPE_TCP); if(le n>0) { len = (le n > NET_BUF_RXSIZE)?NET_BUF_RXSIZE:le n; len = recv(NET_TYPE_TCPet_rxbuf,le n); if(le n > 0) { while(1) //作死的发送 {

《聚合物结构与性能测试 》实验教学大纲

《聚合物结构与性能测试》实验教学大纲 一、课程简介 本课程为高分子材料与工程本科专业的限选课。主要内容包括聚合物材料的光谱分析、热分析、力学性能分析、分子量测定及其电性能测试技术。课程不但讲授各类分子测试方法的基本原理、实验技术、主要用途及局限性等。同时介绍这些方法的最新进展和发展趋势等。拟通过本课程的学习,使学生掌握了解材料特别是高分子材料的结构与性能的各种研究测试方法。 二、课程实验教学目的与要求 本课程的目的是让学生在理论课程学习的同时,了解和掌握各种现代化的聚合物材料的微观结构和各种分析测试手段方法。使学生系统地掌握分析测试实验的原理、实验基本知识和技能,为以后学习和从事高分子学科内的工作打下基础。本课程基本要求:理解实验原理及实验方案,掌握正确操作规程;掌握各种仪器的使用,了解其性能参数、适用范围及注意事项等。 三、试验项目 四、实验一:红外光谱再聚合物结构鉴定中的应用 【实验目的、任务】 通过本实验了解红外光谱仪的结构特点及操作规程;掌握红外样品的制备方法;掌握红外光谱分析的原理和图谱分析。 【实验内容】 使用红外光谱鉴定聚合物中的红外基团。 【实验原理】 红外吸收光谱分析方法主要是依据分子内部原子间的相对振动和分子转动等信息进行结构测定。 【实验难重点】 1.重点:红外光谱分析的基本原理 2.难点:红外光谱的解析 实验二:聚合物材料的热分析 【实验目的、任务】 通过本实验掌握聚合物TG、DSC的分析原理和应用。了解热分析仪的结构及操作程序。 【实验内容】 使用热分析仪测量聚合物的热转变 【实验原理】 在加热或冷却过程中,随着物质的结构、相态(如Tg)和化学性质的变化都会

流变仪法测定塑料的流变性能实验指导

实验二流变仪法测定塑料熔体的流变性能 一、实验目的 1.了解转矩流变仪的结构与测定聚合物流变性能的原理。 2.熟悉并掌握在转矩流变仪上测定剪切应力、剪切速率、粘度的方法。 二、实验原理 毛细管流变仪是研究聚合物流变性能最常用的仪器之一,具有较宽广的剪切速率范围。毛细管流变仪还具有多种功能,既可以测定聚合物熔体的剪切应力和剪切速率的关系,又可根据毛细管挤出物的直径和外观及在恒应力下通过改变毛细管的长径比来研究聚合物熔体的弹性和不稳定流动现象。这些研究为选择聚合物及进行配方设计,预测聚合物加工行为,确定聚合物加工的最佳工艺条件(温度、压力和时间等),设计成型加工设备和模具提供基本数据。 聚合物的流变行为一般属于非牛顿流体,即聚合物熔体的剪切应力与剪切速率之间呈非线性关系。用毛细管流变仪测试聚合物流变性能的基本原理是:在一个无限长的圆形毛细管中,聚合物熔体在管中的流动是一种不可压缩的粘性流体的稳定层流流动,毛细管两端分压力差为ΔP,由于流体具有粘性,它必然受到自管体与流动方向相反的作用力,根据粘滞阻力与推动力相平衡等流体力学原理进行推导,可得到毛细管管壁处的剪切应力τ和剪切速率γ&与压力、熔体流率的关系。τ=RΔP/2L γ=4Q/πR3ηa =πR4ΔP/8QL 式中R-毛细管半径,cm;L-毛细管长度,cm; ΔP-毛细管两端的压差,Pa;Q-熔体流率,cm3/s;

ηa-熔体表观粘度,Pa·s。 在温度和毛细管长径比L/D一定的条件下,测定不同压力ΔP下聚合物熔体通过毛细管的流动速率Q,可计算出相应的τ和γ&,将对应的τ和γ在双对数坐标上绘制τ-γ流动曲线图,即可求得非牛顿指数n和熔体表观粘度ηa。改变温度和毛细管长径比,可得到代表粘度对温度依赖性的粘流活化能Eη以及离模膨胀比B等表征流变特性的物理参数。 大多数聚合物熔体是属非牛顿流体,在管中流动时具有弹性效应、壁面滑移等特性,且毛细管的长度也是有限的,因此按以上推导测得的结果与毛细管的真实剪切应力和剪切速率有一定的偏差,必要时应进行非牛顿改正和入口改正。 本实验采用转矩流变仪及单螺杆挤出机和毛细管口模进行测试。所测的聚合物在单螺杆挤出机中熔融塑化后通过毛细管口模挤出。聚合物熔体通过毛细管口模时,由安装在毛细管口模入口处的压力传感器和热电偶测出熔体的压力和温度,并由微机记录处理。 三、仪器与样品 1.仪器 (1)XSS-30 微机控制转矩流变仪,包括驱动主机、计算机控制处理系统、单螺杆挤出机。 (2)毛细管流变口模, (3)精密天平、计时器、卡尺等。 2.试样: HDPE颗粒。

载波模块通讯性能测试大纲

载波模块通讯性能测试大纲 编制: 日期: 审核: 日期: 批准: 日期: 汇签:

前言..............................................................................................d 1范围 0 2规范性引用文件 0 3通用测试条件 0 3.1 气候 0 3.2 电源 (1) 3.3 测试设备 (1) 3.3.1 净化电源 (1) 3.3.2 噪声信号发生器 (1) 3.3.3 可调载波负载 (1) 3.3.4 可调载波衰减器 (1) 3.3.5 频谱分析仪 (1) 3.3.6 信号耦合装置 (2) 3.3.7 数字示波器 (2) 3.3.8 测试工装 (2) 4 检测方法及合格判断标准 (2) 4.1 载波频率 (2) 4.2 通信性能测试 (2) 4.2.1 载波信号输出功率测试 (2) 4.2.2 载波最大输出信号电平测试和带外干扰电平测试 (4) 4.2.3 载波信号频带测试和频率漂移测试 (4) 4.2.4 接收灵敏度测试 (4) 4.2.5 抗噪声干扰能力测试 (6) 4.2.6 抗阻抗变化能力测试 (7) 4.2.7 在不同载波负载下的功率消耗测试 (8) 4.2.8 载波通信成功率 (10) 4.3 气候影响试验下载波通信性能测试 (11) 4.3.1 高温试验下载波通信性能测试 (11) 4.3.2 低温试验下载波通信测试 (12) 4.3.3 湿热试验下载波通信测试 (13) 4.4 电源影响下的载波通信测试 (14) 4.4.1 电源断相试验下载波通信测试 (14) 4.4.2 电源电压变化试验下载波通信测试 (14) 4.4.3 电源电压缓升缓降试验下载波通信测试 (14) 4.5 载波通信的连续通电稳定性试验 (15) 4.6 组网中继功能测试 (16) 4.7 测试环境组网路由中继测试 (16) 4.8 测试环境点对点通讯能力对比测试 (16) 4.9 抄表稳定性 (17) 附录(测试记录表格) (17)

动态流变测试系统技术指标

动态流变测试系统技术指标 仪器整体要求:所有附件进口,技术指标需提供正式的技术样本或谱图为准。流变仪可以应用于食品方面如高分子熔体等材料的流变特性参数测定。 一、工作条件 环境温度-5℃~40℃、相对湿度0~95%、 工作电压 AC220V,50Hz 二、技术参数 *止推轴承磁悬浮 轴向轴承多孔碳空气轴承 马达托杯马达 动态振荡最小扭矩(nN.m) 2 稳态最小扭矩 (nN.m) 10 最大扭矩 (mN.m) 200 *扭矩分辨率 (nN.m) 0.1 *最小频率 (Hz) 1.0E-07 最大频率(Hz) 100 最小角速率(rad/s) 0 最大角速率(rad/s) 300 位移传感器低惯量光学编码器 位移解析度(nrad) 10 应变切换时间 (ms) 15 速率切换时间(ms) 5 法向力传感器 FRT 最大法向力(N) 50 法向力灵敏度(N) 0.005 法向力分辨率 (mN) 0.5 实时应力应变波形图:标配 Smart Swap TM智能交换系统:标配 可自行设计夹具,自行进行惯量校正标配 ETC高温炉:RT~600℃ *可升级为DMA,可做拉伸模式,三点弯曲模式,悬臂梁模式,压缩模式 三、仪器功能 可以得到如稳态剪切粘度(η),剪切模量(G(t)),复合粘度(η*),储能模量(G*),损耗模量(G″),阻尼(tanδ)等,能够测量流变性能,独立地控制振动频率、样品的应变、应变速率和温度,还可以进行稳态、瞬态和动态剪切测量。软件功能如下: - 动态单点测试、瞬态应力松弛 - 触变环实验、阶跃速率扫描 - 动态频率、时间和应变扫描 - 温度阶跃实验和线性变化实验 - 自动调零、自动调隙和自动张力 - 恒定速率温度线性变化/阶跃实验 - 恒定应力(蠕变)

《Web项目测试实战》性能测试需求分析章节样章

5.1.2性能测试需求提取 复习了一些常见的理论概念后,我们开始性能测试需求的提取。这个过程是非常重要的,往往测试失败,就是因为在这个过程中不知道如何得到确切的性能指标,而导致测试无法正常开展。性能测试需求提取一般的流程如图5- 1所示。 图5- 1性能测试需求提取流程 分析提取指标 在用户需求规格说明书中,会给出系统的功能、界面与性能的要求。规范的需求规格说明书都会给出明确的性能指标,比如单位时间内访问量要达到多少、业务响应时间不超过多少、业务成功率不低于多少、硬件资源耗用要在一个合理的范围中,这些指标都会以可量化的数据进行说明。如果,实际项目并没有这些正规的文档时,项目经理部署测试任务给测试组长时,一般就会说明是否要对项目的哪些业务模块进行性能测试,以及测试的要求是什么的。最麻烦的就是项目经理或者客户要求给出一个测试部门认为可以的数据,这样非常难做的。可是“甲方”往往都是提要求的,“乙方”只能“无条件”接受! 表5- 1需求规格说明书中的性能要求 表5- 1给出的指标非常明确,在测试过程中,我们只需收集用户登录模块的响应时间、登录成功率、并发数、CPU使用率、内存使用率的数据,然后与表5- 1的指标进行比较即可,通过的,就认为达到了客户要求的性能,未达到就分析原因,并给出测试报告及解决建议。 大多数是没有明确的需求,需要我们自己根据各种资料、使用各种方法去采集测试指标。以OA系统为例,假设《OA系统需求规格说明书》中并未指明系统的性能测试要求,需要测试工程师自己分析被测系统及采集性能衡量指标。 分析OA系统的结构,所有功能中仅有考勤模块可能是被测系统最终用户经常使用的业务点,那么我们的重点应该在放在该模块上。一般我们可以从下面三个方面来确定性能测试点: 第一、用户常用的功能。常用的功能一旦性能无法满足,比如登录功能,从输入用户名与密码点击登录按钮到显示成功登录信息,花了5分钟,这样的速度是 人无法忍受的。而对于用户不常用的,比如年度报表汇总功能,三个季度甚 至是一年才使用,等个10分钟也是正常的,这些是跟用户的主观感受相关 的,得根据实际情况区分。

聚合物材料的动态力学性能测试

测量形状记忆高聚物性能原理及应用 聚合物材料地动态力学性能测试 在外力作用下,对样品地应变和应力关系随温度等条件地变化进行分析,即为动态力学分析.动态力学分析能得到聚合物地动态模量( ′)、损耗模量(″)和力学损耗(δ).这些物理量是决定聚合物使用特性地重要参数.同时,动态力学分析对聚合物分子运动状态地反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件地变化地特性可得到聚合物结构和性能地许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等.b5E2R。 实验原理 高聚物是黏弹性材料之一,具有黏性和弹性固体地特性.它一方面像弹性材料具有贮存械能地特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下地黏液,会损耗能量而不能贮存能量.当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗.能量地损耗可由力学阻尼或内摩擦生成地热得到证明.材料地内耗是很重要地,它不仅是性能地标志,而且也是确定它在工业上地应用和使用环境地条件.p1Ean。 如果一个外应力作用于一个弹性体,产生地应变正比于应力,根据虎克定律,比例常数就是该固体地弹性模量.形变时产生地能量由物体贮存起来,除去外力物体恢复原状,贮存地能量又释放出来.如果所用应力是一个周期性变化地力,产生地应变与应力同位相,过程也没有能量损耗.假如外应力作用于完全黏性地液体,液体产生永久形变,在这个过程中消耗地能量正比于液体地黏度,应变落后于应力,如图()所示.聚合物对外力地响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量地构象.在周期性应力作用地情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗.图()是典型地黏弹性材料对正弦应力地响应.正弦应变落后一个相位角.应力和应变可以用复数形式表示如下.DXDiT。 σ*σ(ω) γ*γ [ (ωδ) ] 式中,σ和γ为应力和应变地振幅;ω是角频率;是虚数.用复数应力σ*除以复数形变γ*,便得到材料地复数模量.模量可能是拉伸模量和切变模量等,这取决于所用力地性质.为了方便起见,将复数模量分为两部分,一部分与应力同位相,另一部分与应力差一个地相位角,如图()所示.对于复数切变模量RTCrp。 *′″ (-) 式中

性能测试分析报告案例

***系统性能测试报告 V1.0 撰稿人:******* 时间:2011-01-06

目录 1.测试系统名称及测试目标参考 (3) 2.测试环境 (3) 3.场景设计 (3) 3.1测试场景 (3) 3.1测试工具 (4) 4.测试结果 (4) 4.1登录 (4) 4.2发送公文 (6) 4.3收文登记 (8)

1.测试系统名称及测试目标参考 被测系统名称:*******系统 系统响应时间判断原则(2-5-10原则)如下: 1)系统业务响应时间小于2秒,用户对系统感觉很好; 2)系统业务响应时间在2-5秒之间,用户对系统感觉一般; 3)系统业务响应时间在5-10秒之间,用户对系统勉强接受; 4)系统业务响应时间超过10秒,用户无法接受系统的响应速度。 2.测试环境 网络环境:公司内部局域网,与服务器的连接速率为100M,与客户端的连接速率为10/100M 硬件配置: 3.场景设计 3.1测试场景 间

间 间 3.1测试工具 ●测试工具:HP LoadRunner9.0 ●网络协议:HTTP/HTTPS协议 4.测试结果 4.1登录 ●运行1小时后实际登录系统用户数,用户登录后不退出,一直属于在线状态,最 终登录的用户达到9984个;

●响应时间 ●系统资源

服务器的系统资源表现良好(CPU使用率为14%,有15%的物理内存值)。磁盘等其他指标都表现正常,在现有服务器的基础上可以满足9984个在线用户。 4.2发送公文 运行时间为50分钟,100秒后300个用户全部加载成功,300个用户开始同时进行发文,50分钟后,成功发文数量如下图所示,成功发文17792个,发文失败37 个;

即时通讯软件性能测试_UDP协议

一.UDP和Socket通信步骤 1.UDP Server程序 1、编写UDP Server程序的步骤 (1)使用socket()来建立一个UDP socket,第二个参数为SOCK_DGRAM。 (2)初始化sockaddr_in结构的变量,并赋值。sockaddr_in结构定义: struct sockaddr_in { uint8_t sin_len; sa_family_t sin_family; in_port_t sin_port; struct in_addr sin_addr; char sin_zero[8]; }; 这里使用“08”作为服务程序的端口,使用“INADDR_ANY”作为绑定的IP地址即任何主机上的地址。 (3)使用bind()把上面的socket和定义的IP地址和端口绑定。这里检查bind()是否执行成功,如果有错误就退出。这样可以防止服务程序重复运行的问题。(4)进入无限循环程序,使用recvfrom()进入等待状态,直到接收到客户程序发送的数据,就处理收到的数据,并向客户程序发送反馈。这里是直接把收到的数据发回给客户程序。 2、udpserv.c程序内容: #include #include #include #include #include #include #define MAXLINE 80 #define SERV_PORT 8888 void do_echo(int sockfd, struct sockaddr *pcliaddr, socklen_t clilen) { int n; socklen_t len; char mesg[MAXLINE];

国家标准塑料及塑料制品性能检测方法标准

1 GB/T 1033-1986 塑料密度和相对密度试验方法 2 GB/T 1034-1998 塑料吸水性试验方法 3 GB/T 1036-1989 塑料线膨胀系数测定方法 4 GB/T 1037-1988 塑料薄膜和片材透水蒸气性试验方法杯式法 5 GB/T 1038-2000 塑料薄膜和薄片气体透过性试验方法压差法 6 GB/T 1039-1992 塑料力学性能试验方法总则 7 GB/T 1040-1992 塑料拉伸性能试验方法 8 GB/T 1041-1992 塑料压缩性能试验方法 9 GB/T 1043-1993 硬质塑料简支梁冲击试验方法 11 GB/T 1408.1-1999 固体绝缘材料电气强度试验方法工频下的试验 13 GB/T 1409-1988 固体绝缘材料在工频、音频、高频(包括米波长在内)下相对介电常数和介质损耗因数的试验方法 14 GB/T 1410-1989 固体绝缘材料体积电阻率和表面电阻率试验方法 15 GB/T 1411-2002 干固体绝缘材料耐高电压、小电流电弧放电的试验 16 GB/T 1446-2005 纤维增强塑料性能试验方法总则 17 GB/T 1447-2005 纤维增强塑料拉伸性能试验方法 18 GB/T 1448-2005 纤维增强塑料压缩性能试验方法 19 GB/T 1449-2005 纤维增强塑料弯曲性能试验方法 20 GB/T 1450.1-2005 纤维增强塑料层间剪切强度试验方法 21 GB/T 1450.2-2005 纤维增强塑料冲压式剪切强度试验方法 22 GB/T 1451-2005 纤维增强塑料简支梁式冲击韧性试验方法 23 GB/T 1458-1988 纤维缠绕增强塑料环形试样拉伸试验方法 24 GB/T 1461-1988 纤维缠绕增强塑料环形试样剪切试验方法 25 GB/T 1462-2005 纤维增强塑料吸水性试验方法 26 GB/T 1463-2005 纤维增强塑料密度和相对密度试验方法 27 GB/T 1633-2000 热塑性塑料维卡软化温度(VST)的测定 28 GB/T 1634.1-2004 塑料负荷变形温度的测定第1部分:通用试验方法 29 GB/T 1634.2-2004 塑料负荷变形温度的测定第2部分:塑料、硬橡胶和长纤维增强复合材料 30 GB/T 1634.3-2004 塑料负荷变形温度的测定第3部分:高强度热固性层压材料 31 GB/T 1636-1979 模塑料表观密度试验方法 32 GB/T 1843-1996 塑料悬臂梁冲击试验方法 33 GB/T 1844.1-1995 塑料及树脂缩写代号第一部分:基础聚合物及其特征性能 34 GB/T 1844.2-1995 塑料及树脂缩写代号第二部分:填充及增强材料 35 GB/T 1844.3-1995 塑料及树脂缩写代号第三部分:增塑剂 36 GB/T 2035-1996 塑料术语及其定义 37 GB/T 2406-1993 塑料燃烧性能试验方法氧指数法 38 GB/T 2407-1980 塑料燃烧性能试验方法炽热棒法 39 GB/T 2408-1996 塑料燃烧性能试验方法水平法和垂直法 40 GB/T 2409-1980 塑料黄色指数试验方法 41 GB/T 2410-1980 透明塑料透光率和雾度试验方法 42 GB/T 2411-1980 塑料邵氏硬度试验方法 43 GB/T 2546.2-2003 塑料聚丙烯(PP)模塑和挤出材料第2部分: 试样制备和

聚合物的流变性能

第四节聚合物的流变性能 一概述 注塑中把聚合物材料加热到熔融状态下进行加工。这时可把熔体看成连续介质,在机器某些部位上,如螺杆,料筒,喷嘴及模腔流道中形成流场。在流场中熔体受到应力,时间,温度的联合作用发生形变或流动。这样聚合物熔体的流动就和机器某些几何参数和工艺参数发生密切的联系。 处于层流状态下的聚合物熔体,依本身的分子结构和加工条件可分近似牛顿型和非牛顿型流体它们的流变特性暂不予祥细介绍。 1 关于流变性能 (1)剪切速率,剪切应力对粘度的影响 通常,剪切应力随剪切速率提高而增加,而粘度却随剪切速率或剪切应力的增加而下降。 剪切粘度对剪切速率的依赖性越强,粘度随剪切速率的提高而讯速降低,这种聚合物称作剪性聚合物,这种剪切变稀的现象是聚合物固有的特征,但不同聚合物剪切变稀程度是不同的,了解这一点对注塑有重要意义。 (2)离模膨胀效应 当聚合物熔体离开流道口时,熔体流的直径,大于流道出口的直径,这种现象称为离模膨胀效应。 普遍认为这是由聚合物的粘弹效应所引起的膨胀效应,粘弹效应要影响膨胀比的大小,温度,剪切速率和流道几何形状等都能影响熔体的膨胀效应。所以膨胀效应是熔体流动过程中的弹性反映,这种行为与大分子沿流动方向的剪切应力作用和垂直于流动方向的法向应力作用有关。 在纯剪切流动中法向效应是较小的。粘弹性熔体的法向效应越大则离模膨胀效应越明显。流道的影响;假如流道长度很短,离模效应将受到入口效应的影响。这是因为进入浇口段的熔体要收剑流动,流动正处在速度重新分布的不稳定时期,如果浇口段很短,熔体料流会很快地出口,剪切应力的作用会突然消失,速度梯度也要消除,大分子发生蜷曲,产生弹性恢复,这会使离模膨胀效应加剧。如果流道足够长,则弹性应变能有足够的时间进行弹性松驰。这时影响离模膨胀效应的主要原因是稳定流动时的剪切弹性和法向效应的作用。 (3)剪切速率对不稳定流动的影响 剪切速率有三个流变区:低剪切速率区,在低剪切速率下被破坏的高分子链缠结能来得及恢复,所以表现出粘度不变的牛顿特性。中剪切区,随着剪切速率的提高,高分子链段缠结被顺开且来不及重新恢复。这样就助止了链段之间相对运动和内磨擦的减小。可使熔体粘度降低二至三个数量级,产生了剪切稀化作用。在高剪切区,当剪切速率很高粘度可降至最小,并且难以维持恒定,大分子链段缠结在高剪切下已全部被拉直,表现出牛顿流体的性质。如果剪切速率再提高,出现不稳定流动,这种不稳定流动形成弹性湍流熔体出现波纹,破裂现象是熔体不稳定的重要标志。 当剪切速率达到弹性湍流时,熔体不仅不会继续变稀,反而会变稠。这是因为熔体发生破裂。 (4)温度对粘度的影响

软件性能测试结果分析总结

软件性能测试结果分析总结 平均响应时间:在互联网上对于用户响应时间,有一个普遍的标准。2/5/10秒原则。 也就是说,在2秒之内给客户响应被用户认为是“非常有吸引力”的用户体验。在5秒之内响应客户被认为“比较不错”的用户体验,在10秒内给用户响应被认为“糟糕”的用户体验。如果超过10秒还没有得到响应,那么大多用户会认为这次请求是失败的。 定义:指的是客户发出请求到得到响应的整个过程的时间。在某些工具中,请求响应时间通常会被称为“TTLB”(Time to laster byte) ,意思是从发起一个请求开始,到客户端收到最后一个字节的响应所耗费的时间。 错误状态情况分析:常用的HTTP状态代码如下: 400 无法解析此请求。 401.1 未经授权:访问由于凭据无效被拒绝。 401.2 未经授权: 访问由于服务器配置倾向使用替代身份验证方法而被拒绝。 401.3 未经授权:访问由于ACL 对所请求资源的设置被拒绝。 401.4 未经授权:Web 服务器上安装的筛选器授权失败。 401.5 未经授权:ISAPI/CGI 应用程序授权失败。 401.7 未经授权:由于Web 服务器上的URL 授权策略而拒绝访问。 403 禁止访问:访问被拒绝。 403.1 禁止访问:执行访问被拒绝。 403.2 禁止访问:读取访问被拒绝。 403.3 禁止访问:写入访问被拒绝。 403.4 禁止访问:需要使用SSL 查看该资源。 403.5 禁止访问:需要使用SSL 128 查看该资源。 403.6 禁止访问:客户端的IP 地址被拒绝。

403.7 禁止访问:需要SSL 客户端证书。 403.8 禁止访问:客户端的DNS 名称被拒绝。 403.9 禁止访问:太多客户端试图连接到Web 服务器。 403.10 禁止访问:Web 服务器配置为拒绝执行访问。 403.11 禁止访问:密码已更改。 403.12 禁止访问:服务器证书映射器拒绝了客户端证书访问。 403.13 禁止访问:客户端证书已在Web 服务器上吊销。 403.14 禁止访问:在Web 服务器上已拒绝目录列表。 403.15 禁止访问:Web 服务器已超过客户端访问许可证限制。 403.16 禁止访问:客户端证书格式错误或未被Web 服务器信任。 403.17 禁止访问:客户端证书已经到期或者尚未生效。 403.18 禁止访问:无法在当前应用程序池中执行请求的URL。 403.19 禁止访问:无法在该应用程序池中为客户端执行CGI。 403.20 禁止访问:Passport 登录失败。 404 找不到文件或目录。 404.1 文件或目录未找到:网站无法在所请求的端口访问。 需要注意的是404.1错误只会出现在具有多个IP地址的计算机上。如果在特定IP地址/端口组合上收到客户端请求,而且没有将IP地址配置为在该特定的端口上侦听,则IIS返回404.1 HTTP错误。例如,如果一台计算机有两个IP地址,而只将其中一个IP地址配置为在端口80上侦听,则另一个IP地址从端口80收到的任何请求都将导致IIS返回404.1错误。只应在此服务级别设置该错误,因为只有当服务器上使用多个IP地址时才会将它返回给客户端。404.2 文件或目录无法找到:锁定策略禁止该请求。 404.3 文件或目录无法找到:MIME 映射策略禁止该请求。

实验四 聚合物材料力学性能的测试

实验六聚合物材料拉伸性能的测试 一、实验目的: 1、通过实验了解聚合物材料拉伸强度及断裂伸长率的意义。 2、熟悉它们的测试方法 3、通过测试应力—应变曲线来判断聚合物材料的力学性能。 二、实验原理: 为了评价聚合物材料的力学性能。通常用等速施力下所获得的应力—应变曲线来进行描述。这里所谓应力是指拉伸力引起的在试样内部单位截面上产生的内应力而应变是指试样在外力作用下发生形变时,相对其原尺寸的相对形变量。 材料的组成、化学结构及聚态结构都会对应力与应变产生影响。应力—应变实验所得的数据也与温度、湿度、拉伸速度有关,因此应规定一定的测试条件。 三、主要仪器设备及原料: 1、主要仪器设备:万能试验机 2、主要原料:各种高分子试样 四、操作方法和实验步骤: 1、试样制备 拉伸实验中所用的试样依据不同材料加工成不同形状和尺寸。每组试样应不少于5个。试验前需对试样的外观进行检查试样,表面平整无气泡、裂纹、分层和机械损伤等缺陷。另外为了减小环境对试样性能的影响,应在测试前将试样在测试环境中放置一定时间,使试样与测试环境达到平衡。一般试样越厚,放置时间应越长。具体按国家标准规定。 2、拉伸性能的测试

①将合格试样编号并在试样平行部分划二标线,即标距。测量试样工作段任意三处宽度和厚度,取其平均值。 ②安装拉伸试验用夹具。 ③调整引伸计标距至规定值。 ④装夹试样,要使试样纵轴与上下夹头的中心线重合。 ⑤在工作段装夹大变形引伸计,使引伸计中心线与上下夹头的中心线重合。 ⑥录入试样信息并按照标准设置试验条件。 ⑦联机。检查屏幕显示的试验信息是否正确,如有不适之处进行修改,然后 对负荷清零、轴向变形清零、位移清零。按“试验开始”键进行试验。 ⑦横梁以设定的速度开始移动,同时屏幕显示出试验曲线,根据需要可随时打 开想要观察的曲线。如应力—应变曲线、负荷—变形曲线等多种曲线 ⑧观察试样直到被拉断为止,按“试验结束”键结束试验。按“数据管理”键查看试验结果。 五、实验报告: 1、简述实验原理。 2、明确操作步骤和注意事项。 3、附实验中测试所得的多种曲线。 六、思考题 1、影响拉伸强度的因素有哪些? 2、在拉伸实验中如何测定模量?

性能测试案例分析

1.简要场景描述: 被测项目的数据库服务采用ORACLE 10g,测试功能点选择的是一个新建录入保存业务。当并发20用户时,数据库资源占用正常,处理业务响应时间正常,当并发40用户时,数据库服务器CPU占用率突增到100%,系统几乎不响应。 2.对ORACLE 10g进行监控: 2.1首先打开监控开关: exec dbms_monitor.serv_mod_act_trace_enable (service_name=>''); 在oracle安装目录\product\10.2.0\admin\gsp\udump目录下每个session形成.trc文件。 2.2通过tkprof进行分析: 根据日期选择相应的.trc文件,在命令行下通过tkprof进行分析: tkprof servname_ora_2336.trc utput=servname_ora_2336.txt SORT=(EXEELA, PRSELA, FCHELA) 形成结果文件servname_ora_2336.txt。 2.3查看分析结果文件: 发现存在大量的建临时表语句,耗用了大量的CPU资源,而且花费的时间很长。 create table myHelp4879f036d (Rowp int PRIMARY KEY,OID varchar(1000),Code varchar(1000),Name varchar(1026),ZJM varchar(100),Path varchar(40)) call count cpu elapsed disk query current rows ------- ------ -------- ---------- ---------- ---------- ---------- ---------- Parse 0 0.00 0.00 0 0 0 0 Execute 1 19.06 196.34 24 751455 1552 0 Fetch 0 0.00 0.00 0 0 0 0 ------- ------ -------- ---------- ---------- ---------- ---------- ---------- total 1 19.06 196.34 24 751455 1552 0

即时通讯软件性能测试办法(专业版)

即时通讯软件性能测试办法(专业版) 常有一些不靠谱的即时通讯工具开发工作室,凭借口吐莲花之能耐,吹嘘自己的实力,并利用一些自己编写的无压力的压力测试软件来佐证自己的实力。这里像正在存在即时通讯外包服务的电商或企业,介绍一款专业的预测系统行为和性能的负载测试工具——LoadRunner。 LoadRunner通过模拟上千万用户实施并发负载及实时性能监测的方式来确认和查找问题,能够对整个企业架构进行测试。LoadRunner是一种适用于各种体系架构的自动负载测试工具,它能预测系统行为并优化系统性能。 1、开发提供性能测试需求 2、设置测试用例 3、录制优化测试脚本 4、运行测试用例 5、收集测试数据,分析系统性能 6、相关人员一起性能调优,调优后再次测试 7、压测报告 下面介绍下LoadRunner性能基础知识-软件的性能 ?用户的角度 用户操作的响应时间 ?系统管理员的角度 CPU、内存、磁盘I/O、数据交互 ?软件开发人员的角度 包含以上所有,还关注内存泄漏、数据库死锁 ?响应时间 ?并发用户数 ?事务响应时间 ?吞吐量:吞吐量是指单位时间内系统处理客户请求的数量,其直接体现系统的承载的能力 ?吞吐率:指单位时间内的数据传输量,即吞吐量/传输时间,也可以是单位时间内处理的客户请求数。它是衡量网络性能一个重要指标。 ?TPS(transaction Per second):表示每秒系统处理的事务数 ?点击率:每秒钟用户向Web服务器提交的HTTP的数量 ?资源利用率:指的是系统资源被占用的情况,主要包括CPU利用率、内存利用率、磁盘利用率、网络等 ?负载测试:特定环境下的加压测试 ?压力测试:饱和程度下的系统稳定性 ?配置测试:调整系统软硬件环境 ?并发测试:多用户同时访问同一个模块,测试系统是否存在死锁等问题 ?可靠性测试:持续运行的能力

最新聚合物复合材料性能及测试标准

聚合物复合材料性能解释以及测试标准指南1.1拉伸性能 拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。 对于不同的聚合物复合材料,拉伸性能试验方法是不同。对于普通的,用国标GB/T1447进行测试;对于缠绕成型的,用国标GB/T1458进行测试;对于定向纤维增强的,用国标GB/T33541进行测试;对于拉挤成型的,用国标GB/T13096-1进行测试。使用最多的是 GB/T1447。 国标GB/T1447,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带R型、直条型及哑铃型。使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试样破坏。用破坏载荷除以试样横截面面积则为拉伸强度。从测出的应力----应变曲线的直线段的斜率则为弹性模量,试样横向应变与纵向应变比为泊松比。破坏时的应变称为断裂伸长率。 单位面积上的力,称为应力,通常用MPa(兆帕)表示,1MPa相当于1N/mm2的应力。应变是单位长度的伸长量,是没有量刚(单位)的。 不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:1:1玻璃钢,拉伸强度为(200-250)MPa,弹性模量为(10-16)GPa;4:1玻璃钢,拉伸强度为(250-350)MPa,弹性模量为(15-22)GPa;单向纤维的玻璃钢(如缠绕),拉伸强度大于800MPa,弹性模量大于24GPa;SMC材料,拉伸强度为(40-80)MPa,弹性模量为(5-8)GPa;DMC 材料,拉伸强度为(20-60)MPa,弹性模量为(4-6)GPa。 1. 2弯曲性能 一般产品普遍存在弯曲载荷,弯曲性能是很重要的,同时,往往用弯曲性能来进行原材料,成型工艺参数,产品使用条件因素等的选择。

聚合物锂离子电池测试标准

1.0范围scope 本规范规定了聚合物锂离子电池定义、要求、测验方法。 本规范适用于聚合物锂离子电池(聚合物软包/固态/二次圆柱/一次圆柱),不适用于动力电池。 2.0 3.0引用标准reference standard 下列是本文引用的标准。执行本规范时,所示版本均应为有效版本。使用本规范的各部门应注意下列引用标准是否是最新版本。 GB/T2900.11-1988蓄电池名词术语 GB/T18287-2000蜂窝电话用锂离子电池总规范 UL 1642 锂电池安全测试标准 4.0 定义definition 4.1充电限制电压--电池由恒流充电转入恒压充电时的电压值。 4.2标称容量—指电池在环境温度为25±2℃的条件下,以5h率放电至终止电压时所应提供的电量,用C5表示, 单位为Ah(安培小时)或mAh(毫安小时)。 4.3恢复容量—在规定的温度、时间下贮存一段时间,电池放电后进行充电,并再次放电的容量。 4.4标称电压—用以标识电池电压的适宜的近似值。 4.5终止电压—规定放电终止时电池的负载电压。 4.6漏液—可见液体电解液的漏出。 4.7鼓胀—电池内部压力增加,内有气体,厚度(直径)膨胀率108%以上。 4.8破裂—由于内部外部因素引起电池外壳的机械变形,导致内部物质暴露或溢出,但没有喷出。 4.9起火—电池有可见火焰或冒黑烟等。 4.10爆炸—电池的外壳猛烈破裂导致主要成分抛射出来。 4.11聚合物软包—外包装膜为铝塑膜可循环充放电使用的电池。 4.12聚合物固态—外包装膜为铝塑膜,内部极片与隔膜混为一体可循环充放电使用的电池。 4.13聚合物二次圆柱—可循环充放电使用的聚合物圆柱电池。 4.14聚合物一次圆柱—不可再次充放电使用聚合物圆柱电池。 5.0测试条件和要求test conditions and requirement

性能测试结果分析

性能测试工程师基本上都能够掌握利用测试工具来作负载、压力测试,但多数人对怎样去分析工具收集到的测试结果感到无从下手,下面我就把个人工作中的体会和收集到的有关资料整理出来,希望能对大家分析测试结果有所帮助。分析原则: 1. 具体问题具体分析(这是由于不同的应用系统,不同的测试目的,不同的性能关注点) 2. 查找瓶颈时按以下顺序,由易到难。 服务器硬件瓶颈-〉网络瓶颈(对局域网,可以不考虑)-〉服务器操作系统瓶颈(参数配置)-〉中间件瓶颈(参数配置,数据库,web服务器等)-〉应用瓶颈(SQL语句、数据库设计、业务逻辑、算法等) 注:以上过程并不是每个分析中都需要的,要根据测试目的和要求来确定分析的深度。对一些要求低的,我们分析到应用系统在将来大的负载压力(并发用户数、数据量)下,系统的硬件瓶颈在哪儿就够了。 3 分段排除法很有效 分析的信息来源: 1 根据场景运行过程中的错误提示信息 2 根据测试结果收集到的监控指标数据 一.错误提示分析 分析实例: 1 Error: Failed to connect to server “10.10.10.30:8080″: [10060] Connection Error: timed out Error: Server “10.10.10.30″has shut down the connection prematurely 分析: A、应用服务死掉。 (小用户时:程序上的问题。程序上处理数据库的问题) B、应用服务没有死 (应用服务参数设置问题) 例:在许多客户端连接Weblogic应用服务器被拒绝,而在服务器端没有错误显示,则有可能是Weblogic中的server元素的AcceptBacklog属性值设得过低。如果连接时收到connection refused消息,说明应提高该值,每次增加25% C、数据库的连接 (1、在应用服务的性能参数可能太小了2、数据库启动的最大连接数(跟硬件的内存有关)) 2 Error: Page download timeout (120 seconds) has expired 分析:可能是以下原因造成 A、应用服务参数设置太大导致服务器的瓶颈

相关文档
最新文档