空间轴对称问题的基本微分方程

空间轴对称问题的基本微分方程
空间轴对称问题的基本微分方程

空间轴对称问题的基本微分方程

在描述轴对称问题各分量时,用圆柱坐标r 、

θ、z 比用直角坐标x 、y 、z 方便得多,如以z 轴

为对称轴,如图1所示则所有应力分量、应变分量

和位移分量都将只是r 和z 的函数,不随θ而变。如

图,取微小六面体。注意到应力分量是(r ,z )将

各面上的应力分量写出。单位体积内的体积力在r 、

z 方向的分量分别表示为r f 、z f 。根据单元体在r

和z 方向的平衡方程,略去高阶微量,同时除以

rdrd dz θ,因为d θ很小,近似认为()sin 22d d θθ≈,加以整理后得到r 方向和z 方向的平衡微分方程为: 图1柱坐标下微小六面体

r r z 0r 0zr r rz rz z f z r

f z r r θστσσσττ??-?+++=????????+++=????

公式(1) 进一步推导空间轴对称问题的几何变形方程:

设u 、w 分别代表r 及z 轴方向的位移分量,由极坐标内位移与应变的关系以及直角坐标的关系式,很容易得到

r u r ??=ε,r u =θε,z w z ??=ε,0==z r θθγγ,r

w z u rz ??+??=γ 公式(2) 最后,根据广义胡克定律,可得出物理方程:

1[()]1[()]1[()]2(1)r r z r z z z r rz rz rz E

E

E

G E θθθθεσμσσεσμσσεσμσστμγτ?=-+???=-+???=-+??+==??

公式(3) 或 ()()2112112()()2112112()()2112112()2(1)2(1)r r r z z z rz rz rz E E u e e e G r E E u e e e G r E E w e e e G z E E u w G z r

θθθμμσελεμμμμμμσελεμμμμμμσελεμμμμτγγμμ??=

+=+=+?+-+-???=+=+=+?+-+-????=+=+=+?+-+-?????==+=?++??? 公式(4) 式中,r z u u w e r r z θεεε??==++??++为体积应变。 上式中共有10个未知数,必须满足(1)(2)(3)或(4)等10个方程式。

当体积力0r z f f ==时,将(4)代入(1),并采用记号22

2221r r r z ????=++???,便可得到以位移表达的平衡方程,即为解空间轴对称问题的位移法的基本方程:

2221

0121

012e u u r r e w z μ

μ??+?-=?-?????+?=?-??

公式(5) 当由(5)式解得满足边界条件的位移函数后,代回(2)、(4)等式,即可求得应变及应力分量。

空间轴对称问题

现举一个按以上位移法基本方程求解空间轴对称问题的例子,即具有重要实际意义的布希涅斯克(J.V.Boussinesq )问题。

设在弹性半空间体(即在一个方向有界面,

在其余各方向皆为无限大)的界面上,受垂直于

界面集中力P 的作用,如图2所示。现用位移法

求些时的位移及应力分量。

(一)求位移函数u 、w

对此空间轴对称问题,把z 轴放在P 力作用

线方向,将P 力作用点作为坐标原点。因此,当

用位移法求解时,问题在于如何求出方程式(1-5)

的解,并使之满足边界条件。

可找到方程式(1-5)的两组特解,亦即满足

方程式(1-5)的两组位移函数,其中第一组为: 图2 弹性半空间体界面集中力

1

3

2131[(34)]rz u A R z w A R R μ?=????=+-?? (1) 其第二组为

2

2()1r u A R R z w A R ?

=?+???=?? (2) 式中r 和z 是被考察点M 的两个坐标,2

2z r R +=是被考察点M 到坐标原点O 的距离。1A 、2A 是两个任意常数。

为此,可将二阶偏微分方程式(1-5)的通解写为:

1232123()

11(34)rz r u A A R R R z z w A A R R R ?=+?+?????=+-+??????

μ (3) 现已找出能基本方程的位移函数。以下将利用边界条件确定常数1A 、2A 。

将(3)式的结果代入到(1-4)并注意到r z u u w e r r z

θεεε??==

++??++,则可得到以下四个应力分量的函数: ()()()()23222135222133125332125333A 12()1()A 121()3A 12A 13A 12A 1r z rz E z r z A z z r R R R R z R E z A R R R z E z r z R R R E rz r r R R R θσμμσμμσμμτμμ?????=--+-+?????++??

???????=-+??++???

???????=-+-+?????+????

??????=-+-+?????+?????

?

(4) 由于在边界上无剪应力,则0z =时,0rz τ=,由式(4)最后一式可得到:

12(12)0A A μ-+= (5)

另外,过M 点作一个与边界面平行的面,将弹性半空间体的上部切下,根据被切下部分的z 方向的平衡条件: 0(2)0z rdr P σπ∞+=?

(6) 将(4)式中的z σ代入(6)式积分后可得到: []122P 2(1)01E A A πμμ

-

-+=+ (7) 联立式(5、(7)可得: 12P(1+)P(1+)A =,A (12)22E

E μμμππ=-- (8) 将(8)式代入(3)式,最后得位移函数为:

32320(1)[(12)]2()(1)2(1)[]2(1)()z P rz r u E R R R z P z w E R R P w Er μμπμμπμπ=+?=

--?+?+-?=+???-=?? (9) (二)求应力分量

将(8)式代入(4)式,可得到应力分量的计算公式为:

2533

5

25P 1232()P 1(12)2()P 32P 32r z rz zr R R z R z R R R z z R z r R θμσπσμπσπτπ???-=-???+??

?????=--???+??

??=-???=-??

(10)

(三)讨论

由以上所得的(9)、(10)可以看出,随着R 的增大,位移和应力都迅速减小。当∞→R 时,位移和应力分量皆趋于零。这说明此物体受力状态下的应力与位移带有局部的性质。

又当0→R 时,各应力分量都趋于无限大。所以在集中力P 作用点处早已进入塑性,由于实际载荷也不可能加在一个几何点上,而是分布在一个小面积上,所以实际应力也不是无限大。以上位移和应力公式根据圣维南原理,只在稍离接触区的地方才是正确的。

由(10)式可以得到:当0z =时,在弹性半空间表面边界上的各点:

221212220,0r z rz P P R r θμμσσππστ--?=-==???==?

(11)

也就是说,边界表面上各点受到纯剪切作用。

又当0=r ,z R =时,亦即在z 轴上的各点,由(10)可得:

222

12221222320r z rz P z P z P z θμ

σπμ

σπσπτ-?

=??

-?=??

?=-??

=??

(12)

这说明,在z 轴上各点受到两向拉伸,一向压缩,它的主应力分别为

12232122232P z P z μσσπσπ-?

==???

?=-??

(13) 以绝对值比较,3σσ=z 比径向及周向应力1σ,2σ大得多。

以上结果是研究接触问题的基础,因此是很重要的。

各种类型的微分方程及其相应解法教程文件

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

常微分方程试题

一单项选择题(每小题2分, 共40分) 1. 下列四个微分方程中, 为三阶方程的有( )个. (1) (2) (3) (4) A. 1 B. 2 C. 3 D. 4 2. 为确定一个一般的n阶微分方程=0的一个特解, 通常应给出的初始条件是( ). A. 当时, B. 当时, C. 当时, D. 当时, 3. 微分方程的一个解是( ). A. B. C. D.

4. 下列方程中, 既是齐次方程又是线性方程的是( ). A. B. C. D. 5. 若方程是恰当方程, 则(). A. B. C. D. 6. 若方程有只与y有关的积分因子, 则可取为( ). A. B. C. D. 7. 可用变换( )将伯努利方程化为线性方程. A. B. C. D. 8. 是满足方程和初始条件( )的唯一解. A. B. C. D. 9. 设是n阶齐线性方程的解,

其中是某区间中的连续函数. 如下叙述中, 正确的是( ). A.若的伏朗斯基行列式为零, 则线性无关 B.若的伏朗斯基行列式不为零, 则线性相关 C.若的伏朗斯基行列式不为零, 则线性无关 D.由的伏朗斯基行列式是否为零, 不能确定的线性相关性 10. 设线性无关的函数和是方程的解,则方程 的通解是( ) A.(是任意常数, 下同) B. C. D. 11. 三阶系数齐线性方程的特征根是( ). A. 0, 1, 1 B. 0, 1, -1 C. 1, D. 1, 12. 方程的基本解组是( ).

A. B. C. D. 13. 方程的待定特解可取如下( )的形式: A. B. C. D. 14. 已知是某一三阶齐线性方程的解, 则 和 的伏朗斯基行列式( ). A. 3 B. 2 C. 1 D. 0 15. 可将三阶方程化为二阶方程的变换为( ). A. B. C. D. 16. 方程组满足初始条件的解为( ). A. B. C. D. 17. n阶函数方阵在上连续, 方程组有基解矩阵,

常微分方程练习题及答案

常微分方程练习试卷 一、 填空题。 1、 方程23 2 10d x x dt +=就是 阶 (线性、非线性)微分方程、 2、 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 、 3、 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个、 4、 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= 、 5、 朗斯基行列式 ()0W t ≡就是函数组12(),(),,()n x t x t x t L 在a x b ≤≤上线性相关的 条件、 6、 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 、 7、 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = 、 8、 方程组 20'05??=???? x x 的基解矩阵为 . 9、可用变换 将伯努利方程 化为线性方程、 10 、就是满足方程 251y y y y ''''''+++= 与初始条件 的唯一解、 11、方程 的待定特解可取 的形式: 12、 三阶常系数齐线性方程 20y y y '''''-+=的特征根就是 二、 计算题 1、求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点与点(1,0)的连线相互垂直、 2.求解方程 13 dy x y dx x y +-=-+、 3、 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程、 、 5.求方程 sin y y x '=+的通解、 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=就是恰当方程,并求出它的通解、

各类微分方程的解法大全

各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u]=dx/x 两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1 y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程

令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1) 即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2 5.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y”+py’+qy=f(x) 先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x) 则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解 求y”+py’+qy=f(x)特解的方法: ①f(x)=P m(x)eλx型 令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数 ②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型 令y*=x k eλx[Q m(x)cosωx+R m(x)sinωx][m=max﹛l,n﹜,k按λ+iω不是特征方程的根或是特征方程的单根依次取0或1]再代入原方程,分别确定Q m(x)和R m(x)的m+1个系数

第二节 几类简单微分方程及其解法

第二节 几类简单微分方程及其解法 本节将介绍可分离变量的微分方程、齐次方程以及一阶线性微分方程等一阶微分方程的解法. 一阶微分方程是微分方程中最基本的、最常见的一类方程.它的一般形式可表示为: 0)',,(=y y x F 或),('y x F y =, 其中)',,(y y x F 为,,'x y y 的已知函数,),(y x F 为,x y 的已知函数. 一、可分离变量的微分方程 如果一阶微分方程),('y x F y =的等式右端能分解为: )()(),(y g x f y x F =, 即)()('y g x f y = (7.2.1) 则称方程(7.2.1)为可分离变量的微分方程. 设)(y g ≠0,则方程(6.2.1)改写为: dx x f dy y g )() (1=, 上式两边积分,可得 ??=dx x f dy y g )()(1. 上述将微分方程化成分离变量形式求解的方法,称为分离变量法. 注:在分离变量时,未知函数y 的函数和微分要写在等式的左边. 例1 求微分方程)3(2'+=y x y 的通解. 解1: 原方程可改写为)3(2+=y x dx dy . 分离变量,两边积分,得,23 1??=+xdx dy y ,3ln 12c x y +=+即.312-±=+c x e y 记1c e c ±=,则微分方程的通解为 32 -=x ce y (c 为任意常数). 解2:

原方程可改写为)3(2+=y x dx dy . 分离变量,两边积分,得,23 1??=+xdx dy y ,ln )3ln(2c x y +=+即,3ln 2x c y =+23x ce y =+ 则微分方程的通解为 32 -=x ce y (c 为任意常数). 注:为了简化运算,规定: (1) 微分方程中出现形为 ?u du 的积分时,可不按不定积分基本积分公式表写成 ln du u c u =+?,而是写成ln du u u =?; (2) 不定积分等式中至少有一个形为?u du 的积分时,任意常数不写成c ,而写成c ln 并放在等式右侧. 例2 求微分方程y xy ='的通解. 解: 分离变量,两边积分, 得 ,dy dx y x =?? c x y ln ln ln += cx ln = 则微分方程的通解为cx y = (c 为任意常数). 例3 求微分方程dx e x dy x e y y )1(2)1(2+=+的通解. 解: 分离变量,两边积分, 得 dx x x dy e e y y ??+=+2121, c x e y ln )1ln()1ln(2++=+ )1(ln 2x c +=, ).1(12x c e y +=+ 则微分方程的通解为 ]1)1(ln[2-+=x c y (c 为任意常数). 例4 求微分方程)'('2 y y a xy y +=-的通解.

第10章 弹性力学空间问题

第十章弹性力学空间问题知识点 空间柱坐标系 空间轴对称问题的基本方程空间球对称问题的基本方程布西内斯科解 分布载荷作用区域外的沉陷弹性球体变形分析 热应力的弹性力学分析方法坝体热应力 质点的运动速度与瞬时应力膨胀波与畸变波柱坐标基本方程 球坐标的基本方程 位移表示的平衡微分方程乐普位移函数 载荷作用区域内的沉陷球体接触压力分析 受热厚壁管道 弹性应力波及波动方程应力波的相向运动 一、内容介绍 对于弹性力学空间问题以及一些专门问题,其求解是相当复杂的。 本章的主要任务是介绍弹性力学的一些专题问题。通过学习,一方面探讨弹性力学空间问题求解的方法,这对于引导大家今后解决某些复杂的空间问题,将会有所帮助。另一方面,介绍的弹性力学专题均为目前工程上普遍应用的一些基本问题,这些专题的讨论有助于其它课程基本问题的学习,例如土建工程的地基基础沉陷、机械工程的齿轮接触应力等。 本章首先介绍空间极坐标和球坐标问题的基本方程。然后讨论布希涅斯克问题,就是半无限空间作用集中力的应力和沉陷。通过布希涅斯克问题的求解,进一步推导半无限空间作用均匀分布力的应力和沉陷、以及弹性接触问题。 另一方面,本章将介绍弹性波、热应力等问题的基本概念。 二、重点 1、空间极坐标和球坐标问题; 2、布希涅斯克问题; 3、半无限空间作 用均匀分布力的应力和沉陷;弹性接触问题;4、弹性波;5、热应力。

§10.1 柱坐标表示的弹性力学基本方程 学习思路: 对于弹性力学问题,坐标系的选择本身与问题的求解无关。但是,对于某些问题,特别是空间问题,不同的坐标系对于问题的基本方程、特别是边界条件的描述关系密切。某些坐标系可以使得一些特殊问题的边界条件描述简化。因此,坐标系的选取直接影响问题求解的难易程度。 例如对于弹性力学的轴对称或者球对称问题,如果应用直角坐标问题可能得不到解答,而分别采用柱坐标和球坐标求解将更为方便。 本节讨论有关空间柱坐标形式的基本方程。特别是关于空间轴对称问题的基本方程。 学习要点: 1、空间柱坐标系; 2、柱坐标基本方程; 3、空间轴对称问题的基本方程。 1、空间柱坐标系 在直角坐标系下,空间任意一点M的位置是用3个坐标(x,y,z)表示的,而在柱坐标系下,空间一点M的位置坐标用(ρ,?,z)表示。 直角坐标与柱坐标的关系为:x =ρ cos ?,y =ρ sin ? ,z = z 柱坐标下的位移分量为:uρ,u? , w 柱坐标下的应力分量为:σρ,σ? ,σz,τρ?,τ? z,τzρ 柱坐标下的应变分量为:ερ,ε? ,εz,γρ?,γ? z,γzρ 以下讨论柱坐标系的弹性力学基本方程。 2、柱坐标基本方程

各类微分方程的解法大全

创作编号:BG7531400019813488897SX 创作者:别如克* 各类微分方程的解法 1.可分离变量的微分方程解法 一般形式:g(y)dy=f(x)dx 直接解得∫g(y)dy=∫f(x)dx 设g(y)及f(x)的原函数依次为G(y)及F(x),则G(y)=F(x)+C为微分方程的隐 式通解 2.齐次方程解法 一般形式:dy/dx=φ(y/x) 令u=y/x则y=xu,dy/dx=u+xdu/dx,所以u+xdu/dx=φ(u),即du/[φ(u)-u] =dx/x两端积分,得∫du/[φ(u)-u]=∫dx/x 最后用y/x代替u,便得所给齐次方程的通解 3.一阶线性微分方程解法 一般形式:dy/dx+P(x)y=Q(x) 先令Q(x)=0则dy/dx+P(x)y=0解得y=Ce- ∫P(x)dx,再令y=u e-∫P(x)dx代入原方程 解得u=∫Q(x) e∫P(x)dx dx+C,所以y=e-∫P(x)dx[∫Q(x)e∫P(x)dx dx+C] 即y=Ce-∫P(x)dx +e- ∫P(x)dx∫Q(x)e∫P(x)dx dx为一阶线性微分方程的通解 4.可降阶的高阶微分方程解法 ①y(n)=f(x)型的微分方程 y(n)=f(x) y(n-1)= ∫f(x)dx+C1

y(n-2)= ∫[∫f(x)dx+C1]dx+C2 依次类推,接连积分n次,便得方程y(n)=f(x)的含有n个任意常数的通解②y”=f(x,y’) 型的微分方程 令y’=p则y”=p’,所以p’=f(x,p),再求解得p=φ(x,C1) 即dy/dx=φ(x,C1),所以y=∫φ(x,C1)dx+C2 ③y”=f(y,y’) 型的微分方程 令y’=p则y”=pdp/dy,所以pdp/dy=f(y,p),再求解得p=φ(y,C1) 即dy/dx=φ(y,C1),即dy/φ(y,C1)=dx,所以∫dy/φ(y,C1)=x+C2 5.二阶常系数齐次线性微分方程解法 一般形式:y”+py’+qy=0,特征方程r2+pr+q=0 6.二阶常系数非齐次线性微分方程解法 一般形式: y”+py’+qy=f(x) 先求y”+py’+qy=0的通解y0(x),再求y”+py’+qy=f(x)的一个特解y*(x) 则y(x)=y0(x)+y*(x)即为微分方程y”+py’+qy=f(x)的通解 求y”+py’+qy=f(x)特解的方法: ①f(x)=P m(x)eλx型 令y*=x k Q m(x)eλx[k按λ不是特征方程的根,是特征方程的单根或特征方程的重根依次取0,1或2]再代入原方程,确定Q m(x)的m+1个系数 ②f(x)=eλx[Pl(x)cosωx+P n(x)sinωx]型

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

常微分方程习题集

《常微分方程》测试题1 一、填空题30% 1、形如的方程,称为变量分离方程, 这里.分别为的连续函数。 2、形如-的方程,称为伯努利方程, 这里的连续函数.n 3、如果存在常数-对于所有函数称为在R上 关于满足利普希兹条件。 4、形如-的方程,称为 欧拉方程,这里 5、设的某一解,则它的任一解 - 。 二、计算题40% 1、求方程 2、求方程的通解。 3、求方程的隐式解。 4、求方程 三、证明题30% 1.试验证=是方程组x=x,x= ,在任何不包含原点的区间a上的基解矩阵。 2.设为方程x=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明: (t)=(t- t)其中t为某一值.<%建设目标%> 《常微分方程》测试题2

一、填空题:(30%) 1、曲线上任一点的切线的纵截距是切点的横坐标和纵坐标的等差中项,则曲线所满足的 8、已知是二阶齐次线性微分方程的一个非零解,则与线性无关的另一 10、线性微分方程组的解是的基本解组的充要条件是. 二、求下列微分方程的通解:(40%) 1、 2、 3、 4、 5、求解方程. 三、求初值问题的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计. (10分)

四、求解微分方程组 满足初始条件的解. (10%) 五、证明题:(10%) 设,是方程 的解,且满足==0,,这里在上连续,.试证明:存在常数C使得=C 《常微分方程》测试题3 1.辨别题 指出下列方程的阶数,是否是线性方程:(12%) (1)(2)(3) (4)(5)(6) 2、填空题(8%) (1).方程的所有常数解是___________. (2).若y=y1(x),y=y2(x)是一阶线性非齐次方程的两个不同解,则用这两个解可把其通解表示为________________. (3).若方程M(x, y)d x + N(x, y)d y= 0是全微分方程,同它的通积分是 ________________. (4).设M(x0, y0)是可微曲线y=y(x)上的任意一点,过该点的切线在x轴和y轴上的截距分别是_________________. 3、单选题(14%) (1).方程是().

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1))(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y 令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得?? ????-+--??? ??--112212121u u u u ,x dx du = 两边积分得 ,ln ln ln 2 1)2ln(23)1ln(C x u u u +=----

微分方程的基础知识及解析解

微分方程的基础知识及解析解

微分方程的基础知识与练习 (一)微分方程基本概念: 首先通过一个具体的问题来给出微分方程的基本概念。 (1)一条曲线通过点(1,2),且在该曲线上任一点M (x ,y )处的切线的斜率为2x ,求这条曲线的方程。 解 设曲线方程为)(x y y =.由导数的几何意义可知函数)(x y y =满足 x dx dy 2= (1) 同时还满足以下条件: 1=x 时,2=y (2) 把(1)式两端积分,得 ?=xdx y 2 即 C x y +=2 (3) 其中C 是任意常数。 把条件(2)代入(3)式,得 1=C , 由此解出C 并代入(3)式,得到所求曲线方程: 12+=x y (4) (2)列车在水平直线路上以20s m /的速度行驶;当制动时列车获得加速度2/4.0s m -.问开始制动后多少时间列车才能停住,以及列车在这段时间里行驶了多少路程? 解 设列车开始制动后t 秒时行驶了s 米。根据题意,反映制动阶段列车运动规律的函数)(t s s =满足: 4.02 2-=dt s d (5) 此外,还满足条件: 0=t 时,20,0== =dt ds v s (6) (5)式两端积分一次得: 14.0C t dt ds v +-== (7) 再积分一次得

2122.0C t C t s ++-= (8) 其中21,C C 都是任意常数。 把条件“0=t 时20=v ”和“0=t 时0=s ”分别代入(7)式和(8)式,得 0 ,2021==C C 把21,C C 的值代入(7)及(8)式得 ,204.0+-=t v (9) t t s 202.02+-= (10) 在(9)式中令0=v ,得到列车从开始制动到完全停止所需的时间: )(504 .020s t ==。 再把5=t 代入(10)式,得到列车在制动阶段行驶的路程 ).(5005020502.02m s =?+?-= 上述两个例子中的关系式(1)和(5),(6)都含有未知函数的导数,它们都是微分方程。 1.微分方程的概念 一般地,凡含有未知函数、未知函数的导数及自变量的方程,叫做微分方程。未知函数是一元函数的方程叫做常微分方程;未知函数是多元函数的方程,叫做偏微分方程。我们只研究常微分方程。微分方程中所出现的未知函数的最高阶导数的阶数,叫做微分方程的阶。 例如,方程(1)是一阶微分方程;方程(5)是二阶微分方程方程。又如,方程 ()x y y y y y 2sin 5'12''10'''44=+-+-是四阶微分方程。 一般地,n 阶微分方程的形式是 ()(,,',...,)0,n F x y y y = (11) 其中F 是个2+n 变量的函数。这里必须指出,在方程(11)中,)(n y 是必须出现的,而 )1(,...,',,-n y y y x 等变量则可以不出现。例如n 阶微分方程

常微分方程试题库试卷库

常微分方程期终考试试卷(1) 一、 填空题(30%) 1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。有只含y 的积分因子的充要条件是。 2、称为黎卡提方程,它有积分因子。 3、称为伯努利方程,它有积分因子。 4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是。 5、形如的方程称为欧拉方程。 6、若()t φ和()t ψ都是' ()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是。 7、当方程的特征根为两个共轭虚根是,则当其实部为时,零解是稳定的,对应的奇点称为。 二、计算题(60%) 1、3 ()0ydx x y dy -+= 2、 sin cos2x x t t ''+=- 3、若 2114A ?? =?? -??试求方程组x Ax '=的解12(),(0)t η??ηη??==????并求

4、32( )480dy dy xy y dx dx -+= 5、 求方程2 dy x y dx =+经过(0,0)的第三次近 似解 6.求1,5 dx dy x y x y dt dt =--+=--的奇点,并判断奇点的类型与稳定 性. 三、证明题(10%) 1、n 阶齐线性方程一定存在n 个线性无关解。

常微分方程期终试卷(2) 一、填空题 30% 1、 形如的方程,称为变量分离方程,这里.)().(y x f ?分别为的连续函数。 2、 形如的方程,称为伯努利方程,这里x x Q x P 为)().(的连续函数,可化为线性方程。是常数。引入变量变换-------≠1.0 3、 如果存在常数 使得不等式 ,0 L 对于所有 称为利普希兹常数。都成立,(L R y x y x ∈),(),,21函数),(y x f 称为在 R 上关于y 满足利普希兹条件。 4、 形如的方程,称为欧拉方程,这里是常数。,,21a a 5、 设是 的基解矩阵,是)()(t Ax x t ?φ=')()(t f x t A x +='的某一解, 则它的任一解可表为)(t γ。 一、 计算题40% 1.求方程的通解。26xy x y dx dy -= 2.求程xy e x y dx dy =+的通解。 3.求方程t e x x x 25'6''=++的隐式解。

常微分方程选择题及答案.doc

湖北师范学院优质课程 《常微分方程》 试题库及试题解答 课程负责人:李必文 数学系

2005年 3月 18日 选择题(每小题 4 分) 1、下列方程中为常微分方程的是() (A) x2 - 2x 1 0 (B) y' xy2 (C) u 2u 2u (D) y x2 c (c为常数) t x2 y2 2、下列微分方程是线性的是() (A)y ' x2 y2 (B) y" y2 e x (C) y" x2 0 (D) y'- y xy 2 3、方程y " 3y ' 2 y x2e-2 x特解的形状为( ) (A) y1 ax2ey-2 x (B) y1 (ax2 bx c)e-2 x (C) y1 x2 ( ax2 bx c)e-2 x (D) y1 x2 (ax2 bx c)e-2x 4、下列函数组在定义域内线性无关的是() (A)4, x (B)x,2 x, x2 (C)5,cos 2 x,sin 2 x (D) 1,2, x, x 2 5、微分方程xdy - ydx y2 e y dy 的通解是( ) (A) x y(c - e y ) (B) x y(e y c) (C) y x(e x c) (D) y x(c - e y ) 6、下列方程中为常微分方程的是() (A) t2 dt xdx 0 (B) sin x 1 (C) y x 1 c (c 为常数) 2u 2u (D) 2 y2 x

7、下列微分方程是线性的是() (A)y' 1 y2(B)dy1 (C)y '2by cx(D) dx 1 xy y ' xy40 8、方程y "- 2 y ' 2y e x (x cos x 2sin x) 特解的形状为( ) (A) y1 e x[( Ax B)cos x C sin x] (B) y1 e x [ Ax cos x C sin x] (C) y1 e x[( Ax B) cosx ( Cx D ) sin x] (D) y1 xe x[( Ax B) cos x (Cx D ) sin x] 9、下列函数组在定义域内线性无关的是() (A) 1, x, x3(B)2x2 , x, x2 (C) 1,sin2x,cos2 x(D)5,sin 2 (x 1),cos2 (x1) 10、微分方程ydx - xdy y2exdx 的通解是( ) (A) y x(e x c) (B) x y( e x c) (C) x y(c - e x) (D) y ( x - ) x e c 11、下列方程中为常微分方程的是() (A) x2 y2 -1 0 (B) y ' x2 y (C) 2 u 2 u 2u (D) x y2 c (c为常数) 2 x2 y2 12、下列微分方程是线性的是() 2 (C)y =y3 +sin x (D)y +y=y2cos x (A)(B) y +6 y =1 13、方程y+y=2sin x特解的形状为( )

常微分方程试题库.

常微分方程 一、填空题 1 .微分方程(立)n +业—VEX? = 0的阶数是 dx dx 答:1 2 .若M (x, V)和N (x, V)在矩形区域R内是(x, V)的连续函数,且有连续的一阶偏导数,则 方程M (x,y)dx + N(x, y)dy =0有只与V有关的积分因子的充要条件是 血 f N -1 答:(亏一寸M)= (V) 3. ^为齐次方程. 答:形如dV =g(V)的方程 dx x 4 .如果f (x, V) ___________________________________________ M ,业=f (x, V)存在 dx 唯一的解y = %x),定义丁区问x-x o

8. 若X i (t)(i =1,2,.....n)为齐次线性方程的一个基本解组,x(t)为非齐次线性方程的一个 特解,则非齐次线性方程的所有解可表为 答:X =' c i x i - X i 4 9. 若中(X)为毕卡逼近序列虬(X)}的极限,则有|%x)M n(x)W 答:MLh n1 (n 1)! 10. 为黎卡提方程,若它有一个特解y(x),则经过变换 ____________________ ,可化为伯努利方程. 答:形如—=p(x)y2+q(x)y + r (x)的方程y = z + y dx 11. 一个不可延展解的存在区间一定是区间. 答:开 12. ______________________________________________________________ 方程业=后〔满足解的存在唯一性定理条件的区域是_______________________________ . dx ' 答:D ={(x,y)在R2y >0},(或不含x轴的上半平■面) 13 .方程华=x2sin y的所有常数解是. dx 答:y =k二,k =0, —1, —2, 14. 函数组明(x)*2(x),…,气(x)在区间I上线性无关的条件是它们的朗 斯基行列式在区间I上不包等丁零. 答:充分 15. 二阶线性齐次微分方程的两个解y〔(x), y2(x)为方程的基本解组充分必要条件 是. 答:线性无关(或:它们的朗斯基行列式不等丁零) 16. 方程广-2y'+y=0的基本解组是 答:e x, xe X 17. 若y =%x)在(s,十8)上连续,则方程d^=

各种类型的微分方程及其相应解法教学文案

各种类型的微分方程及其相应解法

各种类型的微分方程及其相应解法 专业班级:交土01班 姓名:高云 学号:1201110102 微分方程的类型有很多种,解题时先判断微分方程是哪种类型,可以帮助我们更快解题,所以我们有必要归纳整理一下各类型(主要是一阶和二阶)的微分方程及其相应解法。 一、一阶微分方程的解法 1.可分离变量的方程 dx x f dy y g )()(=,或)()(y g x f dx dy = 其特点是可以把变量x 和y 只分别在等式的两边,解法关键是把变量分离后两边积分。 例1.求微分方程ydy dx y xydy dx +=+2的通解. 解 先合并dx 及dy 的各项,得dx y dy x y )1()1(2-=- 设,01,012≠-≠-x y 分离变量得 dx x dy y y 1112-=- 两端积分??-=-dx x dy y y 1112得 ||ln |1|ln |1|ln 2 112C x y +-=- 于是 2212)1(1-±=-x C y 记,21C C ±=则得到题设方程的通解 .)1(122-=-x C y 2.齐次方程 (1) )(x y f dx dy = (2) )(c by ax f dx dy ++=(a ,b 均不等于0) 例2求解微分方程.2222xy y dy y xy x dx -=+- 解 原方程变形为=+--=2222y xy x xy y dx dy ,1222?? ? ??+--??? ??x y x y x y x y

令,x y u =则,dx du x u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得??? ???-+--??? ??--1122 121 21 u u u u ,x dx du = 两边积分得 ,ln ln ln 21 )2ln(23 )1ln(C x u u u +=---- 整理得 .)2(1 2/3Cx u u u =-- 所求微分方程的解为 .)2()(32x y Cy x y -=- 3.一阶线性微分方程 ?+??==+-])([),()()()(C dx e x Q e y x Q y x p dx dy dx x p dx x p 其通解为 例3. x y dx dy x sin 2=+, ππ1 )(=y ; 解 将方程改写为 x x y x dx dy sin 2=+, 这里x x p 2)(=,x x x q sin )(=,故由求解公式得 )sin (1 sin 22 2 ??+=??? ????+?=-xdx x C x dx e x x C e y dx x dx x 22sin cos x x x x x C +-=. 由初值条件ππ1 )(=y ,得0=C . 所以初值问题的解为 2cos sin x x x x y -= 例4.设非负函数()f x 具有一阶导数,且满足1 200()()()x f x f t dt t f t dt =+??,求 函数()f x . 解:设120()A t f t dt =?,则0()()x f x f t dt A =+?,两边对x 求导,得 ()()()x f x f x f x Ce '=?=,由已知(0)()x f A C A f x Ae =?=?= 又 11222004 ()()1t A t f t dt t Ae dt A e ==?=+??,则 24 ()1x f x e e =+

微分方程中的几个基础概念

微分方程中的几个基础概念 微分方程—基础 微分方程(Differential equation, DFQ)是一种用来描述函数与其导数之间关系的数学方程。与之前所接触初等数学代数方程的解不同,它的解不是数,而是符合方程关系的函数。 微分方程的起源约在十七世纪末,为了解决自然科学发展中遇到物理及天文学问题而产生,随着微积分的诞生与在各个科学领域中的广泛应用,很多问题被归化为某类微分方程的问题。 在微分方程分支中,存在很多各种各样已知类型的微分方程。实事上,提高对微分方程的理解的最好的方法之一是首先处理基本的分类系统。为什么?因为你可能永远不会遇到完全陌生的微分方程。大多数微分方程已经被解决了,因此,普遍适用的解决方法很可能已经存在。 除了描述方程本身的性质外,对微分方程进行分类和识别的真正附加值来自于为跳转点提供一张导图。求解微分方程的诀窍不是创造原始解法,而是对已证明的解法进行分类和应用;有时,可能需要几步把一类方程转换为另一类等效方程,以获得可实现的广义解。 最常用于描述微分方程的四个属性是: ?常微分与偏微分 ?线性与非线性 ?齐次与非齐次

?微分阶数 虽然这个列表并非详尽无遗,但是它是我们学习首先要掌握的知识,通常在微分方程学期课程的前几周会进行回顾;通过快速回顾每一个类别,我们将会配备基本的入门工具包来处理常见的微分方程问题。 常微分与偏微分 首先,我们在自然中所发现的微分方程最常见的分类来源于从我们手边的问题中所发现的导数类型;简单地说,方程是否包含偏导数? 如果不包含,那么它是一个常微分方程(, Ordinary differential equation)。如果包含,那么它是一个偏微分方程(, Partial differential equation)。 常微分方程是未知函数只含有一个自变量的微分方程,其微分基于该单一的自变量,通常是时间。一个常微分方程有一组离散的(有限的)变量;它们通常是一维动力系统的模型,例如:钟摆随时间的摆动。 另一方面,偏微分方程相当复杂,因为它们通常涉及多个自变量,其多种多样的偏微分方程可能基于也可能并不基于一个已知的自变量。偏微分方程常被用来描述自然界中各种各样的现象,例如:热,空间中的流体速度,或电动力学。这些似乎完全不同的物理现象被化为偏微分方程;它们在随机偏微分方程中得到推广。 下面的这些例子有助于我们分辨微分方程的导数类型包括:

常微分方程基本知识点

常微分方程基本知识点 第一章 绪论 1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要) 例:03)(22=-+y dx dy x dx dy (1阶非线性); x e dx y d y =+22sin 。 2.运用导数的几何意义建立简单的微分方程。(以书后练习题为主) (习题1,2,9题) 例:曲线簇cx x y -=3满足的微分方程是:__________. 第二章 一阶方程的初等解法 1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要) 2.齐次方程的解法(变量代换);(重要) 3.线性非齐次方程的常数变易法; 4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要); 例题:(1).经变换_____y c u os =___________后, 方程1cos sin '+=+x y y y 可化为___线性_____方程; (2).经变换_____y x u 32-=____________后, 方程1 )32(1 '2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。

(4).方程221 'y x y -=为:线性方程。 5.积分因子的概念,会判断某个函数是不是方程的积分因子; 6.恰当方程的解法(分项组合方法)。(重要) 第三章 一阶方程的存在唯一性定理 1.存在唯一性定理的内容要熟记,并能准确确定其中的h ; 2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题 3.1的1,2,3题) 第四章 高阶微分方程 1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质; 2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系; 3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要) 4.n 阶线性非齐次微分方程的常数变易法(了解); 5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(比较系数法、复数法);(重要) 例题:t te x x 24=-'',确定特解类型? (习题4.2相关题目) 6.2阶线性方程已知一个特解的解法(作线性齐次变换)。(重要) 7.其他如Euler 方程、高阶方程降阶、拉普拉斯变换法等了解。

相关文档
最新文档