电动自行车里程表设计毕业设计

电动自行车里程表设计毕业设计
电动自行车里程表设计毕业设计

电动自行车里程表设计毕业设计

第 1 章绪论

单片机自从推出以来,以其超小型化、结构紧凑、可靠性高、成本低等优点被人们广泛接受,从而应用于工业、电讯、数据处理、仪器仪表等多方面。电动自行车里程表是电动自行车的重要配件,在电动自行车仪表中占重要位置,但几十年来其发展变化并不大,现在国外很多车中使用了数字里程表,但在国内还并不多见。

1.1课题背景

里程表的原理很简单,因为汽车车轮的直径已知,车轮的圆周长便是恒定不变的。由此可以计算出每走一里路车轮要转多少圈,这个数也是恒定不变的。因此只要能够自动把车轮的转数积累下来,然后除以每一里路对应的转数就可以得到行驶的里程了。这样简单的原理古人就已经发现,并且开始使用了。“记里鼓车”就是这样的装置,它是利用上述原理,再加上巧妙的机构使得车轮每转一定圈数就自动敲一下鼓,此时只要有专人把它记下了,就可以得到所走里程。此装置十分巧妙无论白天、黑夜均可使用,而且盲人也可使用,体现出了我国古代劳动人民的聪明才智。不过,如果车上没有人默记鼓声数目的话,单靠记里鼓车本身还不能累计一共走了多少里。而且车停下来之后谁也不知道这车曾经走过多少里路,这是美中不足之处。

从保护环境和经济条件许可等因素综合来看,电动自行车目前乃至今后都有着广阔的发展空间。目前市面上电动自行车的速度表和里程表都是机械的,看起来不够直观与方便。如果能用LED直接显示出来里程数或速度值,就可节省用户的时间及精力处理自行车行进过程中的突发事件。

1.2里程表的发展

现在汽车上的里程表可就不一样了,它克服了“记里鼓车”的不足之处,既能告诉你这次走了多少公里,也能记忆自从出厂以来一共走了多少公里,于是,车辆是否需要

大修,发动机比例关系是否应该报废,全都有记录可依。汽车发动机的轴把动力传给变速箱,从变速箱的输出轴到车轮的传动比是不变的。在变速箱的输出轴上装有一根“软轴”,一直通到驾驶员面前的里程表里去。所谓“软轴”就是像自行车线闸用的拉线那样有钢丝芯的螺旋管,管壁和内芯之间有润滑油,外管固定而内芯可以转动,这个内芯的转速与车轮的转速有着恒定的比例关系。软轴通到车速表,使得指针能把车的行驶速度指示出来。同时,软轴旋转还经过蜗轮蜗杆传到车速表中间的滚轮计数器上,把车轮的转数所代表的里程数累计了下来,因为车速和里程都是靠同一根软轴传来的旋转动作驱动的,所以这两个表在一起,前者用指针指示,后者由滚轮计数器累计。

新型小汽车的里程表里包括由同一软轴带动的两个滚轮计数器,分别累计本次里程和总里程。本次里程通常有四位数,供短期计数,这是可以清零的;总里程则有六位数,不能清零。本次里程的单独指示和清零对于出租车的计费十分不方便。

最近电子式车速里程表逐步推广,它不用软轴,而是在变速箱输出轴上安装脉冲发生器,用导线把电脉冲传到仪表里,用脉冲频率指示速度,用脉冲计数器累计里程。看起来电子式车速里程表比先前的机械电磁式的更合理,因为它不用软轴传动。但是因为机械电磁式的价格比较便宜,在目前汽车里用得仍然比较多。

汽车里程表主要分为机械式和电子式两种,目前市场上的大部分新车型都采用电子式里程表,而配备机械式里程表的大都属于较老车型,在二手车市场上比较多见,像老款的捷达、普桑和富康,这些热销车型都是机械式里程表。回调里程表其实很简单,尤其是机械式里程表,几分钟就可以了。而调整电子式里程表的成本较高,需要专门的设备。现在市面上就有一种专门针对电子式里程表的调表仪器。

早期的机械软轴的里程表几乎已经消失了,取而代之的是电子式的里程表和液晶显示屏,过去可以通过拨数码齿轮的方式调整里程表,现在这些方法都行不通,不过调表的需求并不随调整难度的增加而减少,如卖车和新车的都需要减小里程数掩盖车子真实行驶里程。公家车的司机又需要增加里程数。如果减小液晶表的公里数只能通过编程器调整存储片数据来实现,这需要专门的设备和知识,普通人要调整的确不易。但如果要增加公里数实现起来就要容易很多了,我们只要给车速传感器提供一个符合要求的信号就可以了。

1.3设计的主要内容及技术指标

单片机软件设计程序主要包括里程设计模块;存储历史里程数据设计模块;里程的显示设计模块;里程公里数的累计设计模块;里程公里数的清0设计模块。里程计数时有一盏指示灯闪烁;用AT24C01进行对历史里程数据存储;用共阴7段动态显示的数码管进行显示公里数;用个开关实现对里程公里数的清0功能;用霍尔传感器实现对里程车轮圈数的累计功能。

主要技术指标:

一. 完成里程的显示功能

二.能存贮历史里程数据

三.能够清除历史数据

四.有一盏指示灯

第 2 章硬件的设计

2.1单片机简介

单片机是单片微型计算机(Singlc-Chip Microcomputer)的简称。单片机是将中央处理器(CPU),程序存贮器(ROM或EPROM),随机存贮器(RAM),定时器/计数器,并行及串行I/O口等电路集成在一块芯片上做成的计算机]1[。单片机的典型结构如图2-1-1所示。

单片机与一般的非单片型微型机相比,具有以下特点]8[:

具有较强的通用性又有相当的专用性,尤其适合于各种控制系统。

片内带有定时器/计数器。

片内设有多个I/O接口,便于系统扩展及信息交换。

使用汇编语言,指令系统的指令字节数较少,程序执行速度快,节省存贮器。

多品种,多系列。

2.2AT89系列单片机简介

AT89系列单片机是以8051为内核,结合自己的技术优势构成的,所以它和8051是兼容的系列。因此,AT89系列对于以8051为基础的应用系统而言,是十分容易进行取代和构成的。而且对于熟悉8051的用户来说,选用AT89系列单片机进行系统设计也是轻而易举的。

AT89系列单片机具有下列很明显的优点]3[:

1.和AT8051接插相兼容

AT89系列单片机的引脚和8051是一样的,因此,当选用AT89系列单片机取代8051时,可以直接替换。这时不管是采用40引脚还是44引脚产品,只要选用相同的AT89系列单片机取代8051单片机即可。

2.以EEPROM电可檫除和Flash技术为主导的存储器

ATMEL公司把EEPROM和Flash技术巧妙相结合形成特殊的集成电路,从而使应用领域扩大。由于AT89系列内部含有Flash存储器,因此在系列的开发过程中可以十分容易地进行程序的修改,从而大大缩短了系统的开发周期。同时,在系统的工作过程中,能有效地保存部分重要数据,不受外界因素而遭到破坏(如电源故障等),这给便携类产品的应用提供了极大方便。含有EEPROM和Flash存储器是AT产品的明显特色之一。3.静态时钟方式

AT89系列单片机采用静态时钟方式,可以节省电能。这对于降低便携类产品的应用提供了极大方便。含有EEPROM和Flash存储器是AT产品的明显特色之一。

2.3AT89C52系列单片机的介绍

AT89C52是美国ATMEL公司生产的低电压,高性能CMOS 8位单片机,片内含8K bytes 的可反复擦写的只读程序存储器(PEROM)和256 bytes 的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度,非易失性存储技术生产,与标准MCS-51指令系统及8052产品引脚兼容,片内置通用8位中央处理器(CPU)和Flash存储单元,功能强大AT89C52单片机适合于许多较为复杂控制应用场合]13[。

主要性能参数:

1. 与MCS-51产品指令和引脚完全兼容

2. 18K 字节可重擦写Flash闪速存储器

3. 1000次擦写周期

4. 全静态操作:0Hz-24MHz

5. 三级加密程序存储器

6. 256*8字节内部RAM

7. 32个可编程I/O口线

8. 3个16位定时/计数器

9. 8个中断源

10.可编程串行UART通道

11.低功耗空闲和掉电模式

功能特性概述:

AT89C52提供以下标准功能:8K 字节Flash闪速存储器,256字节内部RAM,32个I/O口线,3个16位定时/计数器,一个6向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C52可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。引脚如图3.3-1所示。振荡器反相放大器如图3.3-2所示。

图3.3-1

XTAL1:振荡器反相放大器的及内部时钟发生器的输入端。

XTAL2:振荡器反相放大器的输出端。

图3.3-2

中断:

AT89C52共有6个中断向量:两个外中断(INT0和INT1),3个定时器中断(定时器0,1,2)和串行口中断。所有这些中断源可通过分别设置专用寄存器IE的置位或清0来控制每一个中断的允许或禁止。IE也有一个总禁止位EA,它能控制所有中断的允许或禁止。

AT89C52编程方法:

1.在地址线上加上要编程单元的地址信号。

2.在数据线上加上要写入的数据字节。

3.激活相应的控制信号。

4.在高电压编程方式时,将EA/Vpp端加上+12V编程电压。

5.每对Flash存储阵列写入一个字节或每写入一个程序加密位,加入一个

ALE/PROG编程脉冲。每个字节写入周期是自身定时的,通常约为1.5ms。重复1-5步骤,改变编程单元的地址和写入的数据,直到全部文件编程结束。 AT89C52的极限参数:

工作温度:-55℃ to +125℃

储藏温度:-65℃ to +150℃

任一引脚对地电压:-1.0V to +7.0V

最高工作电压:6.6V

直流输出电流:15.0mA

2.4里程表各部分电路介绍

本次里程表的设计,硬件电路主要由霍尔传感器电路,里程指示电路,里程数据存储电路,时钟电路,LED显示模块及74LS07驱动器构成。

2.4.1霍尔传感器电路

霍尔传感器电路图如下图3.4.1-1所示。

图3.4.1-1

2.4.2里程指示电路

霍尔传感器发出一个低电平脉冲,里程显示时四个数码管点亮后开始计数,表明电动自行车正在行驶中,一盏指示灯一直闪烁着。电路如图3.4.2-1所示。

图3.4.2-1

2.4.3里程数据存储电路

里程数据的存储电路是本次设计的关键电路,单片机首先向AT24C01发送写信号,当确认后从单片机内部的数据储存单元提取数据然后向AT24C01的内部地址传送数据。当显示里程时,单片机首先向AT24C01发送读信号,然后确认后,单片机从AT24C01内部的地址向单片机的读出单元字节读出数据,供显示所用。因此,最终可保证掉电时数据不丢失。

I2C总线的的介绍:

I2C总线是双线串行总线。I2C总线采用二线传输,即SDA串行数据线和SCL串行时钟线。总线和器件之间的数据传送均由SDA数据线完成。一个I2C总线系统里的所有外围器件均采用器件地址和引脚地址的编址方式。系统中主CPU对任何节点的寻址没有采用传统的片选线方式,而是采用纯软件的寻址方式。为了能使总线上的所有节点器件输出实现“线”与逻辑功能,I2C器件输出端必须是漏极或集电极开路结构,即SDA和SCL接口线上必须加上拉电阻]7[。

里程数据存储电路,如图3.4.3-1:

图3.4.3-1

2.4.4时钟电路

图3.4.4-1

在图3.4.4-1的电路中,电容器C1和C2对振荡频率有微调作用,通常的范围:30±10PF;石英晶体选择6MHZ或12MHZ都可以。其结果只是机器周期时间不同,影响计数器的计数初值]12[。

2.4.5LED显示模块电路及74 LS07驱动器

LED显示器采用动态显示,用74LS07驱动共阴极LED数码管。LED显示模块电路图,如图3.4.5-1所示。LED数码管结构图,如图3.4.5-2(a),(b)为共阴极型,(c)为共阳极型。

图3.4.5-1

图3.4.5-2

OC门驱动器用7407,7407 即TTL 集电极开路六正相高压驱动器.当7407输出低电

平时,没有电流流过LED,当7407输出为开路状态时,电流经100 限流电阻流入LED 显示器,每个七段LED的公共端都接一个7407驱动器。

7407模型如图3.4.5-3:

图3.4.5-3

7407引脚如图3.4.5-4:

图3.4.5-4

第 3 章软件的设计

3.1系统的总体设计

一个完整的单片机系统,包括软硬件两个方面。硬件是系统可靠运行的“载体”,是基础,而软件则是使“载体”产生动力的发电机,二者相辅相成,缺一不可。从设计者的角度出发,一个硬件电路的设计过程往往就是设计者的经验不断积累的过程。

总体设计流程:

在设计硬件电路时:

一般的流程是:

(1) 器件选择(包括单片机和外围芯片的选择)

(2) 电路图绘制

(3) PCB制板

(4) 硬件检查和排错

(5) 硬件电路调试完毕

只有在硬件平台建立之后才能更好进入软件系统的调试。

在进行软件系统的设计时,设计者首先要建立完整,总体的概念,一个完整的软件系统是由各个功能模块组成的。程序设计者要时刻牢记如何将那些独立,分散的子程序模块通过主程序连接起来,并最终实现系统的目标功能。

3.2单片机应用软件设计

应用软件应在硬件电路的支持下能可靠地实现应用系统的各种功能。它应具有下列特点]2[:

(1) 结构清晰,简捷,流程合理。

(2) 各功能程序模块化,子程序化,既便于调试,链接,也便于移植,修改。

(3) 程序存储区,数据存储区规划合理,既节约内存容量,又便于操作。

(4) 各功能程序的运行状态,运行结果以及运行要求尽量设置状态标志,以便查询,控制与程序判转。

(5) 调试修改后,还应规范化,以利于交流,借鉴,为模块化,标准化打下基础。

(6) 做好抗干扰设计,这是计算机应用系统提高可靠性的有力措施。

(7) 设置自诊断程序,系统工作前先运行自诊断程序,检查系统各特征状态参数是否正常,以提高运行的可靠性。

开发步骤:

(1) 确定任务:a) 确定系统的功能,指标,成本

b) 完成期限

(2) 总体设计:a) 调研

b) 机型选择

c) 软硬件任务划分

I. 硬件开发

一.绘出线路图

二.选购元器件

三.组装

四.调试硬件

II. 软件开发

一.建立数学模型,确定算法,安排数据结构

二.设计,编制各子程序模块

三.各子程序进行调试

四.各子程序连接起来调试

(3) 样机联调: a) 软,硬件结合起来调试

b) 找出错误,修改软,硬件

c) 实时仿真,直至满足设计要求

(4) 产品定型: a) 形成工艺

b) 编写技术文件

3.3 中断控制

INT的中断请求信号由外部产生并输入,称外部中断,其余的中断请求信INT和1

号均由主机内部产生,故称为内部中断。

本次里程表的设计只用到外部中断0

INT:外部中断0请求中断输入端口(P3.2引脚),低电平或负跳变(从高到低)有效。

中断屏蔽:

AT89C52的中断均属可屏蔽中断,即通过软件对特殊功能寄存器IE的设置,实现对各中断源的中断请求开放(允许)或屏蔽(禁止)的控制。

中断响应的过程:

AT89C52的指令系统中设有两条返回指令:RET和RETI。调用子程序中应选用RET 返回指令,中断服务程序中应选用RETI返回指令,如采用的是RET返回指令,虽然也能使中断服务程序返回原断点处继续往下执行原程序,但它不会告知中断控制系统,现行中断服务程序已执行完毕,致使中断控制系统误认为仍在执行中断服务程序而屏蔽新的中断请求。因此,中断服务程序的返回必须用RETI指令,而不能用RET返回指令代替]10[。

中断响应时间:

从中断源发生中断请求到主机响应中断,转去执行中断服务程序需要3-8个机器周期。外部中断0矢量地址:0003H。

3.4I/O口的控制方式

在单片机中,为了实现数据的输入输出传送,通常使用三种控制方式。即:无条件传送方式,查询方式和中断方式]9[。

无条件传送方式适用于以下器件或设备的输入输出:

例如,机械或电子开关,指示灯,发光二极管,数码管等。它们随时处于“准备好”状态方便数据的传输。

查询方式:

为了实现查询方式的数据输入输出传送,需要由接口电路提供部,器件或设备的状态,并以软件方法进行状态测试。因此,这是一种软,硬件方法结合的数据传送方式。程序查询流程如图4.4-1所示。

图4.4-1

中断方式:

中断方式与查询方式的主要区别在于如何知道,器件或外设是否为数据传输作好了准备。查询方式是主机主动查询。而中断方式则为部,器件或外设主动请求。

采用中断方式进行数据传输时,当部,器件或外设为数据传输已作好准备之后,就向主机发出中断请求(相当于通知主机),主机在接收到中断请求之后,在允许中断的情况下,响应中断请求,暂停正在执行的原程序,转而去为部,器件或外设的数据提供传输服务。待服务完成之后,程序返回,主机再从断点处继续执行原程序。

3.5 里程表的软件设计

3.5.1总体设计思路

将各英寸的电动自行车轮胎车轴内置一个小车轮,设小车轮周长约为150毫米(直径为47.7毫米),以10毫米为单位分15等份,即15个脉冲,小车轮的转动,方便大

车轮的周长计算,更便于行驶公里数的计算,就不需要将圈数转换成公里数,避开了除法算法,降低了软件程序的复杂度。

假设小车轮周长约为150毫米(直径为47.7毫米),不是毫无根据的。

由22英寸到28英寸电动自行车的规格见下表4.5.1-1所示。大车轮与小车轮的模拟图如图4.5.1-2所示。

表4.5.1-1

图4.5.1-2

最小的电动自行车尺寸的车轮周长为1752毫米,小车轮的周长要略小于大车轮的周长,假设为1500毫米,在将其值缩小10倍,因此得到小车轮的周长值。

主程序流程图如图4.5.1-3所示。

图4.5.1-3

判内部数据处理:AT24C01出厂时原有数据BM单元是否为0FFH,等于0FFH时,BM 单元清0,写到AT24C01中,不等于时再次判断AT24C01出厂时原有数据KM单元是否为0FFH,等于0FFH时,KM单元清0, 写到AT24C01中,以此类推,判断到BKM单元为止。当AT24C01出厂时原有数据BKM单元不为0FFH,调用显示处理子程序。

按下P3.6接的开关:调用计数处理子程序,计数时P1.0口接的指示灯会闪烁点亮。

BMM, M,SM,BM,KM,SKM,BKM单元加处理时,判断是否到10进1,BMM,M,SM单元每加一次都不需要存人AT24C01和显示,BM加处理后储存AT24C01,并显示。

按下P1.1接的开关:调用清除数据子程序。

3.5.2里程的设计

里程数据存放单元见如下表4.5.2-1所示。

表4.5.2-1

因为电动自行车里程表的硬件设计里程的显示部分是采用四个共阴极的数码管,所以只能显示BM(0.1公里),KM(公里),SKM(十公里),BKM(百公里)。但设计时从BMM (分米)开始置存放单元并显示,每按一下P3.6开关,存放单元数据进行累加一,而BMM(分米),M(米),SM(十米)置存储单元,虽然没显示但骑电动自行车时BMM(分米),M(米),SM(十米)累加的。因此BMM(分米),M(米),SM(十米)加处理后不存储AT24C01,而BM(0.1公里),KM(公里),SKM(十公里),BKM(百公里)加处理后存储AT24C01后再在数码管上显示。

3.5.3存贮历史里程数据的设计

存贮历史里程数据要用到I2C总线,I2C (Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。I2C总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。

I2C总线协议定义如下:

?只有在总线非忙时才被允许进行数据传送。

?在数据传送时,当时钟线为高电平时,数据线必须为固定状态,不允许有跳变;当时钟线为高电平时,数据线的任何电平变化将被当作总线的启动或停止条件。

I2C总线的数据传输和器件寻址:

1.总线数据传送的起始和停止标志

I2C总线每一次数据传送,都由主器件发送起始信号开始,发送停止信号结束,当SCL时钟线为高电平,SDA数据线出现高电平向低电平的下降沿信号

时即为总线的起始信号;相反,当SDA数据线出现由低电平向高电平的上升沿

信号时即为总线的停止信号。

2. I2C总线上的数据传输格式

主CPU发生起始信号表明一次数据传送的开始,其后为寻址字节,寻址字节由高7位地址和1位方向位组成,方向位表明CPU与从器件之间的数据传送

方向,当该位为“0”时表明CPU对从器件进行写操作,为“1”时是读操作。

寻址字节后是按指定地址读,写操作的数据字节与应答位。主CPU发出寻址信

号后,地址与自己相符的从器件便会产生一个应答信号。数据字节的后面也跟

随一个应答信号,应答信号在第9个时钟位上出现]15[。

3.本设计常用I2C总线芯片的器件和引脚地址。见表4.5.3-1所示。

表4.5.3-1

AT24C01是美国ATMEL公司生产的串行EEPROM芯片,容量分别为128?8位,主要特性如下:

?具有页写功能,AT24C01为4B;

?可擦写次数?100000次;

?数据保存周期为100年;

? 8引脚DIP或SOIC封装。

AT24C01的引脚排列,接口电路图如如图2.3.2-1所示,说明如下:

? A0,A1,A2为器件地址选择线;

? SDA为串行数据线;

? SCL为串行时钟线;

? WP(EN)为写保护端(当该端口为高电平时,不可对存储器写操作);

? Vcc为正电压1.8-5.5V;

? Vss为地。

I2C总线基本操作:

I2C规程运用主/从双向通讯。器件发送数据到总线上,则定义为发送器,器件接收数据则定义为接收器。主器件和从器件(本文为AT24C01)都可以工作于接收和发送状态。总线必须由主器件(通常为微控制器CPU)控制,主器件产生串行时钟(SCL)控制总线的传输方向,并产生起始和停止条件。SDA线上的数据状态仅在 SCL为低电平的期间才能改变,SCL为高电平的期间,SDA状态的改变被用来表示起始和停止条件。

AT24C系列串行2

E PROM具有I2C总线接口功能,功耗小,宽电源电压(根据不同型号

2.5V~6.0V),工作电流约为3mA,静态电流随电源电压不同为30μA~110μA。

AT24C系列2

E PROM接口及地址选择]5[:

由于I2C总线可挂接多个串行接口器件,在I2C总线中每个器件应有唯一的器件地址,按I2C总线规则,器件地址为7位数据(即一个I2C总线系统中理论上可挂接128个不同地址的器件),它和1位数据方向位构成一个器件寻址字节,最低位D0为方向位(读/写)。器件寻址字节中的最高4位(D7~D4) 为器件型号地址,不同的I2C总线接口

E PROM的型号地址皆为1010,器件地址中器件的型号地址是厂家给定的,如AT24C系列2

的低3位为引脚地址 A2A1A0,对应器件寻址字节中的D3、D2、D1位,在硬件设计时由连接的引脚电平给定。

E PROM读写操作软件实现方法:

AT24C系列2

E PROM的读写操作完全遵守I2C总线的主收从发和主发从收的规

对AT24C系列2

则。

AT24C01的写操作:

写操作分为字节写和页面写两种操作,对于页面写根据芯片的一次装载的字节不同有所不同。关于页面写的地址、应答和数据传送的时序连续写操作是对E2PROM连续装载n个字节数据的写入操作,n随型号不同而不同,一次可装载字节数也不同。AT24C01/02 8字节/每页。

电动车速度里程表(付C程序)课程设计报告讲解

专业方向模块综合设计 课题:电动车速度测量显示仪 班级测控1082 学生姓名马秀梅学号 1081203212 指导教师张青春李洪海 淮阴工学院电子与电气工程学院

一、设计内容及要求 1.检测并显示电动自行车实时速度 2.检测、显示并累计电动自行车行驶里程 3.技术参数 a电动车最高速度: 50km/h b电动车轮胎直径: 14英寸 c电动车电池电压: 24V d检测精度:±1% e显示: 8位LED 4.设计要求 (1)电路图 (2)程序清单 (3)运行结果 二、方案设计与讨论 1.速度测量原理 测量一定时间间隔T内自行车转过的圈数Q。假设车轮的周长为L,则速度V=Q*L/T 2.开关型霍尔传感器 霍尔传感器是利用霍尔效应把磁输入信号转换成电信号的器件。把开关型霍尔传感器安装在自行车贴近车轮的支架上,磁钢安装在辐条上,当磁钢靠近霍尔传感器的时候,传感器输出一个无抖动的低电平,单片机根据此信号可计算里程、速度等。霍尔

传感器的优点是稳定和安装简易,缺点是成本较高。 本设计采用开关型霍尔传感器,但由于实验室设计所限,实际测速时并未采用,而是直接从信号发生器中产生低频脉冲代替霍尔传感器向单片机输入脉冲信号,从而显示相应的速度。 3.LED八段数码管显示 8位LED显示。其中低3位显示速度,要求保留1位小数。高5位显示里程,同样要求保留1位小数。速度即时显示,最大显示位35.0,里程每走100米计数一次,最高显示9999.9。 三、系统概述及工作原理 1.本系统由信号预处理电路、单片机8051F410、系统化LED显示模块、串口数据存储电路和系统软件组成。其中信号处理电路包含信号放大、波形变换和波形整形、对待测信号进行放大的目的是降低对待侧信号的幅度要求;波形变换和波形整形电路则用来将放大的信号转换成可与单片机相连的TTL信号;通过单片机的设置可使内部定时器T0对脉冲输入引脚进行控制,这样能精确地算出加到引脚的单位时间内检测到的脉冲数;设计中速度显示采用LED模块,通过速度换算得来的里程数采用I2C总线并通过E2PROM来存储,既节省了所需单片机的口线和外围器件,同时也简化了显示部分的软件编程。

基于单片机的电动车智能充电器的设计

前言 (4) 第一章充电器原理 (5) 1.1 蓄电池与充电技术 (5) 1.2 密封铅酸蓄电池的充电特性 (5) 1.3 充电器充电原理 (6) 1.3.1 蓄电池充电理论基础 (6) 1.3.2 充电器的工作原理 (8) 第二章总体设计方案 (10) 2.1 系统设计 (10) 2.2 方案策略 (10) 第三章硬件电路设计 (12) 3.1 电路总体设计 (12) 3.2 芯片介绍 (12) 3.2.1 LM358双运放 (12) 3.2.2 UC3842单管开关电源 (13) 3.2.3 EL817光耦合器 (14) 3.2.4 场效应管K1358 (15) 3.3 电动车充电器原理及各元件作用的概述 (16) 3.3.1 充电器原理图 (16) 图3.5 充电器原理图 (16) 3.3.2 各元器件作用概述 (16) 3.4 功能模块电路设计 (17) 3.4.1 第一路通电开始 (17) 3.4.2 第二路UC3842电路 (17) 3.4.3 第三路LM358(双运算放大器)电路 (18) 3.5 电动车充电器改进方案 (21) 3.5.1 增加充满电发声提示电路 (21) 3.5.2 加散热风扇 (22) 第四章总结与展望 (23)

致谢 (25)

电动车智能充电器设计及应用 中文摘要: 本设计介绍了充电器对蓄电池充电的一般原理,从阀控蓄电池内部氧循环的设计理念出发,研究各种充电方法对铅酸蓄电池寿命的影响。针对蓄电池充电过程中出现的种种问题,分析现有各种充电方法存在的问题,提出一种可对铅酸蓄电池实现四段式慢脉冲充电的智能充电器设计方案。控制开关电源的脉冲频率和占空比,从而调节充电电流和电压,实现对蓄电池的分级慢脉冲充电。这个方案不仅可实现快速充电,同时可以减少析气,消除硫化,进行均衡充电,从而大大地延长了铅酸蓄电池的使用寿命。 关键词:慢脉冲充电;蓄电池;充电器; Abstract: The design describes the charger to the battery charger of the general principles, from the internal oxygen cycle of valve-regulated battery design concepts starting to study a variety of charging methods for lead-acid battery life implications. For battery charging problems arising in the process, analysis of existing problems in a variety of charging methods, proposed a lead-acid batteries could achieve the Four-slow pulse charge of the intelligent charger design. Control the switching power supply pulse frequency and duty cycle, thus regulating charge current and voltage to achieve the classification of the battery charge with slow pulse. This program not only for fast charging, while reducing analysis of gas, to eliminate sulfide, a balanced charge, thus greatly extending the service life of lead-acid batteries. Key words: slow pulse charge; batteries; charger;

【完整版】电动车设计毕业论文设计

第一章概述 1.1设计的主要目的和意义 此次设计的目的是掌握产品造型的设计,包括材料、尺寸的合理选择,灵活运用制作技术、形态表达语言,根据人机工程学和美学来设计电动自行车的尺寸和颜色。 根据同类型产品的类比和设计,力学分析,考虑人机工程学中的人体尺寸和人的舒适程度来综合设计电动自行车的尺寸。 设计的目的其实包括好几个层面,第一,加工工艺的了解;第二,进一步提出不同材质的优化组合课题;第三,探究材料与产品结构、功能的有机联系;第四,熟悉产品结构连接件的运用;第五,产品形态讨论;第六,寻求产品设计制作的个性化等等。 通过这半年的设计,我们很好的复习了已经学过的课程,并对部分材料的应用有了一定了解,在颜色搭配上也有了一定的学习,而且能熟练操作制图软件和办公软件。对我们以后在工作上有很大的帮助。 1.2国内外电动自行车的发展情况 1.2.1国外及我国台湾地区电动自行车的发展情况 为创造市场需要,适合老弱妇孺各种年龄层骑乘自行车,国外厂商多年前即开始研制辅助驱动自行车并且在新电池和驱动机械马达技术成熟发展之下,电动自行车应运而生。海外发展较早的要数日本、奥利地、德国、台湾等国家和地区,近几年美国发展也比较快。国外的电动自行车主要是作为一种轻松代步及休闲健身工具。例如,在大型的停车场、超市和旅游区里使用。从1994到1999年6年时间中,全球电动自行车数量,从3.6万辆剧增1600万辆,如按2%算,电动车需要量会在30万辆以上。同时,东南亚、中东、印度增到50万辆,而在2000年,仅日本就需要50万辆。总体来说,电动自行车在全球的潜在市场很大,并呈上升趋势。 日本电动车的生产及技术都占世界领先地位,商品化的电动自行车由日本雅马哈公司率先于1994年推出,并随着本田、三洋、松下等知名公司的参与,生产规模日益放大。但日本对电动自行车的使用管理上采取了严格限制,日本只许智能型电动自行车上路,

详解爱玛电动车速度与里程的关系

详解爱玛电动车速度与里程的关系 骑过电动车的人都知道,目前市场上普通的铅酸电池电动车,跑得越远越快,续行里程就越短。那么,到底是怎么回事呢?下面我们以爱玛电动车为例,来详细解读一下电动车的速度与里程的关系。 原因1:速度加快意味着电量平方倍损失 电动车在行驶时,空气阻力与速度呈现平方关系,假设速度30码空气阻力为10牛顿,在60码时的空气阻力就是100牛顿,那么要克服这么大的阻力,就需要电机的功率进行翻番,电机功率在电池电压不变的情况下,就是靠电流增加来实现的。 根据行业里的统计数据,电机在一定的速度时,就需要具备相对应的功率,具体见下表:

从上面图表看,车速从30提高到65,功率从350提高到3000;车速提高1.2倍,功率需要提高8.6倍,也就是说电流要提高8.6倍。速度提升的比例原远远低于电量消耗的比例,所以即使在电池容量等其它条件不变的情况下,续行里程也会大大缩短。 原因2:速度加快意味着电池实际容量大幅度下降 对于动力铅酸蓄电池有些认识的人都知道,电池容量不是一个常数,其大小与放电速率有密切关系,放电电流越大,容量越小。 在大电流放电时,铅酸电池的活性物质厚度方向的作用深度有限,电流越大其作用深度越小,活性物质被利用的成都越低,电池给出的容量也就越小。 以上现象深层次的原因是:电极表面优先生成硫酸铅,而硫酸铅的体积比氧化铅和铅都大,堵塞多孔电极极孔,电解液不能充分供应内部反应的需要,电极内部物质得不到充分利用,电池有效容量自然下降。下面以12AH电池,在不同放电电流情况的实际容量为例进行说明: 从上面图表看,放电电流从12A提高到24A,电池容量从6AH降低到4.8AH;放电电流提高1倍,电池容量下降20%。速度加快,放电电流加大,电池容量还要降低,续行里程自然降低。 原因3:速度加快意味着电池进入欠压点的速度加快 为防止电池过量放电,现在电动车的控制器都设置有“欠压保护”功能,就

普通快滤池设计计算书

普通快滤池设计计算书 1. 设计数据 1.1设计规模近期360000/m d 1.2滤速8/v m h = 1.3冲洗强度215/s m q L =? 1.4冲洗时间6min 1.5水厂自用水量5% 2.设计计算 2.1滤池面积及尺寸 设计水量31.056000063000m /Q d =?= 滤池工作时间24h ,冲洗周期12h 滤池实际工作时间24240.123.812 T h =-? =(式中只考虑反冲洗停用时间,不考虑排放初滤水) 滤池面积263000330.88823.8Q F m vT ===? 采用滤池数8N =,布置成对称双行排列 每个滤池面积2330.8841.368F f m N = == 采用滤池尺寸1:2=B L 左右 采用尺寸9L m =, 4.6B m = 校核强制滤速889.14/181 Nv v m h N ?===--强 2.2滤池高度 支承层高度10.45H m = 滤料层高度20.7H m = 砂面上水深32H m = 超高(干弦)40.3H m = 滤池总高12340.450.720.3 3.45H H H H H m =+++=+++=

2.3配水系统(每只滤池) 2.3.1干管 干管流量· 41.3615620.4/g q f g L s ==?= 采用管径800g d mm =(干管埋入池底,顶部设滤头或开孔布置) 干管始端流速 1.23/g v m s = 2.3.2支管 支管中心间距0.25z a m = 每池支管数922720.25z z L n a =? =?=根(每侧36根) 每根支管长 4.60.80.3 1.752 z l m --== 每根支管进口流量620.48.62/72 g z z q q L s n = == 采用管径80z d mm = 支管始端流速 1.72/z v m s = 2.3.3孔口布置 支管孔口总面积与滤池面积比(开孔比)0.25%α= 孔口总面积20.25%41.360.1034k F f m α=?=?= 孔口流速0.62046/0.1034 k v m s == 孔口直径9k d mm = 每个孔口面积225263.6 6.36104k k f d mm m π-= ?==? 孔口总数250.103416266.3610 k k k F N m f -==≈?个 每根支管孔口数16262372k k z N n n = =≈个 支管孔口布置设两排,与垂线成045夹角向下交错排列 每根支管长 4.60.80.3 1.752 z l m --== 每排孔口中心距 1.750.150.50.523z k k l a m n = ==??

电动车里程表设计

本文介绍的速度与里程表设计以单片机和光电传感器为核心。传感器将不同车速转变成的不同频率的脉冲信号输入到单片机进行控制与计算,再采用LED模块进行显示,使得电动自行车的速度与里程数据能直观的显示给使用者。 系统概述 本系统由信号预处理电路、单片机AT89C2051、系统化LED显示模块、串口数据存储电路和系统软件组成。其中信号预处理电路包含信号放大、波形变换和波形整形。对待测信号进行放大的目的是降低对待测信号的幅度要求;波形变换和波形整形电路则用来将放大的信号转换成可与单片机相连的TTL信号;通过单片机的设置可使内部定时器T1对脉冲输入引脚T0进行控制,这样能精确地算出加到T0引脚的单位时间内检测到的脉冲数;设计中速度显示采用LED模块,通过速度换算得来的里程数采用I2C总线并通过E2PROM来存储,既节省了所需单片机的口线和外围器件,同时也简化了显示部分的软件编程。 系统的原理框图如图1所示。

图1 系统的原理框图 工作原理 该设计能实时地将所测的速度与累计里程数显示出来,主要是将传感器输入到单片机的脉冲信号的频率(传感器将不同车速转变成不同频率的脉冲信号)实时地测量出来,考虑到信号的衰减、干扰等影响,在信号送入单片机前应对其进行放大整形,然后通过单片机计算出速度和里程,再将所得的数据存储到串口数据存储器,并由LED显示模块交替显示所测速度与里程。本设计的里程数的算法是一种大概的算法(假设在一定时间内自行车是匀速行进,平均速度与时间的乘积即为里程数)。 设计时,应综合考虑测速精度和系统反应时间。本设计用测量脉冲频率来计算速度,因而具有较高的测速精度。在计算里程时取了自行车的理想状态。实际中,误差控制在几米之内,相对于整个里程来说不是很大。为了保证系统的实时性,系统的速度转换模块和显示数据转BCD码模块都采用快速算法。另外,还应尽量保证其他子模块在编程时的通用性和高效性。本设计的速度和里程值采用6位显示,并包含两个小数位。 系统的硬件设计 脉冲发生源 本设计采用了ST1101红外光电传感器,进行非接触式检测。当有物体挡在红外光电发光二极管和高灵敏度的光电晶体管之间时,传感器将会输出一个低电平,而当没有物体挡在中间时则输出为高电平,从而形成一个脉冲。 该系统在自行车后轮的轴处保持着与轮子旋转切面平行的方向延伸附加一个铝盘,在这个铝盘的边沿处挖出若干个圆形过孔,把传感器的检测部分放在圆孔的圆心位置。每当铝盘随着后轮旋转的时候,传感器将向外输出若干个脉冲。把这些脉冲通过一系列的波形整形成单片机可以识别的TTL电平,即可算出轮子即时的转速。

电动车充电器原理及带电路图维修word精品

常用电动车充电器根据电路结构可大致分为两种。第一种是以 UC3842驱动场效应管的单管开关电源,配合LM358双运放来实现三 阶段充电方式。其电原理图和元件参数见图表 1) 220v 交流电经TO 双向滤波抑制干扰,D1整流为脉动直流, 再经 U L 5竺““玮 rMCJEECNErME 寸 LLnE 寸 竺 Is 雪06 oaM 耳 " 请 U0S- O g !5— O O T — Q 1— Q Q LLI ips - 3 LL LL O 01 D : Q tr ◎ L g 亠 0 LgLT-gifJZC^pOL 寸 16BE iliCrOOcrCEiVjZUOOLj^QQO 1 v~ift ggSiLLE 寸寸奇 己工 rsi TT in o Q

C11滤波形成稳定的300V左右的直流电。U1为TL3842脉宽调制集成电路。其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358)3脚为最大电流限制,调整 R25(2.5欧姆)的阻值可以调整充电器的最大电流。2脚为电压反馈,可以调节充电器的输出电压。4脚外接振荡电阻R1,和振荡电容C1。T1为高频脉冲变压器,其作用有三个。第一是把高压脉冲将压为低压脉冲。第二是起到隔离高压的作用,以防触电。第三是为UC3842提供工作电源。D4为高频整流管(16A60V )C10为低压滤波电容,D5 为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。调整w2(微调电阻)可 以细调充电器的电压。D10是电源指示灯。D6为充电指示灯。R27 是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200 —300 mA )。 通电开始时,C11上有300v左右电压。此电压一路经T1加载到 Q1。第二路经R5,C8,C3,达到U1的第7脚。强迫U1启动。U1 的6脚输出方波脉冲,Q1工作,电流经R25到地。同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。此电压一路经D7 (D7起到防止电池的电流倒灌给充电器的作用)给电池充电。第二路经R14,D5,C9,为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。D9为LM358提供基准电压,经

电动自行车调速系统设计123

《自动控制系统》课程设计任务书 课题:电动自行车调速控制电路的设计 :蔡嘉伦 学号:2012118002

目录 概述 (2) 方案及原理 (2) 总体规划.……………………………………….…....................... ..3 电路设计…………………………………………......................... ..3 参考文献 (9)

概述 单片机控制的永磁无刷直流电动机调速系统适用于电动自行车等小功率的工作情况。并能将多余的电能回溃。该系统具有调速性能好、功率因数高、节能、体积小、重量轻等优点。 本文从系统要求分析入手,将整个系统分成四个部分,分析和讨论了各个部分的电路原理、控制策略、实现方法。详细讨论了系统的各种工况及信号的传递情况,并得到了系统各个部分在不同工况的工作状态。系统各部分的控制电路基于Intel公司的控制芯片8051单片机。根据永磁无刷直流电动机的特性实施脉宽PWM控制,并通过转速传感器测量转速通过八段数码管动态显示转速,通过软硬件的配合,实现了整个系统的设计要求。 方案及原理 电动车对电动机的基本要求 电动车的运行,与一般的工业应用不同,非常复杂。因此,对驱动系统的要求是很高的。 电动车用电动机应具有瞬时功率大,过载能力强、过载系数应为(3~4),加速性能好,使用寿命长的特点。

电动车用电动机应具有宽广的调速围,包括恒转矩区和恒功率区。在恒转矩区,要求低速运行时具有大转矩,以满足起动和爬坡的要求;在恒功率区,要求低转矩时具有高的速度,以满足车在平坦的路面能够高速行驶的要求。 电动车用电动机应能够在车减速时实现再生制动,将能量回收并反馈回蓄电池,使得电汽车具有最佳能量的利用率,这在燃机的摩托车上是不能实现的。 电动车用电动机应在整个运行围,具有高的效率,以提高1次充电的续驶里程。 另外还要求电动车用电动机可靠性好,能够在较恶劣的环境下长期工作,结构简单适应大批量生产,运行时噪声低,使用维修方便,价格便宜等。 鉴于电动车对电动机的基本要求采用永磁无刷直流电动机。 永磁无刷直流电动机的基本性能。永磁无刷直流电动机是一种高性能的电动机。它的最大特点就是具有直流电动机的外特性而没有刷组成的机械接触结构。加之,它采用永磁体转子,没有励磁损耗:发热的电枢绕组又装在外面的定子上,散热容易,因此,永磁无刷直流电动机没有换向火花,没有无线电干扰,寿命长,运行可靠,维修简便。此外,它的转速不受机械换向的限制,如果采用空气轴承或磁悬浮轴承,可以在每分钟高达几十万转运行。永磁无刷直流电动机机系统相比具有更高的能量密度和更高的效率,在电动车中有着很好的应用前景。 永磁无刷直流电动机的控制系统。典型的永磁无刷直流电动机是一种准解耦矢量控制系统,由于永磁体只能产生固定幅值磁场,因而永磁无刷直流电动机系统非常适合于运行在恒转矩区域,一般采用电流滞环控制或电流反馈型SPWM法来完成。为进一步扩充转速,永磁无刷直流电动机也可以采用弱磁控制。弱磁控制的实质是使相电流相位角超前,提供直轴去磁磁势来削弱定子绕组中的磁链。 永磁无刷直流电动机的不足。永磁无刷直流电动机受到永磁材料工艺的影响和限制,使得永磁无刷直流电动机的功率围较小,最大功率仅几十千瓦。永磁材料在受到振动、高温和过载电流作用时,其导磁性能可能会下降或发生退磁现象,将降低永磁电动机的性能,严重时还会损坏电动机,在使用中必须严格控

普通快滤池设计计算(稻谷文书)

普通快滤池设计计算 1.已知条件 设计水量Qn=20000m 3/d ≈833m 3/h.滤料采用石英砂,滤速v=6m/h,10d =0.6,80K =1.3,过滤周期Tn=24h ,冲洗总历时t=30min=0.5h;有效冲洗历时0t =6min=0.1h 。 2.设计计算 (1)冲洗强度q q[L/(s*m 3)]可按下列经验公式计算。 632 .0632.145.1)1()35.0(2.43v e e dm q ++= 式中 dm ——滤料平均粒径,mm ; e ——滤层最大膨胀率,采用e=40%; v ——水的运动黏度,v=1.142 mm /s (平均水温为15℃)。 与10d 对应的滤料不均匀系数80K =1.3,所以 dm=0.980K 10d =0.9x1.3x0.6=0.702(mm) 632 .0632.145.114 .1)4.01()35.04.0(702.02.43?++??=q =11[L/(s*m 3)] (2)计算水量Q 水厂自用水量主要为滤池冲洗用水,自用水系数α为 v qt t Tn Tn 0 6.3)(- -= α= 6 1 .0116.3)5.024(24 ??- -=1.05 Q=αQn=1.05X883=875(m 3/d) (3)滤池面积F 滤池总面积F=Q/v=875/8=109㎡ 滤池个数N=3个,成单排布置。 单池面积f=F/N=109/3=36.33(㎡),设计采用40㎡,每池平面尺寸采用B×L=5.2m×7.8m (约40㎡),池的长宽比为7.8/5.2=1.5/1. (4)单池冲洗流量冲q 冲q =fq=40×11=440(L/s)=0.44(m 3/s) (5)冲洗排水槽 ①断面尺寸。两槽中心距a 采用2.0m,排水槽个数 1n =L/a=7.8/2.0=3.9≈4个

一种应用在电动车上的数字速度_里程表方案

? 1994-2010 China Academic Journal Electronic Publishing House. All rights reserved. https://www.360docs.net/doc/f810799221.html,  [新设备?新材料?新方法] 收稿日期:2006204220 作者简介:李 宪(1982-),男,河北衡水人,浙江大学电气工程学院硕士研究生,专业方向为电机与电器。一种应用在电动车上的数字速度 里程表方案 李 宪,陈敏祥 (浙江大学电气工程学院,浙江杭州 310027) 摘 要:电动自行车在城市交通中的应用越来越广泛,有着广阔的前景。本文介绍了一种应用在电动车上的速度 里程累积方法,利用电机换相信号测速和累计里程,并选用EEPR OM 器件来保存里程值。给出了基于A T 89C 2051芯片的数字速度 里程表的具体实现方案。通过实验验证,此方案可行,可考虑发展规模化生产。关 键 词:无刷直流电机;电动车;测速;里程 中图分类号:U 484 文献标志码:A 文章编号:100522895(2007)022******* 1 系统任务 近年来,电力电子技术的飞速发展带动了电机行 业新的革命。本文介绍了一种基于A T 89C 2051芯片的应用在电动车上的数字速度 里程表,主要适用于有位置传感器的无刷直流电机。 直流无刷电机,是一种应用范围很广的机电一体化设备,由电动机、转子位置检测器和驱动电路组成。其基本原理是用电子线路来取代直流电机的电刷和换向器。,转子传感器就发出一个信号,使线路中的一些电子元器件按预定的逻辑导通或关断,控制绕组线圈,或者使线圈中的电流改变方向,通过电子换向,使电机受到单一方向力矩而转动。数字里程表就是利用对电机换向信号的检测,掌握电机转子位置的信息,并据此算出电机转速,同时进行累计,通过电动车的轮径信息,得出速度、里程,显示在L CD 面板上。作为一款实用性产品的研究,电动车车载电池的电压信息也要同时显示,以便用户对电量情况的掌握。2 系统介绍 系统选用A T 89C 2051来处理所需的信号采样、速度测量、里程累积、送显示,以及数据的保存。如图1。 在实验系统里,L CD 采用1602A 进行显示,EEPROM 选用的是有I 2C 总线的BR 24C 01A 。按功能可分为测速及里程模块,A D 模块,显示模块和存储模块。 (1)测速及里程模块 传统的测速方法分为M 法,T 法以及M T 法 。由 图1 系统硬件框图 于电动车速度的变化范围一般不大,而单片机的运算速度不利于做除法运算,这里采用单位时间测脉冲数的方法。为了合理利用系统资源,这里使用外部中断来监测位置信号。对位置信号的每一个下降沿,都会引起中断程序的执行,从而保证不漏掉脉冲。为了让脉冲信号正常无误,布板时,应注意脉冲信号的走线要走最短回路。无刷直流电机的转速范围一般在100~3000r m in ,每圈霍尔信号变化为6P 周期(P 为极对数)。这里取P =2分析,每秒有20~600个周期。这样每2次中断之间的时间间隔,为1.5~50m s 。而一次中断程序的执行时间为u s 级,所以不会发生一次中断未执行完,又一次脉冲又发生的情况。据以上估计,可取200m s 为一个计时周期,可以保证8位的脉冲计数器char 型不会溢出一个计时周期内霍尔信号的周期数。根据电动车轮径等信息,设置里程预设值,每发生一次外部中断,里程累积值加1。当累积值达到预设值时,里程加1,累积值清零,以此实现电动车的里程累积。 (2)存储模块   第25卷第2期2007年4月   轻工机械 L ight I ndustry M achi nery   V o l .25N o.2 A p r .2007

电力电子电动车充电器的设计方案范本

电力电子电动车充电器的设计方案 辽宁工业大学

电力电子技术课程设计<论文)题目:36V/2A电动车充电器设计 院<系):电气工程学院 专业班级:电气112 学号: 学生姓名:张巍 指导教师: 起止时间: -12-30至 -1-10

课程设计<论文)任务及评语

院<系):电气工程学院教研室:电气

摘要 电动自行车作为一种轻便的交通工具时下已非常普遍,其普及程度大有超赶自行车的趋势,而充电器是电动自行车必不可少的配件,电动车充电器市场巨大。该充电器基于电流模式的开关电源的原理设计,主电路采用单端反激式设计,控制电路以电流型集成控制器UC3842为核心,配合LM324光耦和TL431实现对蓄电池的充电控制。当前市场上的充电器可分为两类:一类是以UC3842为核心驱动的单管变换器,另一类是以TL494为核心驱动的半桥型变换器。TL494驱动的是半桥式连接的功率管,适用于较大功率;UC3842驱动的单管它激式功率管,适用于功率较小。本文基于UC3842设计了一款反激式低成本的36V电动车充电器。设计内容简介了相关芯片,给出了完整的实际设计电路详细分析了其设计及其工作原理,这其中包括主电路、工频整流电路、高频逆变-变压器-高频整流电路和显示部分的工作原理。实践应用表明,该充电器性能优良,适应性较强,比同性能的充电器成本低,很有市场竞争力。 关键词:集成控制器;充电器;开关电源;单端反激式

目录 第1章绪论1 1.1电力电子技术简况1 1.2本文设计内容4 第2章36V/2A电动车充电器电路设计5 2.1电动车充电器总体设计方案5 2.2具体电路设计5 2.2.1工频整流电路设计8

基于单片机的电动自行车设计毕业设计论文

毕业论文(设计)原创性声明 本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名:日期: 毕业论文(设计)授权使用说明 本论文(设计)作者完全了解红河学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。学校可以公布论文(设计)的全部或部分内容。保密的论文(设计)在解密后适用本规定。 作者签名:指导教师签名: 日期:日期:

1.1能源与环境问题 二十一世纪是“绿色环保”的世纪,环境保护和能源节约问题成为新世纪最为突出的两大主题。随着工业的发展,城市汽车数量急剧上升,石油资源严重缺乏。研究表明,目前世界石油蕴藏量按照现在的清耗速度仅可供使用50到70年。而石油与国家安全密切相关,该问题己引起各国的极大重视。 再从环境角度讲,石油燃烧造成的大气污染曰益严重。在世界环境污染最为严重的十大城市中,我国就占了7个,形势严峻可见一般。汽车排出的CO、HC和微尘颗粒等,会对人类的身体健康造成危害;另外汽车排出的二氧化碳虽然对人体健康无害,但它造成的温室效应破坏大自然的生态平衡,对大气造成严重影响。 因此,这两大问题成为了“绿色交通工具”研究开发和推广应用的积极因素。 1.2“绿色交通工具”的发展状况 1881年8月在巴黎举行的国际电气展览会上,法国特鲁夫展出了世界上第一辆电动交通工具—电动三轮车。这是世界电动车史的开端,也是机动车辆史上具有划时代意义的一件大事。而此时,燃油汽车还尚未“出世”,它是在二十世纪初才出现的。但是当时由于电动机、电池等关键技术的发展还很不理想,而且电动车速度慢、价格高,这一切限制了电动车推广的步伐,所以它只在贵族阶层中作为玩物流行了一段时间便被随后出现的相对便宜且有速度优势的燃油汽车所取代。到了1933年,电动车的数量已经将近为零。 在随后的几十年间,电动车辆一直处于发展的低谷,而燃油车辆却发展迅猛,几乎占有了所有市场。于是,托着常常尾巴的机动车开始横行于世,为今天的能源危机和环境污染问题埋下了隐患。而人们直到七、八十年代才开始关注这两大问题,才把零污染零排放的电动车辆从新推到了前台。 国外的科研机构早在20世纪60年代就开始了新一轮的电动车研究与开发,到现在电动车大致经历了三各阶段:90年代前,电动车的设计主流是单独采用蓄电池供电,发展了高功率密度的新型蓄电池及其充电技术;90年代起人们开始注意到仅仅使用蓄电池,电动车在近期内还难于传统汽车匹敌,从而混合动力车的研究得到了很大的重视。蓄电池与燃油系统的相互配合使用,可以大大减小车辆在市区的废气排放和污染,在长途运行时可使用燃油系统,但它只是电动车发展过程中的过渡产

普通快滤池的设计计算书

3.12普通快滤池的普通快滤池的设计设计设计 3.12.1设计参数设计参数 设计水量Qmax=22950m3/d=0.266m3/ 采用数据:滤速)m (s /14q s /m 10v 2?==L ,冲洗强度 冲洗时间为6分钟 3.12.2普通快滤池的普通快滤池的设计计算设计计算设计计算 (1) 滤池面积及尺寸:滤池工作时间为24h ,冲洗周期为12h ,实际工作时间T= h 8.2312241.024=×?,滤池面积为 2m 968.231022950v =×==T Q F 采用4个池子,单行行排列 2m 244 96N F f === 采用池长宽比 L/B=1.5左右,则采用尺寸L=6m 。B=4m 校核强制滤速m 3.131-41041-N Nv v =×== ‘ (2) 滤池高度: 支撑层高度:H1=0.45m 滤料层高度:H2=0.7m 砂面上水深: H3=1.7m 保护高度: H4=0.3m 总高度: H=3.15m (3)配水系统 1.干管流量:s /3361424fq q g L =×== 采用管径s /m 19.1v mm 600d g g ==,始端流速 2.支管: 支管中心距离:采用,m 25.0a j = 每池支管数:根480.2562a 2n j =×=× =L m/s 6.1mm 75L/s 04.784/336n q q j g j ,流速,管径每根支管入口流量:==

3.孔眼布置: 支管孔眼总面积占滤池总面积的0.25% 孔眼总面积:2k mm 6000024%25.0Kf F =×== 采用孔眼直径mm 9d k = 每格孔眼面积:22 k mm 6.634d f ==π 孔眼总数9446 .6360000f F N k k k === 每根支管空眼数:个2048/944n n j k k === N 支管孔眼布置成两排,与垂线成45度夹角向下交错排列, 每根支管长度:m 7.16.042 1d 21l g j =?=?=)()(B 每排孔眼中心数距:17.020 5.07.1n 21l a k j k =×=×= 4.孔眼水头损失: 支管壁厚采用:mm 5=δ 流量系数:68.0=μ 水头损失:h m 5.3K 101g 21h 2k ==(μ 5.复算配水系统: 管长度与直径之比不大于60,则6023075 .07.1d l j j <== 孔眼总面积与支管总横面积之比小于0.5,则 33.1075.0464d 4f n g 2j j k =×=)()(π π F 孔眼中心间距应小于0.2,则2.017.0a k <=

电动自行车速度 里程表

https://www.360docs.net/doc/f810799221.html,/p-00292965611.html 基于单片机与光电传感器的电动自行车速度与里程表的设 计 从保护环境和经济条件许可等因素综合来看,电动自行车目前乃至今后都有着广阔的发展空间。目前市面上电动自行车的速度表和里程表都是机械的,看起来不够直观与方便。如果能用LED直接显示出来里程数或速度值,就可节省用户的时间及精力处理自行车行进过程中的突发事件。 本文介绍的速度与里程表设计以单片机和光电传感器为核心。传感器将不同车速转变成的不同频率的脉冲信号输入到单片机进行控制与计算,再采用LED模块进行显示,使得电动自行车的速度与里程数据能直观的显示给使用者。 系统概述 本系统由信号预处理电路、单片机AT89C2051、系统化LED显示模块、串口数据存储电路和系统软件组成。其中信号预处理电路包含信号放大、波形变换和波形整形。对待测信号进行放大的目的是降低对待测信号的幅度要求;波形变换和波形整形电路则用来将放大的信号转换成可与单片机相连的TTL信号;通过单片机的设置可使内部定时器T1对脉冲输入引脚T0进行控制,这样能精确地算出加到T0引脚的单位时间内检测到的脉冲数;设计中速度显示采用LED模块,通过速度换算得来的里程数采用I2C总线并通过E2PROM来存储,既节省了所需单片机的口线和外围器件,同时也简化了显示部分的软件编程。 系统的原理框图如图1所示。

图1 系统的原理框图 工作原理 该设计能实时地将所测的速度与累计里程数显示出来,主要是将传感器输入到单片机的脉冲信号的频率(传感器将不同车速转变成不同频率的脉冲信号)实时地测量出来,考虑到信号的衰减、干扰等影响,在信号送入单片机前应对其进行放大整形,然后通过单片机计算出速度和里程,再将所得的数据存储到串口数据存储器,并由LED显示模块交替显示所测速度与里程。本设计的里程数的算法是一种大概的算法(假设在一定时间内自行车是匀速行进,平均速度与时间的乘积即为里程数)。 设计时,应综合考虑测速精度和系统反应时间。本设计用测量脉冲频率来计算速度,因而具有较高的测速精度。在计算里程时取了自行车的理想状态。实际中,误差控制在几米之内,相对于整个里程来说不是很大。为了保证系统的实时性,系统的速度转换模块和显示数据转BCD码模块都采用快速算法。另外,还应尽量保证其他子模块在编程时的通用性和高效性。本设计的速度和里程值采用6位显示,并包含两个小数位。 系统的硬件设计 1.脉冲发生源 本设计采用了ST1101红外光电传感器,进行非接触式检测。当有物体挡在红外光电发光二极管和高灵敏度的光电晶体管之间时,传感器将会输出一个低电平,而当没有物体挡在中间时则输出为高电平,从而形成一个脉冲。 该系统在自行车后轮的轴处保持着与轮子旋转切面平行的方向延伸附加 一个铝盘,在这个铝盘的边沿处挖出若干个圆形过孔,把传感器的检测部分放在圆孔的圆心位置。每当铝盘随着后轮旋转的时候,传感器将向外输出若干个脉冲。把这些脉冲通过一系列的波形整形成单片机可以识别的 TTL电平,即可算出轮子即时的转速。 铝盘的圆孔的个数决定了测量的精度,个数越多,精度越高。这样就可以

电动车锂电池充电器毕业设计(2)

河南工业职业技术学院 毕业设计 题目:电动车锂电池充电器电路设计 姓名:王东阳 学院:河南工业职业技术学院 专业:电气自动化 班级:电气0906 学号:0401090632 指导教师:胡应占 2011年11 月28 日

摘要 摘要 电动自行车是绿色节能的交通工具,在节能环保的发展进程中电动自行车满足了消费者出行半径增大的需求。 另外,电动车电瓶采用锂电池越来越多。利用开关电源实现对锂电池高效率充电是目前的发展趋势。本设计通过认真调查锂电池充电注意事项,电动车用锂电池充电过程和充电曲线,综合运用了反激式开关电源技术,对电动车用锂电池充电器做了具体设计。 电路主要包括整流滤波电路、功率变换电路、稳压电路、恒流电路,充电指示电路,实现对锂电池分四个阶段高效率安全充电。充电过程分微弱电流调节充电阶段,恒流充电阶段,恒压充电。主电源部分采用线性光耦改变电流型PWM控制集成芯片UC3842中误差放大器的输入误差电压,实现稳压充电。恒流电路实现对锂电池恒流充电。电路设计满足客户要求,成本低廉。 关键词:反激式开关电源;锂电池充电器;UC3842;恒流充电

目录 摘要............................................................................................................................................................ II 1 绪论. (2) 1.1 电动车的发展概况 (2) 1.2 锂电池简述 (2) 1.3开关电源的产生与发展 (4) 1.4 设计目的和要求 (4) 1.5 主要设计内容 (5) 2 开关电源概述 (4) 2.1 隔离式高频开关电源 (4) 2.2 本设计所用术语 (5) 2.3 开关电源与线性电源 (6) 2.4 开关电源能量损耗和寿命 (6) 2.5 开关电源分类 (7) 3 反激式开关电源 (8) 3.1 反激式开关电源原理 (8) 3.2 主要器件简介 (11) 3.3 UC3842常用的电压反馈电路 (17) 4 总体设计 (23) 4.1电路组成 (23) 4.2系统实现功能 (24) 5主电源部分设计 (25) 5.1 输入电路 (26) 5.2 输入滤波电路 (27) 5.3 变压器设计 (28) 5.4 RCD箝位电路设计 (35) 5.5开关管选择 (37) 5.6输出滤波器 (38) 6控制电路设计 (35) 6.1低电流调节控制电路 (35) 6.2恒流电路 (36) 6.3充电指示电路 (37) 参考文献 (40) 附录1 本设计电路原理图 (42) 2 本设计PCB图 (43)

电动汽车 毕业设计

毕业论文 . 电动汽车控制设计 ----新能源的利用 系别:自动控制系 班级:电气化0941 姓名:王发志 指导老师:冀俊茹 2011年10月

前言 随着世界环境的污染、全球石油危机日益严重而带动的石油价格不断上涨给汽车工业带来了不可忽视的冲击,也增强了人们开发新能源的意识,而新能源汽车更是人们关注的一大焦点。 目前电瓶式纯电动汽车以噪音小、耗能低、无污染、成本低、结构简单而成为新能源汽车发展的主流,世界很多国家都投入了大量的人力、财力去开发电动汽车。 本文主要围绕电动汽车的电动机以及目前普遍使用的电动车控制系统主要参数作出分析,例如转速与转矩的关系、转速与功率的关系、功率与转矩的关系以及传动比、蓄电池的比能量等,设计出合理的电动车动力系统和控制系统。 本文主要采用电动机的转矩、转速、功率;电动机的主要调速方式进行分析。 关键词:电动机发动机转矩变频调速交流电动机 目录

前言 (2) 第一章电动汽车构造与原理 (5) 第一节电动车的种类 (5) 第二节蓄电池电动车 (7) 第三节燃料电池电动车 (9) 第二章电动车动力及控制系统设计 (11) 第一节电动车驱动电机种类 (11) 第二节直流驱动电动机与控制 (14) 第三节交流驱动电动机与控制 (16) 第三章我国电动汽车的缺点与发展 (20) 第一节我国电动汽车的缺点 (20) 第二节电动汽车的发展趋势 (21) 结束语 (23) 参考文献 (24) 致谢言 (25) 附录 (26) 电动汽车控制设计

----新能源的利用汽车工业的告诉发展,汽车带来的环境污染、能源短缺、资源枯竭和安全等方面的问题越来越突出。为了保持国民经济的可持续发展,保护人类居住环境和能源供给,各国政府不惜巨资,投入大量人力、物力,寻求解决这些问题的各种途径。 我国面临的形式也十分严峻,国内的石油储藏量和开采量相当有限,随着汽车保有量的增加,石油需求越来越多,目前已不能自给,不足部分主要通过进口来满足,而且每年成递增趋势。 由于电动汽车具有突出的环保方面的优势,使得电动汽车的开发和研究成为各国开发绿色汽车的主流。电动汽车使用的能源是可以用与发电的一切能源。因此使用电动汽车可以摆脱汽车对化石燃料的依赖,改善能源结构,使能源供给多样化,使能源的供给有保障。电动汽车在解决道路交通事故方面和传统汽车相比也具有一定优势。因此,开发电动汽车是迎接汽车面临挑战的重要对策之一。 电动汽车具有良好的环保性能和可以以多种能源为动力的显著特点,即可以保护环境,又可以缓解能源短缺和调整能源结构,保障能源安全。目前发展电动汽车已成为各国政府和汽车行业的共识,电动汽车的研发已成为汽车行业的热点。因此,无论是从设计、研究和开发的观点,还是从实用的角度来看,了解和掌握电动汽车技术的社会需求会越来越大。 第一章电动汽车构造与原理

相关文档
最新文档