高中数学竞赛讲义14:极限与导数

高中数学竞赛讲义14:极限与导数
高中数学竞赛讲义14:极限与导数

高中数学竞赛讲义(十四)

──极限及导数

一、基础知识

1.极限定义:(1)若数列{u

n

}满足,对任意给定的正数ε,总存在正

数m,当n>m且n∈N时,恒有|u

n

-A|<ε成立(A为常数),则称A为数

列u

n

当n趋向于无穷大时的极限,记为,另外=A

表示x大于x

0且趋向于x

时f(x)极限为A,称右极限。类似地表

示x小于x

0且趋向于x

时f(x)的左极限。

2.极限的四则运算:如果f(x)=a, g(x)=b,那么[f(x)±g(x)]=a±b, [f(x)?g(x)]=ab,

3.连续:如果函数f(x)在x=x

处有定义,且f(x)存在,并且

f(x)=f(x

0),则称f(x)在x=x

处连续。

4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么

f(x)在[a,b]上有最大值和最小值。

5.导数:若函数f(x)在x0附近有定义,当自变量x在x

处取得一

个增量Δx时(Δx充分小),因变量y也随之取得增量Δy(Δy=f(x

x)-f(x

0)).若存在,则称f(x)在x

处可导,此极限值称为f(x)在点x

处的导数(或变化率),记作(x

)或或,即

。由定义知f(x)在点x

0连续是f(x)在x

可导的必要

条件。若f(x)在区间I上有定义,且在每一点可导,则称它在此敬意上

可导。导数的几何意义是:f(x)在点x

0处导数(x

)等于曲线y=f(x)在

点P(x 0,f(x 0))处切线的斜率。

6.几个常用函数的导数:(1)=0(c 为常数);(2)

(a 为任意常数);(3)(4)

;(5)

;(6)

;

(7)

;(8)

7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1)

;(2)

;(3)

(c 为常数);(4);(5)

8.复合函数求导法:设函数y=f(u),u=(x),已知(x)在x 处可导,f(u)在对应的点u(u=(x))处可导,则复合函数y=f[(x)]在点x 处可导,且(f[(x)]=

.

9.导数及函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有,则f(x)在(a,b)单调递增;(3)

若对一切x ∈(a,b)有

,则f(x)在(a,b)单调递减。

10.极值的必要条件:若函数f(x)在x 0处可导,且在x 0处取得极值,则

11.极值的第一充分条件:设f(x)在x0处连续,在x 0邻域(x 0-δ,x 0+δ)内可导,(1)若当x ∈(x-δ,x 0)时

,当x ∈(x 0,x 0+δ)时

则f(x)在x 0处取得极小值;(2)若当x ∈(x 0-δ,x 0)时,当x ∈

(x 0,x 0+δ)时

,则f(x)在x 0处取得极大值。

12.极值的第二充分条件:设f(x)在x 0的某领域(x 0-δ,x 0+δ)内一阶可导,在x=x 0处二阶可导,且。(1)若,则

f(x)在x 0处取得极小值;(2)若

,则f(x)在x 0处取得极大值。

13.罗尔中值定理:若函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b),则存在ξ∈(a,b),使

[证明] 若当x ∈(a,b),f(x)≡f(a),则对任意x ∈(a,b),.

若当x ∈(a,b)时,f(x)≠f(a),因为f(x)在[a,b]上连续,所以f(x)在[a,b]上有最大值和最小值,必有一个不等于f(a),不妨设最大值m>f(a)且f(c)=m ,则c ∈(a,b),且f(c)为最大值,故

,综上得证。

14.Lagrange 中值定理:若f(x)在[a,b]上连续,在(a,b)上可导,则存在ξ∈(a,b),使

[证明] 令F(x)=f(x)-,则F(x)在[a,b]上连续,在(a,b)上可导,且F(a)=F(b),所以由13知存在ξ∈(a,b)使

=0,即

15.曲线凸性的充分条件:设函数f(x)在开区间I 内具有二阶导数,(1)如果对任意x ∈I,,则曲线y=f(x)在I 内是下凸的;(2)如

果对任意x ∈I,

,则y=f(x)在I 内是上凸的。通常称上凸函数为

凸函数,下凸函数为凹函数。

16.琴生不等式:设α1,α2,…,αn ∈R +,α1+α2+…+αn =1。(1)若f(x)是[a,b]上的凸函数,则x 1,x 2,…,x n ∈[a,b]有f(a 1x 1+a 2x 2+…+a n x n )≤a 1f(x 1)+a 2f(x 2)+…+a n f(x n ).

二、方法及例题 1.极限的求法。

例 1 求下列极限:(1)

;(2);(3)

;(4)

[解](1)=;

(2)当a>1时,

当0

当a=1时,

(3)因为

所以

(4)

例2 求下列极限:(1)(1+x)(1+x2)(1+)…(1+)(|x|<1);(2);(3)。

[解] (1)(1+x)(1+x2)(1+)…(1+)

=

(2)

=

(3)

=

2.连续性的讨论。

例3 设f(x)在(-∞,+∞)内有定义,且恒满足f(x+1)=2f(x),又当x∈[0,1)时,f(x)=x(1-x)2,试讨论f(x)在x=2处的连续性。

[解] 当x∈[0,1)时,有f(x)=x(1-x)2,在f(x+1)=2f(x)中令x+1=t,则x=t-1,当x∈[1,2)时,利用f(x+1)=2f(x)有f(t)=2f(t-1),因为t-1∈[0,1),再由f(x)=x(1-x)2得f(t-1)=(t-1)(2-t)2,从而t∈[1,2)时,有f(t)=2(t-1)?(2-t)2;同理,当x∈[1,2)时,令x+1=t,则当t∈[2,3)时,有f(t)=2f(t-1)=4(t-2)(3-t)2.从而f(x)=

所以,所以

f(x)=f(x)=f(2)=0,所以f(x)在x=2处连续。

3.利用导数的几何意义求曲线的切线方程。

[解] 因为点(2,0)不在曲线上,设切点坐标为(x

0,y

),则,切线的

斜率为,所以切线方程为y-y

=,即。又因为此切线过点(2,0),所以,

所以x

=1,所以所求的切线方程为y=-(x-2),即x+y-2=0.

4.导数的计算。

例5 求下列函数的导数:(1)y=sin(3x+1);(2);(3)y=e cos2x;(4);(5)y=(1-2x)x(x>0且)。

[解] (1)3cos(3x+1).

(2)

(3)

(4)

(5)

5.用导数讨论函数的单调性。

例6 设a>0,求函数f(x)=-ln(x+a)(x∈(0,+∞))的单调区间。

[解] ,因为x>0,a>0,所以

x2+(2a-4)x+a2>0;x2+(2a-4)x+a+<0.

(1)当a>1时,对所有x>0,有x2+(2a-4)x+a2>0,即(x)>0,f(x)在(0,+∞)上单调递增;(2)当a=1时,对x≠1,有x2+(2a-4)x+a2>0,即,所以f(x)在(0,1)内单调递增,在(1,+∞)内递增,又f(x)在x=1处连续,因此f(x)在(0,+∞)内递增;(3)当00,解得x<2-a-或x>2-a+,因此,f(x)在(0,2-a-)内单调递增,在(2-a+,+∞)内也单调递增,而当2-a-

<0,即,所以f(x)

2

在(2-a-,2-a+)内单调递减。

6.利用导数证明不等式。

例7 设,求证:sinx+tanx>2x. [证明] 设f(x)=sinx+tanx-2x ,则

=cosx+sec 2x-2,当时,

(因为0

=cosx+sec 2x-2=cosx+.又f(x)在上连续,所以f(x)在上单调递增,所以当x ∈时,f(x)>f(0)=0,即sinx+tanx>2x.

7.利用导数讨论极值。

例8 设f(x)=alnx+bx 2+x 在x 1=1和x 2=2处都取得极值,试求a 及b 的值,并指出这时f(x)在x 1及x 2处是取得极大值还是极小值。

[解] 因为f(x)在(0,+∞)上连续,可导,又f(x)在x 1=1,x 2=2处取得极值,所以,又+2bx+1,所以解得

所以

.

所以当x ∈(0,1)时,,所以f(x)在(0,1]上递减;

当x ∈(1,2)时,,所以f(x)在[1,2]上递增;

当x ∈(2,+∞)时,

,所以f(x)在[2,+∞)上递减。

综上可知f(x)在x 1=1处取得极小值,在x 2=2处取得极大值。 例

9 设

x ∈[0,π],y ∈[0,1],试求函数

f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x 的最小值。

[解] 首先,当x ∈[0,π],y ∈[0,1]时, f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x=(1-y)2x =(1-y)2x

,令g(x)=

,

人教版高中数学《导数》全部教案

导数的背景(5月4日) 教学目标 理解函数的增量与自变量的增量的比的极限的具体意义 教学重点 瞬时速度、切线的斜率、边际成本 教学难点 极限思想 教学过程 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是2 2 1gt s = (其中g 是重力加速度). 当时间增量t ?很小时,从3秒到(3+t ?)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度. 从3秒到(3+t ?)秒这段时间内位移的增量: 222)(9.44.2939.4)3(9.4)3()3(t t t s t s s ?+?=?-?+=-?+=? 从而,t t s v ?+=??= - -9.44.29. 从上式可以看出,t ?越小,t s ??越接近29.4米/秒;当t ?无限趋近于0时, t s ??无限趋近于29.4米/秒. 此时我们说,当t ?趋向于0时,t s ??的极限是29.4. 当t ?趋向于0时,平均速度t s ??的极限就是小球下降3秒时的速度,也叫做 瞬时速度. 一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ?)这段时间 内的平均速度为t t s t t s t s ?-?+= ??)()(. 如果t ?无限趋近于0时,t s ??无限趋近于某个常数a ,就说当t ?趋向于0时,t s ??的极限为a ,这时a 就是物体在时刻t 的瞬时速度. 2. 切线的斜率 问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

高中数学-公式-极限与导数

极限与导数 一、极限 1、常用的几个数列极限:C C n =∞→lim (C 为常数);01lim =∞→n n ,0lim =∞→n n q (a <1,q 为常数); (4)无穷递缩等比数列各项和公式q a S S n n -==∞→1lim 1(0<1

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

高中数学知识点精讲极限和导数

第十二章 极限和导数 第十四章 极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|<ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞ →, 另外)(lim 0 x f x x +→=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x -→表示x 小 于x 0且趋向于x 0时f(x)的左极限。 2 极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, lim x x →[f(x)?g(x)]=ab, 0 lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因

变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导,此极限 值称为f(x)在点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x)在 区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1 )'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1 = ;(8).1)'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3))(')]'([x u c x cu ?=(c 为常数);(4))()(']')(1[ 2x u x u x u -=;(5)) () ()(')(')(]')()([2 x u x v x u x v x u x u x u -=。 8.复合函数求导法:设函数y=f(u),u=?(x),已知?(x)在x 处可导,f(u)在对应的点u(u=?(x))处可导,则复合函数y=f[?(x)]在点x 处可导,且(f[?(x)])'=)(')](['x x f ??. 9.导数与函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有0)('>x f ,则f(x)在(a,b)单调递增;(3)若对一切x ∈(a,b)有0)('x f ,则f(x)在x 0处取得极小值;(2)若0)(''0

导数的运算法则及基本公式应用

120 导数的运算法则及基本公式应用 导数是中学限选内容中较为重要的知识,本节内容主要是在导数的定义,常用求等公式.四则运算求导法则和复合函数求导法则等问题上对考生进行训练与指导. ●难点磁场 (★★★★★)已知曲线C :y =x 3-3x 2+2x ,直线l :y =kx ,且l 与C 切于点(x 0,y 0)(x 0≠0),求直线l 的方程及切点坐标. ●案例探究 [例1]求函数的导数: )1()3( )sin ()2( cos )1(1)1(2322+=-=+-=x f y x b ax y x x x y ω 命题意图:本题3个小题分别考查了导数的四则运算法则,复合函数求导的方法,以及抽象函数求导的思想方法.这是导数中比较典型的求导类型,属于★★★★级题目. 知识依托:解答本题的闪光点是要分析函数的结构和特征,挖掘量的隐含条件,将问题转化为基本函数的导数. 错解分析:本题难点在求导过程中符号判断不清,复合函数的结构分解为基本函数出差错. 技巧与方法:先分析函数式结构,找准复合函数的式子特征,按照求导法则进行求导. x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x y 222222222222222222222cos )1(sin )1)(1(cos )12(cos )1(] sin )1(cos 2)[1(cos )1(cos )1(]))(cos 1(cos )1)[(1(cos )1(cos )1(]cos )1)[(1(cos )1()1(:)1(++-+--=++---+-=+'++'+--+-=-+'+--+'-='解 (2)解:y =μ3,μ=ax -b sin 2ωx ,μ=av -by v =x ,y =sin γ γ=ωx y ′=(μ3)′=3μ2·μ′=3μ2(av -by )′ =3μ2(av ′-by ′)=3μ2(av ′-by ′γ′) =3(ax -b sin 2ωx )2(a -b ωsin2ωx ) (3)解法一:设y =f (μ),μ=v ,v =x 2+1,则 y ′x =y ′μμ′v ·v ′x =f ′(μ)·2 1v -21·2x =f ′(12+x )·21 112+x ·2x =),1(122+'+x f x x 解法二:y ′=[f (12+x )]′=f ′(12+x )·(12+x )′

高中数学教案:极限与导数函数极限的运算法则

函数极限的运算法则(4月30日) 教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞→lim ,01lim .若求极限的函数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数的极限与这些简单函数的极限有什么关系,这样就能把复杂函数的极限计算转化为简单函数的极限的计算. 二 、新课讲授 限,分别等于这两个函数的极限的和、差、积、商(作为除数的函数的极限不能为0). 说明:当C 是常数,n 是正整数时,)(lim )]([lim x f C x Cf o o x x x x →→= n x x n x x x f x f o o )](lim [)]([lim →→= 这些法则对于∞→x 的情况仍然适用. 三 典例剖析 例1 求)3(lim 2 2x x x +→

例2 求1 12lim 231++-→x x x x 例3 求4 16lim 24--→x x x 分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数 4 162--=x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即可求出函数的极限. 例4 求1 33lim 22++-∞→x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、分母都除以2 x ,所得到的分子、分母都有极限,就可以用商的极限运用法则计算。 总结:),(lim ,lim *N k x x C C k o k x x x x o o ∈==→→ )(01lim ,lim *N k x C C k x x ∈==∞→∞→

高中数学 极限与导数【讲义】

极限与导数 一、基础知识 1.极限定义:(1)若数列{u n }满足,对任意给定的正数ε,总存在正数m ,当n>m 且n ∈N 时,恒有|u n -A|< ε成立(A 为常数),则称A 为数列u n 当n 趋向于无穷大时的极限,记为)(lim ),(lim x f x f x x -∞ →+∞ →,另外)(lim 0 x f x x + →=A 表示x 大于x 0且趋向于x 0时f(x)极限为A ,称右极限。类似地)(lim 0 x f x x - →表示x 小于x 0且趋向于x 0时f(x)的左极限。 2.极限的四则运算:如果0 lim x x →f(x)=a, 0 lim x x →g(x)=b ,那么0 lim x x →[f(x)±g(x)]=a ±b, 0 lim x x →[f(x)?g(x)]=ab, lim x x →).0()()(≠=b b a x g x f 3.连续:如果函数f(x)在x=x 0处有定义,且0 lim x x →f(x)存在,并且0 lim x x →f(x)=f(x 0),则称f(x)在x=x 0处连续。 4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。 5.导数:若函数f(x)在x0附近有定义,当自变量x 在x 0处取得一个增量Δx 时(Δx 充分小),因变量y 也随之取得增量Δy(Δy=f(x 0+Δx)-f(x 0)).若x y x ??→?0lim 存在,则称f(x)在x 0处可导,此极限值称为f(x)在 点x 0处的导数(或变化率),记作'f (x 0)或0'x x y =或 x dx dy ,即0 00) ()(lim )('0 x x x f x f x f x x --=→。由定义知 f(x)在点x 0连续是f(x)在x 0可导的必要条件。若f(x)在区间I 上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x 0处导数'f (x 0)等于曲线y=f(x)在点P(x 0,f(x 0))处切线的斜率。 6.几个常用函数的导数:(1))'(c =0(c 为常数);(2)1)'(-=a a ax x (a 为任意常数);(3) ;cos )'(sin x x =(4)x x sin )'(cos -=;(5)a a a x x ln )'(=;(6)x x e e =)'(;(7))'(log x a x x a log 1 =;(8).1 )'(ln x x = 7.导数的运算法则:若u(x),v(x)在x 处可导,且u(x)≠0,则 (1))(')(')]'()([x v x u x v x u ±=±;(2))(')()()(')]'()([x v x u x v x u x v x u +=;(3))(')]'([x u c x cu ?=(c 为常数);(4))()(']')(1[ 2x u x u x u -=;(5)) () ()(')(')(]')()([2x u x v x u x v x u x u x u -=。 8.复合函数求导法:设函数y=f(u),u=?(x),已知?(x)在x 处可导,f(u)在对应的点u(u=?(x))处可导,则复合函数y=f[?(x)]在点x 处可导,且(f[?(x)])'=)(')](['x x f ??. 9.导数与函数的性质:(1)若f(x)在区间I 上可导,则f(x)在I 上连续;(2)若对一切x ∈(a,b)有0)('>x f ,则f(x)在(a,b)单调递增;(3)若对一切x ∈(a,b)有0)('

高中数学-导数的计算练习

高中数学-导数的计算练习 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列求导运算正确的是 A .211()1x x x '+=+ B .21 (log )ln 2 x x '= C .3(3)3log x x x '= D .2 (cos )2sin x x x x '=- 【答案】B 【解析】因为211()x x '=- ,所以A 项应为2 11x -;由1(log )ln a x x a '=知B 项正确;由()ln x x a a a '=可知C 项错误;D 项中,2 2 (cos )2cos sin x x x x x x '=-,所以D 项是错误的,综上所述,正确选项为B . 2.已知函数3 ()f x x =在点P 处的导数值为3,则P 点的坐标为 A .(2,8)-- B .(1,1)-- C .(2,8)--或(2,8) D .(1,1)--或(1,1) 【答案】D 3.已知函数()f x 的导函数为()f x ',且满足()(1)2ln xf f x x ='+,则(1)f '等于 A .e - B . 1- C .1 D .e 【答案】B 【解析】∵函数()f x 的导函数为()f x ',且满足()(1)2ln (0)f x x xf x ='+>, ∴1 ()1()2f x f x '='+ ,把1x =代入()f x '可得(1)2(1)1f f '='+,解得(1)1f '=-.故选B . 4.曲线e x y =在点2 (2,e )处的切线与坐标轴所围成的三角形的面积为 A .2e 2 B .23e C .26e D .29e 【答案】A

(精心整理)高中数学导数知识点归纳总结

§14. 导 数 知识要点 1. 导数(导函数的简称)的定义:设0x 是函数)(x f y =定义域的一点,如果自变量x 在0x 处有增量x ?,则函数值y 也引起相应的增量)()(00x f x x f y -?+=?;比值x x f x x f x y ?-?+= ??) ()(00称为函数)(x f y =在点0x 到x x ?+0之间的平均变化率;如果极限x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000存在,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数, 记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 注:①x ?是增量,我们也称为“改变量”,因为x ?可正,可负,但不为零. ②以知函数)(x f y =定义域为A ,)('x f y =的定义域为B ,则A 与B 关系为B A ?. 2. 函数)(x f y =在点0x 处连续与点0x 处可导的关系: ⑴函数)(x f y =在点0x 处连续是)(x f y =在点0x 处可导的必要不充分条件. 可以证明,如果)(x f y =在点0x 处可导,那么)(x f y =点0x 处连续. 事实上,令x x x ?+=0,则0x x →相当于0→?x . 于是)] ()()([lim )(lim )(lim 0000 00 x f x f x x f x x f x f x x x x +-+=?+=→?→?→

高中数学知识点精讲——极限和导数

第十二章 极限和导数 一、数学归纳法: 1、数学归纳法的步骤:“两步一结论”. 2、数学归纳法的应用:主要用于证明与自然数有关的恒等式和不等式. 3、重要的数学思想和方法:“归纳—猜想—证明”. 习题:① 用数学归纳法证明:1111111 1 1234 21212 2n n n n n - +-++ -=+++ -++. ② 用数学归纳法证明: 111 1 122334 (1) n n n +++

二、极限 1、数列极限: (1)公式:lim n C C →∞ =(C 为常数);1 lim 0p n n →∞=(p>0); 0 1lim 1 1 11n n q q q q q →∞ ?=-? 不存在或. (2)运算法则: 若数列{}n a 和{}n b 的极限都存在,则{}n a 和{}n b 的和、差、积、商的极限等于{}n a 和{}n b 的极限的和、差、积、商. 例题:① 将直线1:10l x y +-=、2:0l nx y n +-=、3:0l x ny n +-=(* n N ∈,2n ≥)围成的三角形面积记为n S ,则lim n n S →∞ = . ② 已知p 和q 是两个不相等的正整数,且2q ≥,则111lim 111p q n n n ∞ ??+- ???=??+- ??? → . 习题:① 135(21) lim (21) n n n n →∞++++-=+ . ② 设0

相关文档
最新文档