李玉柱流体力学课后题答案第二章(新)
《流体力学》课后习题答案.pdf

得:T1 = t1 + 273 = 50 + 273 = 323K ,T2 = t2 + 273 = 78 + 273 = 351K
根据
p
=
mRT V
,有:
p1
=
mRT1 V1
,
p2
=
mRT2 V2
得: V2 V1
=
p1 p2
T2 T1
=
9.8067 104 5.8840 105
351 323
=
0.18
设管段长度 l,管段表面积: A = dl
单位长度管壁上粘滞力: = A u = dl u − 0 = 3.14 0.025 0.03
l y l
0.001
1-8 解: A = 0.8 0.2 = 0.16m2 ,u=1m/s, = 10mm , = 1.15Pa s
T = A u = A u − 0 = 1.15 0.16 1 = 18.4N
1
=
T1 b
=
A b
u
−0 −h
=
0.7 0.06b b
15 − 0 0.04 − 0.01
=
21N
/m,方向水平向左
下表面单位宽度受到的内摩擦力:
2
=
T2 b
=
Au−0 b h−0
=
0.7 0.06b 15 − 0
b
0.01− 0
= 63N
/m,方向水平向左
平板单位宽度上受到的阻力:
= 1 + 2 = 21+ 63 = 84N ,方向水平向左。
h1 = 5.6m
2.4 解:如图 1-2 是等压面,3-4 是等压面,5-6 段充的是空气,因此 p6 = p5 ,6-7 是等压面,
流体力学第二版课后答案完整版

第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。
1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。
1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。
1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少? 解:10000.0022m V ρ==⨯=(kg )29.80719.614G mg ==⨯=(N )答:2L 水的质量是2kg ,重量是19.614N 。
1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解:44109.807899.3580.5m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358kg/m 3。
1.11 某液体的动力黏度为0.005Pa s ⋅,其密度为8503/kg m ,试求其运动黏度。
流体力学三版第2章课后答案

第一章 流体的基本概念1-1 单位换算:1.海水的密度ρ=1028公斤/米3,以达因/厘米3,牛/米3为单位,表示此海水的重度γ值。
解:2.酒精在0℃时的比重为0.807,其密度ρ为若干公斤/米3 ? 若干克/厘米3 ? 其重度γ为若干达因/厘米3 ? 若干牛/米3 ? 解:l-2 粘度的换算:1.石油在50℃时的重度γ=900达因/厘米3,动力粘度μ=58.86×10-4牛.秒/米2。
求此石油的运动粘性系数ν。
解:2.某种液体的比重为1.046,动力粘性系数μ=1.85厘泊,其运动粘性系数为若干斯? 解:3.求在1大气压下,35℃时空气的动力粘性系数μ及运动粘性系3323333w /8.790/7908/8.9/807 0.807g/cm 807kg/m 1000kg/m cm dy m N s m m kg ==⨯===⨯γ酒精√sm s cm cmdy s cm cm s dy g /104.6/1064 /900/)/980101086.58( 26233224--⨯=⨯=⨯⋅⨯==∴γμν)(/017686.0 /1046.1/1085.1 232w 斯比重s cm cmg cm s g =⨯⋅⨯=⨯=∴-ρμν33235/44.1007/4.10074/8.9/1028 101 ; cm dy m N s m m kg dyN g ==⨯=∴==γργ数ν之值。
解:1-3 相距10毫米的两块相互平行的板子,水平放置,板间充满20℃的蓖麻油(动力粘度μ=9.72泊)。
下板固定不动,上板以1.5米/秒的速度移动,问在油中的切应力τ是多少牛/米2? 解:1-4 直径为150毫米的圆柱,固定不动。
内径为151.24毫米的圆筒,同心地套在圆柱之外。
二者的长度均为250毫米。
柱面与筒内壁之间的空隙充以甘油。
转动外筒,每分钟100转,测得转矩为9.091牛米。
假设空隙中甘油的速度按线性分布,也不考虑末端效应。
流体力学第二版课后习题答案解析

第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。
1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。
1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。
1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少? 解:10000.0022m V ρ==⨯=(kg )29.80719.614G mg ==⨯=(N )答:2L 水的质量是2kg ,重量是19.614N 。
1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解:44109.807899.3580.5m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358kg/m 3。
1.11某液体的动力黏度为0.005Pa s ⋅,其密度为8503/kg m ,试求其运动黏度。
流体力学第二版课后习题答案

第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。
1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。
1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。
1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少? 解:10000.0022m V ρ==⨯=(kg )29.80719.614G mg ==⨯=(N )答:2L 水的质量是2kg ,重量是19.614N 。
1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解:44109.807899.3580.5m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358kg/m 3。
1.11 某液体的动力黏度为0.005Pa s ⋅,其密度为8503/kg m ,试求其运动黏度。
流体力学三版第2章课后答案

第一章 流体的基本概念1-1 单位换算:1.海水的密度ρ=1028公斤/米3,以达因/厘米3,牛/米3为单位,表示此海水的重度γ值。
解:2.酒精在0℃时的比重为0.807,其密度ρ为若干公斤/米3 ? 若干克/厘米3 ? 其重度γ为若干达因/厘米3 ? 若干牛/米3 ? 解:l-2 粘度的换算:1.石油在50℃时的重度γ=900达因/厘米3,动力粘度μ=58.86×10-4牛.秒/米2。
求此石油的运动粘性系数ν。
解:2.某种液体的比重为1.046,动力粘性系数μ=1.85厘泊,其运动粘性系数为若干斯? 解:3.求在1大气压下,35℃时空气的动力粘性系数μ及运动粘性系3323333w /8.790/7908/8.9/807 0.807g/cm 807kg/m 1000kg/m cm dy m N s m m kg ==⨯===⨯γ酒精√sm s cm cmdy s cm cm s dy g /104.6/1064 /900/)/980101086.58( 26233224--⨯=⨯=⨯⋅⨯==∴γμν)(/017686.0 /1046.1/1085.1 232w 斯比重s cm cmg cm s g =⨯⋅⨯=⨯=∴-ρμν33235/44.1007/4.10074/8.9/1028 101 ; cm dy m N s m m kg dyN g ==⨯=∴==γργ数ν之值。
解:1-3 相距10毫米的两块相互平行的板子,水平放置,板间充满20℃的蓖麻油(动力粘度μ=9.72泊)。
下板固定不动,上板以1.5米/秒的速度移动,问在油中的切应力τ是多少牛/米2? 解:1-4 直径为150毫米的圆柱,固定不动。
内径为151.24毫米的圆筒,同心地套在圆柱之外。
二者的长度均为250毫米。
柱面与筒内壁之间的空隙充以甘油。
转动外筒,每分钟100转,测得转矩为9.091牛米。
假设空隙中甘油的速度按线性分布,也不考虑末端效应。
流体力学第二版龙天渝课后答案
流体力学第二版龙天渝课后答案【篇一:流体力学_龙天渝_建环专业课程教案】>(建筑环境与设备工程专业)第一章绪论1.本章的教学目标及基本要求本章为绪论,涉及到流体的定义、作用在流体上的力、流体的基本物理性质和流体的力学模型。
通过本章的教学,要求学生了解流体力学在本学科及相关工程技术领域内的地位和作用,掌握流体与固体的典型区别,连续介质模型、不可压缩流体和理想流体的定义,了解流体的主要物理性质;掌握流体的受力分析方法,能够正确应用牛顿内摩擦定律分析解决液膜条件下流体的运动及及其与固体间的相互作用问题。
2.本章各节教学内容(列出节名)及学时分配本章教学内容分2单元,每单元2学时? 单元1:流体力学在本学科中的地位和作用,流体的定义与特点,,作用在流体上的力;流体的惯性, 流体的粘性;习题1-1, 4? 单元2:流体的粘性,压缩性与膨胀性, 不可压缩流体和理想流体的概念,流体的连续介质模型;习题1-7,8,123.本章教学内容的重点和难点本章的重点是:本章的教学任务是让学生初步建立起流体及流体力学的基本概念,重点放在流体与固体的本质区别,描述流体的基本模型及流体的主要物理性质。
本章的难点是:熟练、正确进行受力分析;正确运用牛顿内摩擦定律分析求解液膜条件下流体的运动及及其与固体间的相互作用问题。
4. 本章教学内容的深化和拓宽:介绍不可压缩流体的概念及其工程应用意义,说明粘性的外部特性与内部特性的区别。
5.本章教学方式(手段)及教学过程中应注意的问题;本章涉及到较多的物理基本概念,注意时刻提醒学生从最基本的物理现象出发去理解和把握物理概念,在受力分析及应用过程中注意结合以往课程的内容和知识,帮助学生逐步建立将所学知识与工程实际应用相结合的思维习惯。
教学方式以课堂教学为主。
6.本章的主要参考书目:? clayton t.crowe, donald f. elger and john a. roberson. engineering fluid mechanics. 7th ed. new york: john wiley sons,2001? vennard j k and r l street. elementary fluid mechanics. 6th ed. new york: john wiley sons,19827.本章的思考题和习题:习题1-1,4,7,8,12单元 11.教学内容:流体力学在本专业中的作用, 流体的定义,惯性、压缩性与膨胀性? 了解流体力学在学科中的地位和作用;? 明确流体的定义;? 了解流体的特点及流体的连续介质模型;? 了解流体惯性的度量方法;? 了解流体的压缩性与膨胀性的定义及数量级;? 明确不可压缩流体的概念。
流体力学第二版课后习题答案
第一章习题答案选择题(单选题)1.1 按连续介质的概念,流体质点是指:(d )(a )流体的分子;(b )流体内的固体颗粒;(c )几何的点;(d )几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。
1.2 作用于流体的质量力包括:(c )(a )压力;(b )摩擦阻力;(c )重力;(d )表面张力。
1.3 单位质量力的国际单位是:(d )(a )N ;(b )Pa ;(c )kg N /;(d )2/s m 。
1.4 与牛顿内摩擦定律直接有关的因素是:(b )(a )剪应力和压强;(b )剪应力和剪应变率;(c )剪应力和剪应变;(d )剪应力和流速。
1.5 水的动力黏度μ随温度的升高:(b )(a )增大;(b )减小;(c )不变;(d )不定。
1.6 流体运动黏度ν的国际单位是:(a )(a )2/s m ;(b )2/m N ;(c )m kg /;(d )2/m s N ⋅。
1.7 无黏性流体的特征是:(c )(a )黏度是常数;(b )不可压缩;(c )无黏性;(d )符合RT p=ρ。
1.8 当水的压强增加1个大气压时,水的密度增大约为:(a )(a )1/20000;(b )1/10000;(c )1/4000;(d )1/2000。
1.9 水的密度为10003kg/m ,2L 水的质量和重量是多少? 解:10000.0022m V ρ==⨯=(kg )29.80719.614G mg ==⨯=(N )答:2L 水的质量是2kg ,重量是19.614N 。
1.10 体积为0.53m 的油料,重量为4410N ,试求该油料的密度是多少? 解:44109.807899.3580.5m G g V V ρ====(kg/m 3) 答:该油料的密度是899.358kg/m 3。
1.11 某液体的动力黏度为0.005Pa s ⋅,其密度为8503/kg m ,试求其运动黏度。
【流体力学】流体第二章作业答案
2.2解:欧拉平衡方程是平衡流体中普遍适用的一个基本公式,因为在推导过程中,质量力是空间任意方向,故它既适应于绝对静止,也适于相对静止。
同时推导过程中也不涉及流体的密度是否发生变化,故它不仅适应于不可压缩流体,也适于可压缩流体。
2.5解:(1)表达式:C g p z =+ρ。
(2)物理意义:静止的不可压缩均质重力流体中,任何一点的压强势能和位置势能之和是常数,即总势能保持不变(平衡流体中任意点的总势能(包括位置势能和压强势能)保持不变。
)。
(3)几何意义:在重力作用下的连续均质不可压缩静止流体中,静水头线和计示静水头线均为水平线。
2.9解:(1)绝对压强是以绝对真空为起点,其值恒大于0;相对压强是以当地大气压为起点,其值可正可负,也可为0.相对压强又称计示压强;相对压强小于0时,其数值的绝对值又称真空度。
(2)单位:帕(Pa )、巴(bar )、米水柱(mH 2O)、毫米汞柱(mmHg)2.16解:实压力体:液体与压力体位于曲面的同一侧,方向铅直向下,通常用正体积表示;虚压力体:液体与压力体位于曲面的两侧,方向铅直向上,通常用负体积表示。
2.22解:如图所示1-1、2-2、3-3均为等压面,应用流体静力学法可得:B A p h h g gh gh gh gh p =---+-+)(45143322311ρρρρρ即 32114514323)(gh gh h h g gh gh p p B A ρρρρρ---++=-将各已知数带入,得=-B A p p 67864Pa2.36题2-36 图解:半球盖所受的水平总压力为: )(N 2048.76sin 2==θπρR gh F X半球盖所受的垂向总压力为:(压力体为斜椭圆锥台(虚压力体,方向向上)—半球(实压力体,方向向下)),即:()(N)74.109832cos 32B=⎪⎭⎫ ⎝⎛-=-=R h R g V V g F ABDC CF EA Z πθπρρ则半球所受的中静水压力为:(N)79.232422=+=Z X F F F 合力与水平方向的夹角为:。
工程流体力学课后习题答案1-3章
第1章 绪论【1-1】500cm 3的某种液体,在天平上称得其质量为0.453kg ,试求其密度和相对密度。
【解】液体的密度3340.4530.90610 kg/m 510m V ρ-===⨯⨯相对密度 330.906100.9061.010w ρδρ⨯===⨯【1-2】体积为5m 3的水,在温度不变的条件下,当压强从98000Pa 增加到×105Pa时,体积减少1L 。
求水的压缩系数和弹性系数。
【解】由压缩系数公式10-1510.001 5.110 Pa 5(4.91098000)p dV V dP β-=-==⨯⨯⨯- 910111.9610 Pa 5.110pE β-===⨯⨯ 【1-3】温度为20℃,流量为60m 3/h 的水流入加热器,如果水的体积膨胀系数βt =,问加热到80℃后从加热器中流出时的体积流量变为多少【解】根据膨胀系数1t dVV dtβ=则2113600.00055(8020)6061.98 m /ht Q Q dt Q β=+=⨯⨯-+= 【1-4】用200升汽油桶装相对密度的汽油。
罐装时液面上压强为98000Pa 。
封闭后由于温度变化升高了20℃,此时汽油的蒸汽压力为17640Pa 。
若汽油的膨胀系数为,弹性系数为×106Pa ,(1)试计算由于压力温度变化所增加的体积,(2)问灌装时汽油的体积最多不应超过桶体积的百分之多少【解】(1)由1β=-=P p dV Vdp E可得,由于压力改变而减少的体积为6200176400.257L 13.7210⨯∆=-===⨯P p VdP V dV E由于温度变化而增加的体积,可由1β=tt dV V dT得 0.000620020 2.40L β∆===⨯⨯=t t t V dV VdT(2)因为∆∆t p V V ?,相比之下可以忽略由压力变化引起的体积改变,则 由 200L β+=t V V dT 得 1198.8%200110.000620β===++⨯t V dT 【1-5】图中表示浮在油面上的平板,其水平运动速度为u =1m/s ,δ=10mm ,油品的粘度μ=·s ,求作用在平板单位面积上的阻力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 流体静力学2-1 将盛有液体的U 形小玻璃管装在作水平加速运动的汽车上(如图示),已知L =30 cm ,h =5cm ,试求汽车的加速度a 。
解:将坐标原点放在U 形玻璃管底部的中心。
Z 轴垂直向上,x 轴与加速度的方向一致,则玻璃管装在作水平运动的汽车上时,单位质量液体的质量力和液体的加速度分量分别为0,0,,0,0x y z x y z g g g ga a a a ===-===代入压力全微分公式得d (d d )p a x g z ρ=-+ 因为自由液面是等压面,即d 0p =,所以自由液面的微分式为d d a x g z =- 积分得:a z x c g =-+,斜率为a g -,即a g h L = 解得21.63m/s 6g a g h L ===2-2 一封闭水箱如图示,金属测压计测得的压强值为p =4.9kPa(相对压强),测压计的中心比A 点高z =0.5m ,而A 点在液面以下h =1.5m 。
求液面的绝对压强和相对压强。
解:由0p gh p gz ρρ+=+得相对压强为30() 4.91010009.81 4.9kPa p p g z h ρ=+-=⨯-⨯⨯=-绝对压强0( 4.998)kPa=93.1kPa abs a p p p =+=-+2-3 在装满水的锥台形容器盖上,加一力F =4kN 。
容器的尺寸如图示,D =2m ,d =l m ,h =2m 。
试求(1)A 、B 、A ’、B ’各点的相对压强;(2)容器底面上的总压力。
解:(1)a 20 5.09kP 4πd F A F p ==,由0p p gh ρ=+得: a 0B A 5.09kP P P P ===a a a 0B A kP 24.7P 29.81000kP 5.09ρgh P P P =⨯⨯+=+==''(2) 容器底面上的总压力为2'24.7kPa 77.6kN 4A D P p A π==⨯=2-4 一封闭容器水面的绝对压强p 0=85kPa ,中间玻璃管两端开口,当既无空气通过玻璃管进入容器、又无水进人玻璃管时,试求玻璃管应该伸入水面下的深度h 。
解:取玻璃管的下口端面为等压面,则0a p gh p ρ+=30(9885)10 1.33m 10009.8a p p h g ρ--⨯===⨯ 2-5 量测容器中A 点压强的真空计如2.3.3节图2-9所示,已知z =lm (无用条件),h =2m ,当地大气压强p a =98kPa(绝对压强),求A 点的绝对压强、相对压强及真空度。
解:图2-9中测管内的水柱高度h 即为A 点的真空度:2VA h h ==mA 点的相对压强3v 10009.8219.610Pa 19.6kPa A A p gh ρ=-=-⨯⨯=-⨯=-A 点的绝对压强,abs 9819.678.4kPa A a A p p p =+=-=教材中参考答案是按照h =1m 计算的。
2-6 如图所示密闭容器,上层为空气,中层为密度为30834kg/m ρ=的原油,下层为密度为31250kg/m G ρ=的甘油,测压管中的甘油表面高程为9.14m ,求压力表G 的读数。
解:取原油与甘油的接触面为等压面,则012G G p gh gh ρρ+=即:8349.8(7.62 3.66)12509.8(9.14 3.66)G p +⨯⨯-=⨯⨯-解得:34.76kPa G p =2-7 给出图中所示AB 面上的压强分布图。
2-8 输水管道试压时,压力表M 读数为10at ,管道直径d =lm 。
求作用在图示管端法兰堵头上的静水总压力。
解:由静力学基本方程得:25C 3.141()(10009.80.51098000)7.7010N 244M d d P gh A g p πρρ⨯==+⨯=⨯⨯+⨯⨯=⨯2-9 图示矩形闸门,高a =3m ,宽b =2m ,闸门顶在水下的淹没深度h =1m 。
试求(1)作用在闸门上的静水总压力;(2)静水总压力的作用位置。
解:(1)闸门的面积A =ab =3×2m =6m 2, 闸门形心的淹没深度为3(1)m=2.5m 22C a h h =+=+ 由表2—2查得,惯性矩 33423 4.5m 1212xCba I ⨯=== 于是,可算得总压力9.81000 2.56N=147000N 147kN C C P p A g h A ρ===⨯⨯⨯= (2)总压力的作用点D 的淹没深度4.52.5m 2.8m 2.56xC xC D C C C C I I y y h y A h A ⎛⎫=+=+=+= ⎪⨯⎝⎭2-10 图示一铅直矩形自动泄水闸门,门高h =3m 。
(1)要求水面超过闸门顶H =1m 时泄水闸门能自动打开。
试求闸门轴O —O 的位置放在距闸门底的距离。
(2)如果将闸门轴放在形心C 处,H 不断增大时,闸门是否能自动打开?解:(1) 总压力的作用点D 的淹没深度226(2)xC D C C I h h y y H y A H h =+=+++ 总压力的作用点D 距闸门底的距离为()()()223326(2)26(2)2223D h h h h l H h y H h H H h H h H ⎡⎤=+-=+-++=-=-⎢⎥+++⎣⎦水面超过闸门顶H =1m 时泄水闸门能自动打开,即总压力的作用点D 位于闸门轴O —O 上,此时闸门轴O —O 的位置放在距闸门底的距离为()33 1.2m 2223l H =-=+ (2) 当H 增大时,l 随之增大,但始终有()33322232l H =-<+,所以将闸门轴放在形心C 处,H 不断增大时,闸门是不能自动打开。
2-11 图示一容器,上部为油,下部为水。
已知入h 1=1m ,h 2=2m ,油的密度3800kg/m ρ=。
求作用于容器侧壁AB 单位宽度上的作用力及其作用位置。
解:建立坐标系O-xy ,原点在O 点,Ox 垂直于闸门斜向下,Oy 沿闸门斜向下,AB 单位宽度上的作用力为:()13sin sin 10sin d sin d [sin 1]d 1222sin sin sin 1228009.818009.8110009.8145264N 2sin 60sin 60sin 60o o w A o o w P g h A gy y g g y ygg g αααρραρραρρρααα==++-=++=⨯⨯+⨯⨯+⨯⨯=⎰⎰⎰ 总作用力的作用位置为:()132sin sin 10sin 222222221d 1sin d sin 1d 426413sin sin 3sin sin 18009.848009.82610009.8410009.8452643sin 60sin 603sin 60sin D Ao w o o w w y gh y A P gy y gy gy y y P g g g g P αααρραρραρρρραααα=⋅⎧⎫=++-⎡⎤⎨⎬⎣⎦⎩⎭⎛⎫=+++ ⎪⎝⎭⨯⨯⨯⨯⨯⨯⨯=++-⨯⨯⎰⎰⎰60106276 2.35m 45264⎛⎫ ⎪⎝⎭== 即合力作用点D 沿侧壁距离容器底部的B 点:3/sin60 2.35 1.114(m)-=2-12 绘制图2-12中AB 曲面上的水平方向压力棱柱及铅垂方向的压力体图。
2-13图示一圆柱,转轴O的摩擦力可忽略不计,其右半部在静水作用下受到浮力P Z圆柱在该浮力作用下能否形成转动力矩?为什么?解:不能。
α=,半径r=4.24m,闸门所挡水深2-14一扇形闸门如图所示,圆心角45H=3m。
求闸门每米宽度所承受的静水压力及其方向。
解:每米宽度所承受的静水压力为N⨯,其方向与水平角夹角为4531054.14。
.462-15一圆柱形滚动闸门如图所示,直径D=1.2m,重量G=500 kN,宽B =16m,滚动斜面与水平面成70°角。
试求(1)圆柱形闸门上的静水总压力P及其作用方向;(2)闸门启动时,拉动闸门所需的拉力T。
解:(1)圆柱形闸门上的静水总压力P=143.56N,其作用方向与水平角为38.15°;(2)闸门启动时,拉动闸门所需的拉力NT5=。
⨯1.74102-16水泵吸水阀的圆球式底阀如图示,因球直径D=l 50mm,装于直径d =100mm的阀座上。
圆球材料的密度ρ0=8510 kg/m3,已知H l=4m,H2=2m,问吸水管内液面上的真空度应为多大才能将阀门吸起?解:吸水管内液面上的真空度为3.69m时才能将阀门吸起。
题2-15图 2-16图2-17 设有一充满液体的铅垂圆管段长度为ΔL ,内径为D ,如图所示。
液体的密度为ρ0。
若已知压强水头p /g ρ比ΔL 大几百倍,则这段圆管所受的静水压强可认为是均匀分布。
设管壁材料的允许拉应力为σ,,试求管壁所需厚度δ。
解:σδ2pD =2-18 液体比重计如2.6.2节图2—21所示。
试依据浮力原理推证关系式(2—34)。
2-19 设直径为众的球体淹没在静水中,球体密度与水体密度相同,球体处子静止态。
若要将球体刚刚提出水面,所作的功为多少?提示:高度为H 的球缺的体积2(23)V H d H π=-。
解:若要将球体刚刚提出水面,所作的功为124d g W ρπ=2-20 长10 m 、半径1.5m 的木质半圆柱体浮于水面上,平面朗上,最低点的淹没深度为0.9 m 。
求半圆柱体木质材料的密度。
解:3m kg 6.504=ρ2-21 2.6.2节中图2—23所示混凝土沉箱。
(1)若高度由5m 增加到6m ,确定沉箱的稳定性;(2)若高度由5m 增加到6m ,但底部厚度增加到0.4m ,试求吃水深度,且检验沉箱的稳定性。
解:(1)不稳定;(2) 吃水深度为4.938m,稳定。