北师大版数学七年级下全等三角形五个判定同步练习题

合集下载

北师大版初中数学七年级下册《4.5 利用三角形全等测距离》同步练习卷(3)

北师大版初中数学七年级下册《4.5 利用三角形全等测距离》同步练习卷(3)

北师大新版七年级下学期《4.5 利用三角形全等测距离》同步练习卷一.选择题(共7小题)1.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.43.如图所示,A、B在一水池两侧,若BE=DE,∠B=∠D=90°,CD=10m,则水池宽AB=()m.A.8B.10C.12D.无法确定4.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A.60°B.75°C.90°D.120°5.下列选项中,不是依据三角形全等知识解决问题的是()A.利用尺规作图,作一个角等于已知角B.工人师傅用角尺平分任意角C.利用卡钳测量内槽的宽D.用放大镜观察蚂蚁的触角6.如图,大树AB与大树CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两颗大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED,已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A.13B.8C.6D.57.野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有()A.1种B.2种C.3种D.4种二.填空题(共7小题)8.有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE =CB,连接DE,量出DE的长为50m,则锥形小山两端A、B的距离为m.9.如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是s.10.如图,小强利用全等三角形的知识测量池塘两段M、N的距离.如果△PQO≌△NMO,则只需测出其长度的线段是.11.把两根钢条AD,BC的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=8厘米,则槽宽为厘米.12.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=a,CE=b.则两条凳子的高度之和为.13.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是.14.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD 垂足为D.已知AB=20米.根据上述信息,标语CD的长度为m.三.解答题(共2小题)15.如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E 在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.16.如图,在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过7分钟后,它们分别爬行到D、E处,设DC与BE的交点为点F.(1)求证:△ACD≌△CBE;(2)蜗牛在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请证明你的结论.北师大新版七年级下学期《4.5 利用三角形全等测距离》2019年同步练习卷参考答案与试题解析一.选择题(共7小题)1.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:A.【点评】本题考查了全等三角形的判定与性质,利用全等三角形的判定与性质是解题关键.2.某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A.1B.2C.3D.4【分析】显然第2中有完整的三个条件,用ASA易证现要的三角形与原三角形全等.【解答】解:因为第2块中有完整的两个角以及他们的夹边,利用ASA易证三角形全等,故应带第2块.故选:B.【点评】本题考查了全等三角形的应用(有两个角对应相等,且夹边也对应相等的两三角形全等);学会把实际问题转化为数学问题解答是关键.3.如图所示,A、B在一水池两侧,若BE=DE,∠B=∠D=90°,CD=10m,则水池宽AB=()m.A.8B.10C.12D.无法确定【分析】利用“角边角”证明△ABE和△CDE全等,根据全等三角形对应边相等可得AB =CD.【解答】解:在△ABE和△CDE中,,∴△ABE≌△CDE(ASA),∴AB=CD=10m.故选:B.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.如图,有两个长度相同的滑梯靠在一面墙的两侧,已知左边滑梯的高度AC与右边滑梯水平方向的宽度DF相等,则这两个滑梯与墙面的夹角∠ACB与∠DEF的度数和为()A.60°B.75°C.90°D.120°【分析】先根据BC=EF,AC=DF判断出Rt△ABC≌Rt△DEF,再根据全等三角形的性质可知,∠1=∠4,再由直角三角形的两锐角互余即可解答.【解答】解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF(HL),∴∠1=∠4,∵∠3+∠4=90°,∴∠ACB+∠DEF=90°.故选:C.【点评】本题考查的是直角三角形全等的判定及性质,直角三角形的性质,属基础题目.5.下列选项中,不是依据三角形全等知识解决问题的是()A.利用尺规作图,作一个角等于已知角B.工人师傅用角尺平分任意角C.利用卡钳测量内槽的宽D.用放大镜观察蚂蚁的触角【分析】分别利用作一个角等于已知角以及工人师傅用角尺平分任意角和卡钳测量内槽的宽都是利用全等三角形的知识解决问题,进而分析得出答案.【解答】解:A、利用尺规作图,作一个角等于已知角,是利用SSS得出,依据三角形全等知识解决问题,故此选项不合题意;B、工人师傅用角尺平分任意角,是利用SSS得出,依据三角形全等知识解决问题,故此选项不合题意;C、利用卡钳测量内槽的宽,是利用SAS得出,依据三角形全等知识解决问题,故此选项不合题意;D、用放大镜观察蚂蚁的触角,是利用相似,不是依据三角形全等知识解决问题,故此选项正确.故选:D.【点评】此题主要考查了全等三角形的应用,正确掌握全等三角形的判定方法是解题关键.6.如图,大树AB与大树CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两颗大树的顶点A和D,两条视线的夹角正好为90°,且EA=ED,已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是()A.13B.8C.6D.5【分析】首先证明∠A=∠DEC,然后可利用AAS判定△ABE≌△ECD,进而可得EC=AB=5m,再求出BE的长,然后利用路程除以速度可得时间.【解答】解:∵∠AED=90°,∴∠AEB+∠DEC=90°,∵ABE=90°,∴∠A+∠AEB=90°,∴∠A=∠DEC,在△ABE和△DCE中,,∴△ABE≌△ECD(AAS),∴EC=AB=5m,∵BC=13m,∴BE=8m,∴小华走的时间是8÷1=8(s),故选:B.【点评】本题考查全等三角形的判定和性质,路程,速度时间的关系等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.7.野营活动中,小明用一张等腰三角形的铁皮代替锅,烙一块与铁皮形状、大小相同的饼,烙好一面后把饼翻身,这块饼能正好落在“锅”中.小丽有四张三角形的铁皮(如图所示),她想选择其中的一张铁皮代替锅,烙一块与所选铁皮形状、大小相同的饼,烙好一面后,将饼切一刀,然后将两小块都翻身,饼也能正好落在“锅”中.她的选择最多有()A.1种B.2种C.3种D.4种【分析】根据翻身后饼也能正好落在“锅”中,考虑把三角形分成两个等腰三角形即可.【解答】解:如图,第一个沿直角三角形作斜边上的中线切,第二个三角形在钝角处沿20°角的另一边切,第三个三角形在60°角处沿20°角的另一边切,第四个三角形无法分成两个等腰三角形,所以,她的选择最多有3种.故选:C.【点评】本题考查了全等三角形的应用,判断出翻折后正好能够重合是三角形是等腰三角形是解题的关键.二.填空题(共7小题)8.有一座锥形小山,如图,要测量锥形小山两端A、B的距离,先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE =CB,连接DE,量出DE的长为50m,则锥形小山两端A、B的距离为50m.【分析】利用“SAS”证明△ABC≌△EDC,然后根据全等三角形的性质得AB=DE=50m.【解答】解:在△ABC和△EDC中,∴△ABC≌△EDC(SAS),∴AB=DE=50.答:锥形小山两端A、B的距离为50m.故答案是:50.【点评】本题考查了全等三角形的应用:一般方法是把实际问题先转化为数学问题,再转化为三角形问题,其中,画出示意图,把已知条件转化为三角形中的边角关系是关键.9.如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是3s.【分析】根据题意证明∠C=∠DMB,利用AAS证明△ACM≌△BMD,根据全等三角形的性质得到AC=BM=3m,再利用时间=路程÷速度加上即可.【解答】解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠C=90°,∴∠C=∠DMB.在Rt△ACM和Rt△BMD中,,∴Rt△ACM≌Rt△BMD(AAS),∴AC=BM=3m,∵该人的运动速度为1m/s,∴他到达点M时,运动时间为3÷1=3(s).故答案为3.【点评】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt△ACM≌Rt△BMD.10.如图,小强利用全等三角形的知识测量池塘两段M、N的距离.如果△PQO≌△NMO,则只需测出其长度的线段是PQ.【分析】根据全等三角形对应边相等可得PQ=MN.【解答】解:∵△PQO≌△NMO,∴PQ=MN,故答案为:PQ.【点评】此题主要考查了全等三角形的性质的应用,关键是掌握全等三角形的性质.11.把两根钢条AD,BC的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳),如图,若测得AB=8厘米,则槽宽为8厘米.【分析】连接AB,CD,根据O为AD和CB的中点,且∠COD=∠AOB即可判定△COD ≌△OAB,即可求得CD的长度.【解答】解:连接AB,CD,O为AD和CB的中点,∴OC=OB,OA=OD,∵∠COD=∠AOB∴△OCD≌△OAB,即CD=AB,故CD=AB=8cm,故答案为8.【点评】本题考查了全等三角形在实际生活中的应用,考查了全等三角形的证明和对应边相等的性质,本题中求证△OCD≌△OAB是解题的关键.12.如图,课间小明拿着老师的等腰三角板玩,不小心掉到两条凳子之间(凳子与地面垂直).已知DC=a,CE=b.则两条凳子的高度之和为a+b.【分析】利用等腰三角形的性质结合全等三角形的判定方法得出即可.【解答】解:由题意可得:∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,则∠DAC=∠BCE,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS),故DC=BE=a,AD=CE=b,则两条凳子的高度之和为:a+b.故答案为:a+b.【点评】此题主要考查了全等三角形的判定与性质,得出△ACD≌△CBE是解题关键.13.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.这种做法是利用了全等三角形对应角相等,图中判断三角形全等的依据是SSS.【分析】由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【解答】解:由图可知,CM=CN,又OM=ON,∵在△MCO和△NCO中,∴△COM≌△CON(SSS),∴∠AOC=∠BOC,即OC是∠AOB的平分线.故答案为:SSS.【点评】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.14.杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD 垂足为D.已知AB=20米.根据上述信息,标语CD的长度为20m.【分析】根据两平行线间的距离相等得到OB=OD,再由一对直角相等,一对内错角相等,利用ASA得到三角形AOB与三角形COD全等,利用全等三角形对应边相等即可求出CD的长.【解答】解:∵AB∥OH∥CD,相邻两平行线间的距离相等,∴OB=OD,∵OB⊥AB,OD⊥DC,∴∠ABO=∠CDO=90°,在△ABO和△CDO中,,∴△ABO≌△CDO(ASA),∴CD=AB=20m,故答案为:20【点评】此题考查了全等三角形的应用,垂直定义,以及平行线间的距离,熟练掌握全等三角形的判定与性质是解本题的关键.三.解答题(共2小题)15.如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了20步到达一棵树C处,接着再向前走了20步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E 在一条直线时,他共走了100步.(1)根据题意,画出示意图;(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.【分析】(1)根据题意所述画出示意图即可.(2)根据AAS可得出△ABC≌△DEC,即求出DE的长度也就得出了AB之间的距离.【解答】解:(1)所画示意图如下:(2)在△ABC和△DEC中,,∴△ABC≌△DEC,∴AB=DE,又∵小刚共走了100步,其中AD走了40步,∴走完DE用了60步,步大约50厘米,即DE=60×0.5米=30米.答:小刚在点A处时他与电线塔的距离为30米.【点评】本题考查全等三角形的应用,像此类应用类得题目,一定要仔细审题,根据题意建立数学模型,难度一般不大,细心求解即可.16.如图,在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以相同的速度由A向B和由C向A爬行,经过7分钟后,它们分别爬行到D、E处,设DC与BE的交点为点F.(1)求证:△ACD≌△CBE;(2)蜗牛在爬行过程中,DC与BE所成的∠BFC的大小有无变化?请证明你的结论.【分析】(1)根据SAS即可判断出△ACD≌△CBE;(2)根据△ACD≌△CBE,可知∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD.【解答】(1)证明:∵AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD;∠A=∠BCE=60°,在△ACD与△CBE中,,∴△ACD≌△CBE(SAS);(2)解:DC和BE所成的∠BFC的大小不变.理由如下:∵△ACD≌△CBE,∴∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD=120°.【点评】本题考查全等三角形的应用及等边三角形的性质,难度适中,求解第二问时找出∠BFC=180°﹣∠FBC﹣∠BCD=180°﹣∠ACD﹣∠BCD是关键.。

新北师大版七年级数学下册第三章全等三角形练习题

新北师大版七年级数学下册第三章全等三角形练习题

七年级数学周周清一、填空题1、若△ABC ≌△DEF ,△DEF 的周长为32 cm ,DE =9 cm ,EF =12 cm ,则AB =_____ cm ,BC =_____ cm,AC =_____ cm.2、若△ABC ≌△DEF ,AB =DE ,AC =DF ,∠A =80°,BC =9 cm,则∠D =_____,∠D 的对边是_____=_____ cm.3、已知如图1,在△ABF 和△DEC 中,∠A =∠D ,AB =DE ,若再添加条件_____=_____,则可根据边角边公理证得△ABF ≌△DEC .4、如图2,△ABC 中,∠C=90°,CD ⊥AB 于点D ,AE 是∠BAC 的平分线,点E 到AB 的距离等于3cm ,则CE=_____cm 。

图1图2 图35、如图3,△ABC ≌△ADE ,延长BC 交DA 于F ,交DE 于G ,∠D=25°,∠E=105°,∠DAC=16°,则∠DGB=____________。

6、为了使一扇旧木门不变形,木工师傅在木门的背面 加钉了一根木条,这样做的道理是 。

二、选择题1、有下列长度的三条线段,能组成三角形的是( )A 、 2cm ,3cm ,4cmB 、 1cm ,4cm ,2cmC 、1cm ,2cm ,3cmD 、 6cm ,2cm ,3cm 2、下列命题中正确的是( )①全等三角形对应边相等; ②三个角对应相等的两个三角形全等; ③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等。

A .4个 B 、3个 C 、2个 D 、1个3、已知△ABC ≌△DEF ,∠A=70°,∠E=30°,则∠F 的度数为 ( )(A ) 80° (B ) 70° (C ) 30° (D ) 100°4、如图4,△ABD 和△ACE 都是等边三角形,那么△ADC ≌△ABE 的根据是( )图4A.SSSB.SASC.ASAD.AAS 5、如图所示,某同学把一块三角形玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )F EDC BAA.带①去B. 带②去C. 带③去D. 带①和②去 6、下列说法:①所有的等边三角形都全等 ②斜边相等的直角三角形全等③顶角和腰长对应相等的等腰三角形全等 ④有两个锐角相等的直角三角形全等其中正确的个数是( )A .1个B .2个C .3个D .4个第7题 第8题 第9题7、如图,AB 平分∠CAD ,E 为AB 上一点,若AC=AD ,则下列结论错误的是( )A.BC=BDB.CE=DEC.BA 平分∠CBDD.图中有两对全等三角形8、如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则在下列条件中,无法判定△ABE ≌△ACD 的是( ) (A )AD=AE (B )AB=AC(C )BE=CD (D )∠AEB=∠ADC9、如图,AB=AC ,BE ⊥AC 于E ,CF ⊥AB 于F ,则①△ABE ≌△ACF ;②△BOF ≌△COE ;③点O 在∠BAC 的角平分线上,其中正确的结论有( ) A .3个 B .2个 C .1个 D .0个10、下列条件中能确定两个三角形全等的是( )A.一边及这条边上的高相等B.一边及这条边上的中线对应相等C.两角及第三个角平分线对应相等D.两条边及夹角的平分线对应相等11、下列各组图形中,一定全等的是( )A.各有一个角是45°的两个等腰三角形B.两个等边三角形C.各有一个角是40°,腰长都为3 cm 的两个等腰三角形D.腰和顶角对应相等的两个等腰三角形 三、解答题1、已知,如图,∠1=∠2,BD=CD,求证:AD 是∠BAC 的平分线.2、如图,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于点F ,若∠1=∠2=∠3,AC=AE ,求证:△ABC ≌△ADEA B C D EC B A E F O3、已知线段a 和∠1,作一个△ABC ,使得AB=a ,AC=2a ,∠A=∠ 1.4、如图,已知AB =DC ,AC =DB ,E 是BC 的中点,求证:AE =DE5、如图,在△ABC 中,BE 、CF 分别是AC 、AB 两边上的高,在BE 上截取BD=AC ,在CF 的延长线上截取CG=AB ,连结AD 、AG 。

最新北师大版七年级下册三角形全等证明测试试题以及答案

最新北师大版七年级下册三角形全等证明测试试题以及答案

最新七年级下册数学三角新全等的证明测试试题1. 如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE2.下列给出的四组条件中,能判定△ABC≌△DEF的是[]A.∠A=∠D,∠C=∠F,AC=EFB.AB=DE,BC=EF,∠A=∠DC.AB=DE,BC=EF,△ABC的周长等于△DEFD.∠A=∠D,∠B=∠E,AC=EF3. 如图,AC=AD,BC=BD,则图中全等三角形共有______对.4.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去和蕴含的道理是().A.①、SASB.②、AASC.③、ASAD.①和②、ASA5.如图,∠1=∠2,∠E=∠A,EC=AD,则△ABD≌△EBC,此时运用的判断依据是()。

A、SSSB、ASAC、AASD、SAS6.如图,AC,BD相交于点O,∠A=∠D,请你再补充一个条件,使△AOB≌△DOC,你补充的条件是(填一个即可)7、如图,能用AAS来判断△ACD≌△ABE,需要添加的条件是[] A.∠ACD=∠ABC,∠C=∠B B.∠AEB=∠ADC,CD=BE C.AC=AB,AD=AE D.AC=AB,∠C=∠B8、如图所示,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=10cm,则△DBE的周长= cm。

A. 10B. 8C. 6D. 99、如图,已知∠1 =∠2. 则不一定能使△ABD≌△ACD的条件是[]A. AB=ACB. BD= CDC. ∠B=∠CD.∠BDA= ∠CDA10、如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是()A.甲乙B.甲丙C.乙丙D.乙11、如图,∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件有[ ] A.1个B.2个C.3个D.4个12、如图所示,太阳光线AC与A'C'是平行的,AB表示一棵塔松,A'B'表示一棵小杨树,同一时刻两棵树的影长相等,已知小杨树高3米,则塔松高()A.大于3米B.等于3米C.小于3米D.和影子的长相同13、如图,AB、CD表示两根长度相等的铁条,若O为AB、CD的中点,经测量AC=15cm,则容器内径BD为()A.12cm B.13cm C.14cm D.15cm14、如图,小强利用全等三角形的知识测量池塘两端M、N的距离,如果△PQO≌△NMO,则只需测出其长度的线段是()A.PO B.PQC.MO D.MQ15、如图,将两根钢条、的中点O连在一起,使、可以绕着点0自由转动,就做成了一个测量工件,则AB、的长等于内槽宽AB,那么判定△AOB≌△的理由是()A.边边边B.边角边C.角边角D.角角边16、下面结论:(1)一锐角和斜边对应相等两个直角三角形全等;(2)顶角和底角对应相等的两个等腰三角形全等;(3)顶角和底边对应相等的两个等腰三角形全等;(4)有两个角和一边对应相等的两个三角形全等.其中正确的个数为()A.1个B.2个C.3个D.4个17、如图,已知AB=CD且∠ABD=∠BDC,要证∠A=∠C,判定△ABD ≌△CDB的方法是[]A.AAS B.SAS C.ASA D.SSS17、如图,给出下列四组条件:①AB=ED,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其.其中,能使△ABC≌△DEF的条件共有( )A.1组B.2组C.3组D.4组18、如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠C B.AD=CB C.BE=DF D.AD∥BC19、如图,小华书上的三角形被墨水弄污了一部分,她想在作业本上作一个完全一样的三角形,其根据是()A. SSS B.ASA C.SAS D.AAS21、下列各条件中,不能作出惟一三角形的是()A. 已知两边和夹角B. 已知两角和夹边C. 已知两边和其中一边的对角D. 已知三边22、用直尺和圆规作一个角等于已知角,如图,能得出∠A′O′B′=∠AOB的依据是()A.SAS B.SSS C.ASA D.AAS23、直尺和圆规作一个角的角平分线示意图,说明∠AOC=∠BOC依据。

2020-2021学年北师大版七年级数学下册 4.3.1探索三角形全等的条件(一) 同步练习题

2020-2021学年北师大版七年级数学下册 4.3.1探索三角形全等的条件(一) 同步练习题

2020-2021学年北师大版七年级数学下册第四章 4.3.1探索三角形全等的条件(一) 同步练习题A组(基础题)一、填空题1.如图,连接AD后,当AD=____,AB=____,BD=____时,可用“SSS”推得△ABD≌△DCA.连接BC后,当AB=____,BC=____,AC=____时,可用“SSS”推得△ABC≌△DCB.2.在△ABC与△DEF中,AC=DF,BC=EF,AB=DE,∠BAC=72°,∠F=32°,则∠ABC=____.3.(1)如图,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是____.(2)如图所示,建高楼时常需要用塔吊来吊建筑材料,而塔吊的上部都是三角形结构,这是应用了三角形的____.4.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C 作射线OC.由该做法得△MOC≌△NOC的依据是____.二、选择题5.如图,下列四个选项中所指两个三角形全等,其中正确的是( ),①) ,②) ,③) ,④)A.①②B.①④C.②④D.③④6.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是( )A.AC=DB B.AC=BC C.BE=CE D.AE=DE7.如图,以△ABC的顶点A为圆心,BC的长为半径作弧;再以顶点C为圆心,AB的长为半径作弧,两弧交于点D;连接AD,CD.由作法可得:△ABC≌△CDA的根据是( )A.SAS B.ASA C.AAS D.SSS8.如图,已知AB=AC.BD=DC,那么下列结论中不正确的是( )A.△ABD≌△ACD B.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC9.如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是( ) A.△ABC≌△BAD B.∠CAB=∠DBAC.OB=OC D.∠C=∠D三、解答题10.如图,点A,C,B,D在同一直线上,AC=BD,AM=CN,BM=DN,试说明:AM∥CN.11.如图,点A,D,C,B在同一条直线上,AD=BC,AE=BF,CE=DF.求证:AE∥BF.B组(中档题)一、填空题12.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x-2,2x-1,若这两个三角形全等,则x=____.13.如图,五边形ABCDE中有等边三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE 的度数为____.二、解答题14.(1)如图,AD=BC,AB=DC.求证:∠A+∠D=180°.(2)如图,已知AD=BC,OD=OC,O为AB的中点,说出∠C=∠D的理由.C组(综合题)15.(1)如图,AB=AE,BC=ED,CF=FD,AC=AD.求证:∠BAF=∠EAF.(2)如图,已知线段AB,CD相交于点O,AD,CB的延长线交于点E,OA=OC,EA=EC,请说明∠A=∠C.参考答案2020-2021学年北师大版七年级数学下册第四章 4.3.1探索三角形全等的条件(一) 同步练习题A组(基础题)一、填空题1.如图,连接AD后,当AD=DA,AB=DC,BD=CA时,可用“SSS”推得△ABD≌△DCA.连接BC后,当AB=DC,BC=CB,AC=DB时,可用“SSS”推得△ABC≌△DCB.2.在△ABC与△DEF中,AC=DF,BC=EF,AB=DE,∠BAC=72°,∠F=32°,则∠ABC=76°.3.(1)如图,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是127°.(2)如图所示,建高楼时常需要用塔吊来吊建筑材料,而塔吊的上部都是三角形结构,这是应用了三角形的稳定性.4.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C 作射线OC.由该做法得△MOC≌△NOC的依据是SSS.二、选择题5.如图,下列四个选项中所指两个三角形全等,其中正确的是(C),①) ,②) ,③) ,④)A.①②B.①④C.②④D.③④6.如图,在△ABC和△DCB中,AB=DC,AC与BD相交于点E,若不再添加任何字母与辅助线,要使△ABC≌△DCB,则还需增加的一个条件是(A)A.AC=DB B.AC=BC C.BE=CE D.AE=DE7.如图,以△ABC的顶点A为圆心,BC的长为半径作弧;再以顶点C为圆心,AB的长为半径作弧,两弧交于点D;连接AD,CD.由作法可得:△ABC≌△CDA的根据是(D)A.SAS B.ASA C.AAS D.SSS8.如图,已知AB=AC.BD=DC,那么下列结论中不正确的是(C)A.△ABD≌△ACD B.∠ADB=90°C.∠BAD是∠B的一半D.AD平分∠BAC9.如图,线段AD与BC交于点O,且AC=BD,AD=BC,则下面的结论中不正确的是(C) A.△ABC≌△BAD B.∠CAB=∠DBAC.OB=OC D.∠C=∠D三、解答题10.如图,点A ,C ,B ,D 在同一直线上,AC =BD ,AM =CN ,BM =DN ,试说明:AM ∥CN.解:∵AC =BD , ∴AB =CD.在△ABM 和△CDN 中, ⎩⎪⎨⎪⎧AB =CD ,AM =CN ,BM =DN ,∴△ABM ≌△CDN(SSS). ∴∠A =∠NCD.∴AM ∥CN(同位角相等,两直线平行).11.如图,点A ,D ,C ,B 在同一条直线上,AD =BC ,AE =BF ,CE =DF.求证:AE ∥BF.证明:∵AD =BC ,∴AC =BD. 在△ACE 和△BDF 中,⎩⎪⎨⎪⎧AC =BD ,AE =BF ,CE =DF.∴△ACE ≌△BDF(SSS), ∴∠A =∠B , ∴AE ∥BF.B 组(中档题)一、填空题12.已知△ABC 的三边长分别为3,5,7,△DEF 的三边长分别为3,3x -2,2x -1,若这两个三角形全等,则x =3.13.如图,五边形ABCDE 中有等边三角形ACD ,若AB =DE ,BC =AE ,∠E =115°,则∠BAE 的度数为125°.二、解答题14.(1)如图,AD =BC ,AB =DC.求证:∠A +∠D =180°.证明:连接AC.∵AD =CB ,AB =CD ,AC =CA , ∴△ABC ≌△DCA. ∴∠BAC =∠ACD. ∴AB ∥CD.∴∠BAD +∠D =180°.(2)如图,已知AD =BC ,OD =OC ,O 为AB 的中点,说出∠C =∠D 的理由.解:∵O 为AB 中点, ∴OA =OB.在△BOC 和△AOD 中, ⎩⎪⎨⎪⎧BC =AD ,OC =OD ,OB =OA ,∴∠C =∠D.C 组(综合题)15.(1)如图,AB =AE ,BC =ED ,CF =FD ,AC =AD.求证:∠BAF =∠EAF.证明:在△ACF 和△ADF 中, ⎩⎪⎨⎪⎧AC =AD ,CF =DF ,AF =AF ,△ACF ≌△ADF(SSS). ∴∠CAF =∠DAF.在△ABC 和△AED 中,⎩⎪⎨⎪⎧AB =AE ,BC =ED ,AC =AD ,∴△ABC ≌△AED(SSS).∴∠CAB =∠DAE.∴∠BAF =∠EAF.(2)如图,已知线段AB ,CD 相交于点O ,AD ,CB 的延长线交于点E ,OA =OC ,EA =EC ,请说明∠A =∠C.解:连接OE. 在△AOE 和△COE 中, ⎩⎪⎨⎪⎧QA =OC ,EA =EC ,OE =OE ,∴∠A=∠C.。

北师大版初中数学七年级下册《4.5 利用三角形全等测距离》同步练习卷(10)

北师大版初中数学七年级下册《4.5 利用三角形全等测距离》同步练习卷(10)

北师大新版七年级下学期《4.5 利用三角形全等测距离》同步练习卷一.选择题(共9小题)1.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA2.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS3.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS4.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC的理由是()A.SAS B.SSS C.ASA D.AAS5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块6.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,圆形容器的壁厚是()A.a B.b C.b﹣a D.(b﹣a)7.如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为()A.300m B.400m C.500m D.700m8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.①②B.①③C.②③D.①②③9.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD;④四边形ABCD的面积=AC×BD其中正确的结论有()A.1个B.2个C.3个D.4个二.解答题(共6小题)10.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.11.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?12.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C 和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.13.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB ∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.14.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.15.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.北师大新版七年级下学期《4.5 利用三角形全等测距离》2019年同步练习卷参考答案与试题解析一.选择题(共9小题)1.如图,有一池塘,要测池塘两端A,B间的距离,可先在平地上取一个不经过池塘可以直接到达点A和B的点C,连接AC并延长至D,使CD=CA,连接BC并延长至E,使CE=CB,连接ED.若量出DE=58米,则A,B间的距离即可求.依据是()A.SAS B.SSS C.AAS D.ASA【分析】根据全等三角形的判定与性质,可得答案.【解答】解:在△ABC和△DEC中,,△ABC≌△DEC(SAS),∴AB=DE=58米,故选:A.【点评】本题考查了全等三角形的判定与性质,利用全等三角形的判定与性质是解题关键.2.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理并灵活运用是解题的关键.3.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【点评】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.4.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是()A.SAS B.SSS C.ASA D.AAS【分析】根据垂直的定义、全等三角形的判定定理解答即可.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA)故选:C.【点评】本题考查的是全等三角形的应用,掌握全等三角形的判定定理是解题的关键.5.小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带()去.A.第1块B.第2块C.第3块D.第4块【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.6.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,圆形容器的壁厚是()A.a B.b C.b﹣a D.(b﹣a)【分析】连接AB,只要证明△AOB≌△DOC,可得AB=CD,即可解决问题.【解答】解:连接AB.在△AOB和△DOC中,,∴△AOB≌△DOC,∴AB=CD=a,∵EF=b,∴圆形容器的壁厚是(b﹣a),故选:D.【点评】本题考查全等三角形的应用,解题的关键是利用全等三角形的性质解决实际问题.属于中考常考题型.7.如图,平安路与幸福路是两条平行的道路,且都与新兴大街垂直,老街与小米胡同垂直,书店位于老街与小米胡同的交口处.如果小强同学站在平安路与新兴大街交叉路口,准备去书店,按图中的街道行走,最近的路程为()A.300m B.400m C.500m D.700m【分析】由于BC∥AD,那么有∠DAE=∠ACB,由题意可知∠ABC=∠DEA=90°,BA =ED,利用AAS可证△ABC≌△DEA,于是AE=BC=300,再利用勾股定理可求AC,即可求CE,根据图可知从B到E的走法有两种,分别计算比较即可.【解答】解:如图所示,设老街与平安路的交点为C.∵BC∥AD,∴∠DAE=∠ACB,又∵BC⊥AB,DE⊥AC,∴∠ABC=∠DEA=90°,在△ABC和△DEA中,∴△ABC≌△DEA(AAS),∴EA=BC=300m,在Rt△ABC中,AC==500m,∴CE=AC﹣AE=200m,从B到E有两种走法:①BA+AE=700m;②BC+CE=500m,∴最近的路程是500m.故选:C.【点评】本题考查了平行线的性质、全等三角形的判定和性质、勾股定理.解题的关键是证明△ABC≌△DEA,并能比较从B到E有两种走法.8.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD,其中正确的结论有()A.①②B.①③C.②③D.①②③【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故①正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故②正确;四边形ABCD的面积=,故③正确;故选:D.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.9.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=AC;③△ABD≌△CBD;④四边形ABCD的面积=AC×BD其中正确的结论有()A.1个B.2个C.3个D.4个【分析】先证明△ABD与△CBD全等,再证明△AOD与△COD全等即可判断.【解答】解:在△ABD与△CBD中,,∴△ABD≌△CBD(SSS),故③正确;∴∠ADB=∠CDB,在△AOD与△COD中,,∴△AOD≌△COD(SAS),∴∠AOD=∠COD=90°,AO=OC,∴AC⊥DB,故①②正确;四边形ABCD的面积=S△ADB+S△BDC=DB×OA+DB×OC=AC•BD,故④正确;故选:D.【点评】此题考查全等三角形的判定和性质,关键是根据SSS证明△ABD与△CBD全等和利用SAS证明△AOD与△COD全等.二.解答题(共6小题)10.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,测得AB=DE,AB∥DE,∠A=∠D.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.11.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?【分析】首先证明△ABC≌△DEF(SAS)可得AC=DF,然后再根据△ABC的周长为24cm,CF=3cm可得制成整个金属框架所需这种材料的长度.【解答】解:∵BF=EC,∴BF+FC=CE+FC,即BC=EF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴AC=DF,∵△ABC的周长为24cm,CF=3cm,∴制成整个金属框架所需这种材料的长度为24×2﹣3=45cm.【点评】此题主要考查了全等三角形的应用,关键是掌握证明三角形全等的方法,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.12.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C 和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.【分析】(1)根据题意画出图形即可;(2)根据题意得出各线段长度,再证△ABC≌△DEC得AB=DE=60m.【解答】解:(1)根据题意画出图形,如图所示.(2)由题可知∠BAC=∠EDC=90°,60cm=0.6m,AC=20×0.6=12m,DC=20×0.6=12m,DE=100×0.6=60m,∵点E、C、B在一条直线上,∴∠DCE=∠ACB.∵∠BAC=∠EDC=90°,AC=DC,∠DCE=∠ACB,∴△ABC≌△DEC,∴AB=DE.∵DE=60m,∴AB=60m,答:A、B两根电线杆之间的距离大约为60m.【点评】本题主要考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定与性质.13.如图,点B、F、C、E在直线l上(F、C之间不能直接测量),点A、D在l异侧,AB ∥DE,∠A=∠D,测得AB=DE.(1)求证:△ABC≌△DEF;(2)若BE=10m,BF=3m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,在△ABC与△DEF中,∴△ABC≌△DEF;(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=10m,BF=3m,∴FC=10﹣3﹣3=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.14.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【分析】根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC =∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB 即可,利用全等三角形的性质进行解答.【解答】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.【点评】此题主要考查了全等三角形的应用,关键是正确找出证明三角形全等的条件.15.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得河的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.求:(1)河的宽度是多少米?(2)请你证明他们做法的正确性.【分析】(1)根据全等三角形对应角相等可得AB=DE;(2)利用“角边角”证明Rt△ABC和Rt△EDC全等,再根据全等三角形对应边相等解答.【解答】(1)解:河的宽度是5m;(2)证明:由作法知,BC=DC,∠ABC=∠EDC=90°,在Rt△ABC和Rt△EDC中,,∴Rt△ABC≌Rt△EDC(ASA),∴AB=ED,即他们的做法是正确的.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.。

北师大版七年级数学下册综合题专练:全等三角形含参考答案

北师大版七年级数学下册综合题专练:全等三角形含参考答案

全等三角形1.小明不小心将一块三角形玻璃(记ΔABC)打破成三块(分别Ⅰ、Ⅱ、Ⅲ),如图所示,他在玻璃碎片Ⅱ上任取一点D,连接DE、DF,度量得到∠EDF=100º,∠1=40º,∠2=20º,根据以上数据,你能计算出原ΔABC中哪个内角的度数,是多少度?说明理由.2.如图,直线AB,CD相交于点O,OE平分∠BOC,OF⊥CD,∠BOE=83°,求∠AOF的度数.3.如图,直线l分别交AB,CD于点M,N(点M在点N的右侧),若∠1=∠2(1)求证:AB//CD;(2)如图,点E、F在AB,CD之间,且在MN的左侧,若∠MEF+∠EFN=255°,求∠AME+∠FNC的度数;(3)如图,点H在直线AB上,且位于点M的左侧;点K在直线MN上,且在直线AB的上方.点Q在∠MND的角平分线NP 上,且∠KHM=2∠MHQ,若∠HQN+∠HKN=75°,直接写出∠PND和∠QHB的数量关系.4.如图,在三角形ABC中, ∠B=60°, ∠C=α,点D是AB上一点,点E是AC上一点, ∠ADE=60°, 点F为线段BC 上一点,连接EF,过D作DG//AC交EF于点G,(1)若α=40°,求∠EDG的度数;∠BFG,求α.(2)若∠FEC=2∠DEF,∠DGF=345.如图,已知△ABC,按要求做图.(1)过点A 作BC 的垂线段AD(无需尺规作图,直接画出).(2)过点C 作AB 的平行线(尺规作图,不写作法,保留作图痕迹).6.如图,在四边形ABCD中,AD=BC,∠A=∠B,M是AB的中点.求证:CM=DM.7.如图,C是线段AB的中点,CD平分∠ACE,CE平分∠BCD,且CD=CE.(1)求证:ΔACD≅ΔBCE;(2)若∠A=70°,求∠E的度数.8.如图①,∠MON=70°,点A、B在∠MON的两条边上运动,∠MAB与∠NBA的平分线交于点P.(1)点A、B在运动过程中,∠P的大小会变吗?如果不会,求出∠P的度数;如果会,请说明理由.(2)如图②,继续作BC是平分∠ABO,AP的反向延长线交BC的延长线于点D,点A、B在运动过程中,∠D的大小会变吗?如果不会,求出∠D的度数;如果会,请说明理由.(3)如图②,∠P和∠D有怎样的数量关系?(直接写出答案)9.ΔABC中,三个内角的平分线交于点O,过点O作OD⊥OB,交边AB于点D.(1)如图,若∠ABC=40°,则∠AOC= ,∠ADO= ;(2)猜想∠AOC与∠ADO的关系,并说明你的理由;10.已知∠α和∠β求作∠AOB=2∠α+∠β(要求:只画图形,不写画法)11.(1)发现:如图1,点B是线段AD上的一点,分别以AB,BD为边向外作等边三角形ABC和等边三角形BDE,连接AE,CD,相交于点O.①线段AE与CD的数量关系为:___________;∠AOC的度数为__________.②ΔCBD可看作ΔABE经过怎样的变换得到的?____________________________.(2)应用:如图2,若点A,B,D不在一条直线上,(1)的结论①还成立吗?请说明理由;(3)拓展:在四边形ABCD中,AB=AC,∠BAC=90°,∠ADC=45°,若AD=8,CD=6,请直接写出B,D两点之间的距离12.已知线段a(保留作图痕迹,不必写作法)(1)求作等腰直角三角形ABC,使其斜边BC的长等于线段a的长;(2)作∠B的平分线BD,∠C的平分线CE,BD,CE相交于点O;(3)请直接写出∠BOC的度数_________.13.作图题(不写做法,保留作图痕迹)如图已知∠ABC,请你作一个角,使它等于2∠ABC.14.已知:如图,ΔABC,ΔADE均为等腰直角三角形,点D,E,C在同一直线上,连接BD.(1)求证:ΔADB≅ΔAEC;(2)求∠BDC的度数.15.如图,已知△ABC.(1)请用圆规和直尺作出⊙P,使圆心P到AB边和BC边的距离相等,且⊙P经过A,B两点(保留作图痕迹,不写作法和证明);(2)若∠B=60°,AB=6,求⊙P的半径.16.如图,∠AOB = 90°,OC为∠AOB的平分线,点P为OC上一个动点,过点P作射线PE交OA于点E.以点P 为旋转中心,将射线PE沿逆时针方向旋转90°,交OB于点F.(1)根据题意补全如图,并证明PE = PF;(2)如图,如果点E在OA边上,用等式表示线段OE,OP和OF之间的数量关系,并证明;(3)如图,如果点E在OA边的反向延长线上,直接写出线段OE,OP和OF之间的数量关系.17.下面是小明同学设计的“作圆的内接正方形”的尺规作图的过程.已知:如图,⊙O.求作:正方形ABCD,使正方形ABCD内接于⊙O.作法:如图,①过点O作直线AC,交⊙O于点A和C;②作线段AC的垂直平分线MN,交⊙O于点B和D;③顺次连接AB,BC,CD和DA;则正方形ABCD就是所求作的图形.根据上述作图过程,回答问题:(1)用直尺和圆规,补全如图中的图形;(2)完成下面的证明:证明:∵AC是⊙O的直径,∴∠ABC =∠ADC = °,又∵点B在线段AC的垂直平分线上,∴AB = BC,∴∠BAC = ∠BCA = °.同理∠DAC = 45°.∴∠BAD = ∠BAC +∠DAC = 45° + 45° = 90°.∴∠DAB = ∠ABC = ∠ADC = 90°,∴四边形ABCD是矩形()(填依据),又∵AB = BC,∴四边形ABCD是正方形.18.如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2,∠C=∠E, AE=AC.(1)求证: △ABC≌△ADE;(2) 求证:∠2=∠3;(3)当∠2=90°时,判断△ABD的形状,并说明理由.19.如图,∠B=∠E, AB=EF, BD=CE,请判断AC与FD的关系,并说明理由.20.在如图所示的方格纸中,每个小正方形的边长为1,点A、B、C均为格点(格点是指每个小正方形的顶点) .(1)标出格点D,使线段AB//CD ;(2)标出格点E,使CE是△ABC中AB边上的高;(3) 求B到AC的距离;(4)求△ABC的面积.21.(1)如图1,已知EK垂直平分BC,垂足为D,AB与EK相交于点F,连接CF.求证:∠AFE=∠CFD.(2)如图2,在RtΔGMN中,∠M=90°,P为MN的中点.①用直尺和圆规在GN边上求作点Q,使得∠GQM=∠PQN(保留作图痕迹,不要求写作法);②在①的条件下,如果∠G=60°,GM=3,P为MN中点,求MQ的长度.22.(生活常识)射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等。

北师大版七年级下册数学三角形全等基础必刷题(含答案)

三角形全等基础必刷题28.如图,在△ABC中,AB=AC=3,∠B=∠C=50°,点D在边BC上运动(点D不与点B,C重合),连接AD,作∠ADE=50°,DE交边AC于点E.(1)当∠BDA=100°时,∠EDC=°,∠DEC=°.(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请求出∠BDA的度数;若不可以,请说明理由.29.如图,△ABC中,AB=AC,点D在AB边上,点E在AC的延长线上,且CE=BD,连接DE交BC 于点F.(1)求证:EF=DF;(2)过点D作DG⊥BC,垂足为G,求证:BC=2FG.30.如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明△BAD≌△CAE;(2)若DE=DC,求∠CDE的度数.31.如图,在△ABC中,AD⊥BC,且AD=BD,点E是线段AD上一点,且BE=AC,连接BE.(1)求证:△ACD≌△BED;(2)若∠C=78°,求∠ABE的度数.32.已知:如图,△ABC中,∠ABC=45°,AD⊥BC,BE⊥AC于D,垂足分别为点D、E,AD与BE相交于点F.求证:DF=DC.33.已知△ABC和△ADE均为等腰三角形,且∠BAC=∠DAE,AB=AC,AD=AE.(1)如图1,点E在BC上,求证:BC=BD+BE;(2)如图2,点E在CB的延长线上,(1)的结论是否成立?若成立,给出证明;若不成立,写出成立的式子并证明.34.如图,AB>AC.∠BAC的平分线AD与BC的垂直平分线DG交于点D.连BD,过点D作DE⊥AB 于点E,DF⊥AC于点F.∠BDE=∠CDF,BE=3,AC=6.(1)试说明:△BDE≌△CDF;(2)求AE的长.35.如图,在△ABC中,AB=AC,∠BAC=90°,AE是过点A的一条直线,且B、C在AE的两侧,BD ⊥AE于D,CE⊥AE于E.(1)求证:△ABD≌△CAE;(2)若DE=3,CE=2,求BD.36.如图,等边△ABC中,D、E分别在BC、AC边上运动,且始终保持BD=CE,点D、E始终不与等边△ABC的顶点重合.连接AD、BE,AD和BE交于点F.(1)在运动过程中,∠BFD的度数是否会改变?如果改变,请说明理由;如果不变,求出∠BFD的度数.(2)在运动过程中,AE、AB、BD三条线段长度之间满足什么数量关系?请说明理由.37.如图,在△ABC中,∠ACB=90°,AC=BC,点E是∠ACB内部一点,连结CE,作AD⊥CE,BE⊥CE,垂足分别为点D,E.(1)求证:△BCE≌△CAD;(2)若BE=5,DA=12,则ED的长是.38.如图,已知△ABC中,AB=AC=12cm,BC=10cm,点D为AB的中点.如果点P在线段BC上以2cm/s 的速度由点B向点C运动,同时,点Q在线段AC上由点A向点C以4cm/s的速度运动.若P、Q两点分别从B、A两点同时出发,回答下列问题:(1)经过2s后,此时PB=cm,CQ=cm;(2)在(1)的条件下,证明:△BPD≌△CQP;(3)当△CPQ的周长为18cm时,求经过多少秒后,△CPQ为等腰三角形?39.如图,已知点C是线段AB上一点,∠DCE=∠A=∠B,CD=CE.(1)说明△ACD与△BEC全等的理由;(2)说明AB=AD+BE的理由.40.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连结AD,过点A作AE⊥AD,并且始终保持AE=AD,连结CE.(1)求证:△ABD≌△ACE;(2)若AF平分∠DAE交BC于F,探究线段BD,DF,FC之间的数量关系,并证明.参考答案28.解:(1)∵∠BDA=100°,∠ADE=50°,∴∠ED=180°﹣100°﹣50°=30°,∵∠C=50°,∴∠DEC=180°﹣50°﹣30°=100°,故答案为:30,100;(2)当DC=3时,△ABD≌△DCE,理由如下:∵AB=3,DC=3,∴AB=DC,∵∠B=50°,∠ADE=50°,∴∠B=∠ADE,∵∠ADB+∠ADE+∠EDC=180°∠DEC+∠C+∠EDC=180°,∴∠ADB=∠DEC,在△ABD和△DCE中,∴△ABD≌△DCE;(3)可以,理由如下:∵∠B=∠C=50°,∠B+∠C+∠BAC=180°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣50°﹣50°=80°,分三种情况讨论:①当DA=DE时,∠DAE=∠DEA,∵∠ADE=50°,∠ADE+∠DAE+∠DEA=180°,∴∠DAE=(180°﹣50°)÷2=65°,∴∠BAD=∠BAC﹣∠DAE=80°﹣65°=15°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣15°=115°②当AD=AE时,∠AED=∠ADE=50°∵∠ADE+∠AED+∠DAE=180°∴∠DAE=180°﹣∠AED﹣∠ADE=180°﹣50°﹣50°=80°,又∵∠BAC=80°,∴∠DAE=∠BAE,∴点D与点B重合,不合题意.③当EA=ED时,∠DAE=∠ADE=50°,∴∠BAD=∠BAC﹣∠DAE=80°﹣50°=30°,∵∠B+∠BAD+∠BDA=180°,∴∠BDA=180°﹣∠B﹣∠BAD=180°﹣50°﹣30°=100°,综上所述,当∠BDA的度数为115°或100°时,△ADE是等腰三角形.29.证明:(1)过点D作DH∥AC,DH交BC于H,如图1所示:则∠DHB=∠ACB,∠DHF=∠ECF,∵AB=AC,∴∠B=∠ACB,∴∠B=∠DHB,∴BD=HD,∵CE=BD,∴HD=CE,在△DHF和△ECF中,,∴△DHF≌△ECF(AAS),∴EF=DF;(2)如图2,由(1)知:BD=HD,∵DG⊥BC,∴BG=GH,由(1)得:△DHF≌△ECF,∴HF=CF,∴GH+HF=BH+CH=BC,∴BC=2FG.30.(1)证明:∵∠BAC=∠DAE=100°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∠BAC=100°,∴∠B=∠ACB=40°,∵△BAD≌△CAE,∴∠B=∠ACE=40°,∴∠DCE=∠BCA+∠ACE=80°,∵DE=DC,∴∠DEC=∠DCE=80°,∴∠EDC=180°﹣80°﹣80°=20°.31.(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,∴∠CAD+∠C=90°,∵AD=BD,BE=AC,∴Rt△BDE≌Rt△ADC(HL);(2)解:∵△ACD≌△BED,∴∠DAC=∠DBE,∵∠CAD+∠C=90°,∴∠DBE=∠CAD=90°﹣78=12°,∵AD=BD,AD⊥BC,∴△ABD是等腰直角三角形,∴∠ABD=45°,∴∠ABE=∠ABD﹣∠DBE=45°﹣12°=33°.32.证明:∵∠ABC=45°,AD⊥BC,∴△ABD是等腰直角三角形,∴BD=AD,∵BE⊥AC,∴∠C+DBF=∠C+DAC=90°,∴∠DBF=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴DF=DC.33.(1)证明:∵∠BAC=DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=BE+CE=BD+BE;(2)解:(1)的结论不成立,成立的结论是BC=BD﹣BE.证明:∵∠BAC=∠DAE,∴∠BAC+∠EAB=∠DAE+∠EAB,即∠DAB=∠EAC,又∵AB=AC,AD=AE,∴△DAB≌△EAC(SAS),∴BD=CE,∴BC=CE﹣BE=BD﹣BE.34.解:∵AD平分∠BAC,DE⊥AB,DF⊥AF,∴DE=DF,∵D在BC的垂直平分线上,∴BD=CD,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HL);(2)∵Rt△BDE≌Rt△CDF,∴CF=BE=3,在△AED和△AFD中,,∴△AED≌△AFD(AAS),∴AE=AF=AC+CF=AC+BE=6+3=9.35.(1)证明:∵BD⊥AE于D,CE⊥AE于E,∠BAC=90°,∴∠BDA=∠AEC=90°,∠DBA+∠BAD=90°,∠BAD+∠EAC=90°,∴∠DBA=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS);(2)解:由(1)知,△ABD≌△CAE,则BD=AE,AD=CE.∵DE=3,CE=2∴AE=AD+DE=CE+DE=5.∴BD=AE=5.36.解:(1)∠BFD的度数不会改变,理由如下:∵△ABC是等边三角形,∴AB=AC=BC,∠ABC=∠BAC=∠ACB=60°,在△ABD和△BCE中,∵△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠BFD=∠BAD+∠ABF=∠CBE+∠ABF=∠ABC,∴∠BFD=60°∴∠BFD的度数不变;(2)AE+BD=AB,理由如下:∵AB=BC=AC,BD=CE,∴AE+BD=AE+CE=AC=AB,∴AE+BD=AB.37.证明:(1)∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA,在△BCE和△CAD中,,∴△BCE≌△CAD(AAS);(2)解:∵△BCE≌△CAD,∴BE=DC=5,AD=CE=12,∴DE=CE﹣CD=12﹣5=7.故答案为:7.38.(1)解:当P,Q两点分别从B,A两点同时出发运动2秒时,有BP=2×2=4cm,AQ=4×2=8cm,则CP=BC﹣BP=10﹣4=6cm,∴CQ=AC﹣AQ=12﹣8=4cm,故答案为:4,4;(2)证明:∵D是AB的中点,∴BD=AB=6cm,∴BP=CQ,BD=CP,又∵△ABC中,AB=AC,∴∠B=∠C,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);(3)解:设当P,Q两点同时出发运动t秒时,有BP=2t,CP=10﹣2t,CQ=12﹣4t,∴PQ=18﹣(10﹣2t)﹣(12﹣4t)=6t﹣4,要使△CPQ是等腰三角形,则可分为三种情况讨论:①当CP=CQ时,则有10﹣2t=12﹣4t,解得:t=1;②当PQ=PC时,则有6t﹣4=10﹣2t解得:t=;③当QP=QC时,则有6t﹣4=12﹣4t解得:t=;综上所述,当t=1s或s或s时,△CPQ是等腰三角形.39.解:(1)∵∠DCE=∠A,∴∠D+∠ACD=∠ACD+∠BCE,∴∠D=∠BCE,在△ACD和△BEC中,,∴△ACD≌△BEC(AAS);(2)∵△ACD≌△BEC,∴AD=BC,AC=BE,∴AC+BC=AD+BE,即AB=AD+BE.40.解:(1)如图,∵AE⊥AD,∴∠DAE=∠DAC+∠2=90°,又∵∠BAC=∠DAC+∠1=90°,∴∠1=∠2,在△ABD和△ACE中,∴△ABD≌△ACE(SAS);(2)BD2+FC2=DF2,理由如下:连接FE,∵∠BAC=90°,AB=AC,∴∠B=∠3=45°,由(1)知△ABD≌△ACE,∴∠4=∠B=45°,BD=CE,∴∠FCE=∠3+∠4=45°+45°=90°,∴BD2+FC2=FE2,∵AF平分∠DAE,∴∠DAF=∠EAF,在△DAF和△EAF中,∴△DAF≌△EAF(SAS),∴DF=FE,∴BD2+FC2=DF2.。

(完整word版)北师大版七年级下三角形练习题

北师大版七年级下册数学三角形单元检测一、选择题1.以以下各组长度的线段为边,能构成三角形的是(A . 6 cm,8 cm,15 cmB . 7 cm,5 cm,12 cmC.4 cm,6 cm,5 cm D .8 cm,4 cm,3 cm).2.如图,△AOB≌△ COD , A 和 C, B 和 D 是对应极点,若BO= 6, AO=3, AB= 5,则 CD 的长为 ().A . 10 C.5B . 8D .不可以确立3.如图,已知∠选法是 ().1=∠ 2,要说明△ABD ≌△ ACD ,还需从以下条件中选一个,错误的A .∠ ADB =∠ ADC B .∠ B=∠ CC.DB = DC D .AB=AC4.要使五边形木架不变形,则起码要钉上( )根木条.A . 1B . 2 C. 3 D. 45.以下语句:①面积相等的两个三角形全等;②两个等边三角形必定是全等图形;③假如两个三角形全等,它们的形状和大小必定都同样;④边数同样的图形必定能相互重合.此中错误的说法有( ).A . 4 个B . 3 个C. 2 个D. 1 个6.假如一个三角形的三条高所在直线的交点在三角形外面,那么这个三角形是().A .锐角三角形B .直角三角形C.钝角三角形 D .等边三角形7.图中全等的三角形是( ) .A .Ⅰ和ⅡB .Ⅱ和ⅣC.Ⅱ和Ⅲ D .Ⅰ和Ⅲ8.如图,△ ABC 中,∠ ACB=90°,把△ ABC 沿 AC 翻折 180 °,使点 B 落在 B′的地点,则对于线段 AC 的性质中,正确的说法是 ( ).A .是边C.是∠BB′上的中线BAB′的均分线B .是边 BB′上的高D .以上三种性质都有二、填空题9.在△ ABC 中,若∠ A∶∠ B∶∠ C= 1∶ 3∶ 5,这个三角形为__________ 三角形. (按角的分类 )10.一木匠师傅有两根长分别为一个三角形框架,现有长分别为5 cm,8 cm 的木条,他要找第三根木条,将它们3 cm,10 cm,20 cm 的三根木条,他能够选择长为钉成__________cm 的木条.11.如图,假如AD= BC,∠ 1=∠ 2,那么△ ABC≌△ CDA,依据是 __________.12.如图,已知∠ABC=∠ DCB,现要说明△ABC≌△ DCB ,则还要补加一个条件是______.13.如图,△ABC 中, AB= AC, AD 是∠ BAC 的均分线,则∠ABD __________ ∠ACD (填“>”“<”或“=”).14.如图,长方形ABCD 中( AD> AB), M 为 CD 上一点,若沿着AM 折叠,点N 恰落在BC 上,则∠ ANB+∠ MNC = __________度.三、解答题15.如图,在△ ABC 中,∠ BAC 是钝角,达成以下绘图,并用适合的符号在图中表示AC 边上的高.16.已知:如图,在△ABC 中,∠ BAC=80°, AD ⊥ BC 于 D ,AE 均分∠ DAC ,∠ B=60°,求∠ AEC 的度数.17.如图,已知AB=AC, BD = CE,请说明△ ABE≌△ ACD .18.请你找一张长方形的纸片,按以下步骤进行着手操作:PM 和 PN,如步骤一:在CD 上取一点P,将角 D 和角 C 向上翻折,这样将形成折痕图①所示;步骤二:翻折后,使点 D, C 落在原长方形所在的平面内,即点 D′和 C′,仔细调整折痕PN, PM 的地点,使 PD′, PC′重合,如图②,设折角∠ MPD ′=∠ α,∠ NPC ′=∠β.(1)猜想∠ MPN 的度数;(2)若重复上边的操作过程,并改变∠α的大小,猜想:跟着∠α的大小变化,∠ MPN 的度数如何变化?参照答案1. C 点拨:本题考察了三角形的三边关系. A.6 + 8< 15,不可以构成三角形; B.7 + 5 =12,不可以构成三角形; C.4 + 5> 6,能够构成三角形; D.4 + 3< 8,不可以构成三角形.2. C 点拨:由于△AOB≌△COD,A和C,B和D是对应极点,因此AB=CD.由于AB=5,因此 CD=5.3. C 点拨:本题要点考察了三角形全等的判断定理,一般两个三角形全等共有四个定理,即 AAS, ASA, SAS, SSS,而“ SSA”没法证明三角形全等.4. B5. B 点拨:错误的说法有①②④,共 3 个.6. C 点拨:经过三角形的形状能够判断三角形高线的地点,反之,经过三条高线交点的地点能够判断三角形的形状.7. D 点拨: A 选项中条件不知足“ SAS”,不可以判断两三角形全等; B 选项中条件对应边不相等,不可以判断两三角形全等; C 选项中条件不知足“ SAS”,不可以判断两三角形全等; D选项中条件知足“ SAS”,能判断两三角形全等.8. D 点拨:本题考察的是图形的翻折变换及全等三角形的性质,熟知图形翻折变换的性质是解答本题的要点.9.钝角点拨:由于∠∶∠ ∶∠= 1∶ 3∶ 5,∠ +∠ +∠ =180°,因此∠=A B C ABC A 20°,∠B=60°,∠C=100°. 由于∠C>90°,因此这个三角形是钝角三角形.10. 10 点拨:已知三角形的两边长分别是 5 cm 和 8 cm,则第三边长必定大于 3 cm 且小于 13 cm. 故他能够选择此中长为10 cm 的木条.11. SAS 点拨:由于 AD=BC,∠1=∠2, AC= CA,因此△ ABC≌△ CDA(SAS).12.∠=∠D 或=或∠=∠A AB CD ACB DBC13.=点拨:由于△ ABC中, AB=AC, AD是∠ BAC的均分线,因此∠BAD=∠ CAD.又由于 AD= AD,因此△ ABD≌△ ACD(SAS).因此∠ ABD=∠ ACD.14. 90 点拨:依据折叠的性质,有∠ANM=∠ ADM=90°,故∠ ANB+∠ MNC=180°-∠ANM=90°.15.解:如图,BE即为AC边上的高.16.解:由于AD⊥BC,∠B=60°,∠BAC=80°,因此∠ BAD=30°,∠ DAC=50°,∠ C=40°.由于 AE均分∠ DAC,因此∠ DAE=∠ EAC=25°,因此∠ AEC=180°-∠ C-∠ EAC=180°-25°-40°=115°.17.解:由于AB=AC,BD=CE,因此 AD= AE.又由于∠ A=∠ A,因此△ ABE≌△ ACD(SAS).18.解: (1) 由于∠α=∠MPD,∠β=∠NPC,又由于∠α+∠β+∠MPD+∠NPC=180°,因此∠α+∠β=90°,即∠MPN=90°.(2) ∠MPN的度数不变,仍为90°.银川十八中。

北师大版七年级数学下册第四章三角形同步练习试题(含解析)

北师大版七年级数学下册第四章三角形同步练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,为了估算河的宽度,我们可以在河的对岸选定一个目标点A ,再在河的这一边选定点B 和F ,使AB BF ⊥,并在垂线BF 上取两点C 、D ,使BC CD =,再作出BF 的垂线DE ,使点A 、C 、E 在同一条直线上,因此证得ABC EDC △△≌,进而可得AB DE =,即测得DE 的长就是AB 的长,则ABC EDC △△≌的理论依据是( )A .SASB .HLC .ASAD .AAA2、如果一个三角形的两边长分别为5cm 和8cm ,则第三边长可能是( )A .2cmB .3cmC .12cmD .13cm3、如图,在△ABC 与△AEF 中,AB =AE ,BC =EF ,∠ABC =∠AEF ,∠EAB =40°,AB 交EF 于点D ,连接EB .下列结论:①∠FAC =40°;②AF =AC ;③∠EFB =40°;④AD =AC ,正确的个数为( )A.1个B.2个C.3个D.4个4、如图,点O在AD上,∠A=∠C,∠AOC=∠BOD,AB=CD,AD=8,OB=3,则OC的长为()A.3 B.4 C.5 D.65、在下列长度的各组线段中,能组成三角形的是()A.2,4,7 B.1,4,9 C.3,4,5 D.5,6,126、如图,E为线段BC上一点,∠ABE=∠AED=∠ECD=90°,AE=ED,BC=20,AB=8,则BE的长度为()A.12 B.10 C.8 D.67、如图,D为∠BAC的外角平分线上一点,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,且满足∠FDE=∠BDC,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有()A.1个B.2个C.3个D.4个8、下列长度的三条线段能组成三角形的是()A.3 4 8 B.4 4 10 C.5 6 10 D.5 6 119、如图,ABN≌ACM△,B和C∠是对应角,AB和AC是对应边,则下列结论中一定成立的是()A.BAM MAN=∠=∠B.AM CNC.BAM ABM=∠=∠D.AM AN10、小明把一副含有45°,30°角的直角三角板如图摆放其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠a+∠β等于()A.180°B.210°C.360°D.270°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BD AC⊥于点E,BD,CE交于点F,请你添加一个条件:______(只添加一⊥于点D,CE AB△≌ACE个即可),使得ABD2、如图,在△ABC中,点D为BC边延长线上一点,若∠ACD=75°,∠A=45°,则∠B的度数为__________.3、如图,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且ABC的面积等于24cm2,则阴影部分图形面积等于_____cm24、如图,在△ABC中,点D,E,F分别为BC,AD,CE的中点,且S△BEF=2cm2,则S△ABC=__________.5、已知三角形的三边分别为n,5,7,则n的范围是 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,M是线段AB上的一点,ED是过点M的一条线段,连接AE、BD,过点B作BF∥AE交ED于点F,且EM=FM.(1)求证:AE=BF.(2)连接AC,若∠AEC=90°,∠CAE=∠DBF,CD=4,求EM的长.2、如图,直角坐标系中,点B(a,0),点C(0,b),点A在第一象限.若a,b满足(a−t)2+|b−t|=0(t>0).(1)证明:OB =OC ;(2)如图1,连接AB ,过A 作AD ⊥AB 交y 轴于D ,在射线AD 上截取AE =AB ,连接CE ,F 是CE 的中点,连接AF ,OA ,当点A 在第一象限内运动(AD 不过点C )时,证明:∠OAF 的大小不变;(3)如图2,B ′与B 关于y 轴对称,M 在线段BC 上,N 在CB ′的延长线上,且BM =NB ′,连接MN 交x 轴于点T ,过T 作TQ ⊥MN 交y 轴于点Q ,当t =2时,求点Q 的坐标.3、如图,四边形ABCD 中,90BCD BAD ∠=∠=︒,AB AD =,AG CD ⊥于点G .(1)如图1,求证:AG CG =;(2)如图2,延长AB 交DC 的延长线于点F ,点E 在DG 上,连接AE ,且2AEF F ∠=∠,求证:FG AE EG =+;(3)如图3,在(2)的条件下,点H 在CB 的延长线上,连接EH ,EH 交AG 于点N ,连接CN ,且=CN AE ,当5BH =,9EF =时,求NG 的长.4、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE =AB ,AF =AC ,CE 交BA 于点D ,CE 交BF 于点M . 求证:(1)EC =BF ;(2)EC ⊥BF .5、已知,∠A=∠D,BC平分∠ABD,求证:AC=DC.-参考答案-一、单选题1、C【分析】根据题意及全等三角形的判定定理可直接进行求解.【详解】解:∵AB BF⊥,DE BF⊥,∴90ABC EDC∠=∠=︒,在ABC和EDC△中,ABC EDC BC DCACB ECD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABC EDC △△≌(ASA ),∴AB DE =;故选C .【点睛】本题主要考查全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.2、C【分析】根据两边之和大于第三边,两边之差小于第三边可求得结果【详解】解:设第三边长为c ,由题可知8-5<<8+5c ,即3<<13c , 所以第三边可能的结果为12cm故选C【点睛】本题主要考查了三角形的性质中三角形的三边关系知识点3、C【分析】由“SAS ”可证△ABC ≌△AEF ,由全等三角形的性质依次判断可求解.【详解】解:在△ABC 和△AEF 中,AB AE ABC AEF BC EF =⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△AEF (SAS ),∴AF =AC ,∠EAF =∠BAC ,∠AFE =∠C ,故②正确,∴∠BAE =∠FAC =40°,故①正确,∵∠AFB =∠C +∠FAC =∠AFE +∠EFB ,∴∠EFB =∠FAC =40°,故③正确,无法证明AD =AC ,故④错误,故选:C .【点睛】本题考查全等三角形的判定与性质,是重要考点,掌握相关知识是解题关键.4、C【分析】证明△AOB ≌△COD 推出OB =OD ,OA =OC ,即可解决问题.【详解】解:∵∠AOC =∠BOD ,∴∠AOC +∠COB =∠BOD +∠COB ,即∠AOB =∠COD ,∵∠A =∠C ,CD =AB ,∴△AOB ≌△COD (AAS ),∴OA =OC ,OB =OD ,∵AD =8,OB =3,∴OC=AO=AD-OD=AD-OB=5.故选C.【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题.5、C【分析】根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.【详解】解:A、∵247+<,∴不能构成三角形;B、∵149+<,∴不能构成三角形;C、∵345+>,∴能构成三角形;D、∵5612+<,∴不能构成三角形.故选:C.【点睛】本题主要考查运用三角形三边关系判定三条线段能否构成三角形的情况,理解构成三角形的三边关系是解题关键.6、A【分析】利用角相等和边相等证明ABE ECD ∆∆≌,利用全等三角形的性质以及边的关系,即可求出BE 的长度.【详解】解:由题意可知:∠ABE =∠AED =∠ECD =90°,1809090AEB DEC ∴∠+∠=︒-︒=︒,90A AEB ∠+∠=︒,A DEC ∴∠=∠,在ABE ∆和ECD ∆中,ABE ECD A DEC AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩()ABE ECD AAS ∴∆∆≌,8CE AB ∴==,12BE BC CE ∴=-=,故选:A .【点睛】本题主要是考查了全等三角形的判定和性质,熟练通过已知条件证明三角形全等,利用全等性质及边的关系,来求解未知边的长度,这是解决本题的主要思路.7、D【分析】利用AAS 证明△CDE ≌△BDF ,可判断①④正确;再利用HL 证明Rt△ADE ≌Rt△ADF ,可判断②正确;由∠BAC =∠EDF ,∠FDE =∠BDC ,可判断③正确.【详解】解:∵AD 平分∠CAF ,DE ⊥AC ,DF ⊥AB ,∴DE =DF ,∠DFB =∠DEC =90°,∵∠FDE =∠BDC ,∴∠FDB =∠EDC ,在△CDE 与△BDF 中,FDB CDE DFB DEC DF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△CDE ≌△BDF (AAS ),故①正确;∴CE =BF ,在Rt△ADE 与Rt△ADF 中,AD AD DE BF =⎧⎨=⎩, ∴Rt△ADE ≌Rt△ADF (HL ),∴AE =AF ,∴CE =AB +AF =AB +AE ,故②正确;∵∠DFA =∠DEA =90°,∴∠EDF +∠FAE =180°,∵∠BAC +∠FAE =180°,∴∠FDE =∠BAC ,∵∠FDE =∠BDC ,∴∠BDC =∠BAC ,故③正确;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正确故选:D.【点睛】本题主要考查了全等三角形的判定及性质,外角的性质等,熟悉掌握全等三角形的判定方法,灵活寻找条件是解题的关键.8、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D .∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C .【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.9、D【分析】根据全等三角形的性质求解即可.【详解】解:∵ABN ≌ACM △,B 和C ∠是对应角,AB 和AC 是对应边,∴BAN CAM ∠=∠,AM AN =,∴BAM CAN =∠∠,∴选项A 、B 、C 错误,D 正确,故选:D .【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键.10、B【分析】已知90C ∠=︒,得到2390∠+∠=︒,根据外角性质,得到1D α∠=∠+∠,4F β∠=∠+∠,再将两式相加,等量代换,即可得解;【详解】解:如图所示,∵90C ∠=︒,∴2390∠+∠=︒,∵1D α∠=∠+∠,4F β∠=∠+∠,∴14D F αβ∠+∠=∠+∠+∠+∠,∵12∠=∠,34∠=∠,∴1423D F D F ∠+∠+∠+∠=∠+∠+∠+∠,∵30D ∠=︒,90F ∠=︒,∴23233090210D F ∠+∠+∠+∠=∠+∠+︒+︒=︒;故选D .【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键.二、填空题1、AB AC =(答案不唯一)【分析】由题意依据全等三角形的判定条件进行分析即可得出答案.【详解】解:∵BD AC ⊥于点D ,CE AB ⊥于点E ,∴90AEC ADB ︒∠=∠=,∵A A∠=∠,△≌ACE(AAS).∴当AB AC=时,ABD故答案为:AB AC=.【点睛】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.2、30°【分析】根据三角形的外角的性质,即可求解.【详解】解:∵ACD A B∠=∠+∠,∴B ACD A∠=∠-∠,∵∠ACD=75°,∠A=45°,∴30∠=︒.B故答案为:30°【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.3、6【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【详解】解:如图,点F是CE的中点,∴△BEF的底是EF,△BEC的底是EC,即EF=12EC,而高相等,∴S△BEF=12S△BEC,∵E是AD的中点,∴S△BDE=12S△ABD,S△CDE=12S△ACD,∴S△EBC=12S△ABC,∴S△BEF=14S△ABC,且S△ABC=24cm2,∴S△BEF=6cm2,即阴影部分的面积为6cm2.故答案为6.【点睛】本题考查了三角形面积的等积变换:若两个三角形的高(或底)相等,面积之比等于底边(高)之比.4、8cm2【分析】由于三角形的中线将三角形分成面积相等的两部分,则S△CFB=S△EFB=2cm2,于是得到S△CEB=4cm2,再求出S△BDE=2cm2,利用E点为AD的中点得到S△ABD=2S△BDE=4cm2,然后利用S△ABC=2S△ABD求解.【详解】解:∵F点为CE的中点,∴S△CFB=S△EFB=2cm2,∴S△CEB=4cm2,∵D点为BC的中点,S△BCE=2cm2,∴S△BDE=12∵E点为AD的中点,∴S△ABD=2S△BDE=4cm2,∴S△ABC=2S△ABD=8cm2.故答案为:8cm2.【点睛】本题考查了三角形的中线,根据三角形的中线等分三角形的面积是解本题的关键.5、2<n<12【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求第三边长的范围.【详解】解:由三角形三边关系定理得:7﹣5<n<7+5,即2<n<12故n的范围是2<n<12.故答案为:2<n<12.【点睛】本题考查的是三角形三边关系,熟知三角形任意两边之和大于第三边,任意两边之差小于第三边是解答此题的关键.三、解答题1、(1)见解析;(2)2【分析】(1)根据平行线的性质和全等三角形的判定证明△AME≌△BMF即可证得结论;(2)由△AME≌△BMF证得AE=BF,EM=FM,∠BFM=∠AEC=90°,根据全等三角形的判定证明△AEC≌△BFD,则有EC=FD,即EF=CD=4,即可求解.【详解】解:(1)∵BF∥AE,∴∠EAM=∠FBM,又∠AME=∠BMF,EM=FM,∴△AME≌△BMF(ASA),∴AE=BF;(2)∵△AME≌△BMF,∴AE=BF,EM=FM,∠BFM=∠AEC=90°,∴∠AEC=∠BFD=90°,又∠CAE=∠DBF,∴△AEC≌△BFD(ASA),∴EC=FD,即EF=CD=4,EF=2.∴EM= 12【点睛】本题考查平行线的性质、全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解答的关键.2、(1)见解析(2)见解析(3)点Q坐标为(0,2 ).【分析】(1)利用绝对值以及平方的非负性求出B、C的坐标,利用坐标表示边长,即可证明结论.(2)延长AF 至点G ,使GF AF =,连接GC 、GO ,利用条件先证明GCF AEF ∆∆≌,再根据全等三角形性质,进一步证明GCO ABO ∆∆≌,最后综合条件得到GAO ∆为等腰直角三角形,进而得到∠OAF 为45︒,是个定值,即可证得结论成立.(3)先连接MQ 、NQ 、BQ 、'B Q ,过M 作MH CN ∥交x 轴于H ,利用平行关系和边相等证明'NTB MTH ∆∆≌,然后通过全等三角形性质进一步证明'NQB MQB ∆∆≌,再根据角与角之间的关系,求出'90BQB ∠=︒ ,得到'BBQ ∆为等腰直角三角形,最后利用等腰三角形的性质,即可求出点Q 坐标.【详解】(1)证明:(a −t )2+|b −t |=0(t >0), 00a t b t ∴-=-=,,即a b t ==, 点B 坐标为(a ,0),点C 坐标为(0,b ), OB OC t ∴==,故结论得证.(2)解:如图所示:延长AF 至点G ,使GF AF =,连接GC 、GO ,F 是CE 的中点,CF EF ∴=,在GCF ∆和AEF ∆中,CF EF CFG EFA FG AF =⎧⎪∠=∠⎨⎪=⎩()GCF AEF SAS ∴∆∆≌,CG AE ∴=GCF AEF ,GC AD ∴∥,GCD CDA ,AB AE =,GC AB ,AD AB ⊥,OB OC ⊥,90COB BAD ,180ABO ADO ,180ADO ADC , ADC ABO , GCD CDA ,GCD ABO ,在GCO ∆与ABO ∆中,GC AB GCO ABO OC OB =⎧⎪∠=∠⎨⎪=⎩()GCO ABO SAS ∴∆∆≌.GO AO ,GOC AOB , 90AOB AOC ,90GOC AOC,∴∆为等腰直角三角形.GAOOAF,故∠OAF的大小不变.45(3)解:连接MQ、NQ、BQ、'B Q,过M作MH CN∥交x轴于H.如下图所示:'B和B关于y轴对称,C在y轴上.'∴=,CB CB''∴∠=∠,CBB CB B∥,MH CN''∴∠=∠=∠,MHB CB B CBB∴=.MH BM'=,BM B N'MH B N ∴=,MH CN ∥,'NBT MHT ∴∠=∠,在'NTB ∆和MTH ∆中,NB T MHT B TN MTH B N MH ∠=∠⎧⎪∠=='∠'⎨'⎪⎩'()NTB MTH AAS ∴∆∆≌.TN MT ∴=,又TQ MN ⊥,MQ NQ ∴=, CQ 垂直平分'BB ,'BQ BQ ∴=,在'NQB ∆和MQB ∆中,B Q BQ NQ MQ B N BM ''=⎧⎪=⎨⎪=⎩'()NQB MQB SSS ∴∆∆≌.'BQN BQM ∴∠=∠,'QNB QMB ∠=∠.'180QNB QMC QMB QMC ∴∠+∠=∠+∠=︒,故180NQM NCM ∠+∠=︒.18090NQM NCM ∴∠=︒-∠=︒,'90BQB NQM ∠=∠=︒.∴'BBQ ∆为等腰直角三角形.'12OQ BB OB t ∴===. 故点Q 坐标为(0,2-).【点睛】本题主要是考查了对称点的坐标关系以及利用坐标求解几何图形,熟练掌握垂直平分线、平行线以及等腰三角形、全等三角形的判定和性质,是解决本题的关系.3、(1)见解析;(2)见解析;(3)2【分析】(1)过点B 作BQ AG ⊥于点Q ,根据AAS 证明△ABQ DAG ≅∆得AG BQ =,再证明四边形BCGQ 是矩形得BQ =CG ,从而得出结论;(2) 在GF 上截取GH =GE ,连接AH ,证明AH =FH ,GE =GH 即可;(3) 过点A 作AP HC ⊥于点P ,在FC 上截取MG GE =,连接,,AM AC AH ,证明()Rt AGE Rt CGN HL ∆≅∆得GN GE MG ==,可证明AC 是EH 的垂直平分线,再证明()Rt APH Rt AGM HL ∆≅∆和△()ABH ADM SAS ≅∆得5BH MD ==可求出4ME =,从而可得结论.【详解】解:(1)证明:过点B 作BQ AG ⊥于点Q ,如图1∵AG CD ⊥90AQB BAD ︒∴∠==∠ABQ BAQ DAG BAQ ∴∠+∠=∠+∠ABQ DAG ∴∠=∠又AB AD =,90AQB AGD ︒∠=∠=∴△()ABQ DAG AAS ≅∆B AG Q ∴=,,BC CD AG CD BQ AG ⊥⊥⊥∴四边形BCGQ 是矩形BQ CG ∴=CG AG ∴=;(2)在GF 上截取GH =GE ,连接AH ,如图2,,HG GE AG GF =⊥AH AE ∴=AEH AHE ∴∠=∠2AEF F ∠=∠2AHE F ∴∠=∠又AHE F FAH ∠=∠+∠F FAH ∴∠=∠FH AH ∴=AE FH ∴=FG FH HG AE EG ∴=+=+(3)过点A 作AP HC ⊥于点P ,在FC 上截取MG GE =,连接,,AM AC AH ,如图3,由(1)、(2)知,AP CG AG ==,,AM AE FM F FAM==∠=∠∵EF FG GE FM ME =+=+∴9AM ME =+∵,CN AE AG CG ==∴()Rt AGE Rt CGN HL ∆≅∆∴GN GE MG ==∴∠45GNE GEN ︒=∠=∵BC FD ⊥∴∠45CHE CEH ︒=∠=∴CH CE =∵AG CG =∴∠45ACG CAG ︒=∠=∴45ACG ACH ∠=∠=︒∴AC 是EH 的垂直平分线,∴AH AE =∴AH AM =又∵AG AP =∴()Rt APH Rt AGM HL ∆≅∆∴∠HAP MAG =∠∴∠90HAM PAG ︒=∠=∵∠F FAM =∠,90,90FAM MAD F D ∠+∠=︒∠+∠=︒∴∠MAD D =∠∴AM MD =∵,,AP CH HC FD AG FD ⊥⊥⊥∴90PAG ∠=︒∴90MAG PAM ∠+∠=︒∵∠HAP MAG =∠∴90PAH MAP ∠+∠=︒,即90HAM ∠=︒∴90HAB BAM ∠+∠=︒∵90BAD ∠=︒,即90BAM MAD ∠+∠=︒∴HAB MAD ∠=∠在ABH ∆和ADM ∆中,{AA =AA∠AAA =∠AAA AA =AA∴△()ABH ADM SAS ≅∆∴5BH MD ==∴5AM FM ==∴4ME =∴2GN GE MG ===【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.4、(1)见解析;(2)见解析【详解】(1)先利用SAS 证明△ABF ≌△AEC 即可得到EC =BF ;(2)根据(1)中的全等推得∠AEC =∠ABF ,根据∠BAE =90°,∠AEC +∠ADE =90°,再根据对顶角相等,等量代换后,推得∠BMD =90°.【解答】证明:(1)∵AE ⊥AB ,AF ⊥AC ,∴∠BAE =∠CAF =90°,∴∠BAE +∠BAC =∠CAF +∠BAC ,∴∠EAC =∠BAF ,在△ABF 和△AEC 中,AB AE EAC BAF AF AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABF≌△AEC(SAS),∴EC=BF;(2)如图,由(1)得:△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∴∠ADE=∠BDM(对顶角相等),∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=90°,∴EC⊥BF.【点睛】本题主要考查了全等三角形的性质与判定,对顶角的定义,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.5、见解析【分析】证明△BAC≌△BDC即可得出结论.【详解】解:∵BC平分∠ABD,∴∠ABC=∠DBC,在△BAC和△BDC中A DABC DBCBC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BAC≌△BDC,∴AC=DC.【点睛】本题考查角平分线的意义及全等三角形的判定与性质,解题关键是掌握角平分线的性质及全等三角形的判定与性质.。

北师大版初中数学七年级下册《4.5 利用三角形全等测距离》同步练习卷(5)

北师大新版七年级下学期《4.5 利用三角形全等测距离》同步练习卷一.选择题(共3小题)1.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS2.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是()A.SAS B.SSS C.ASA D.AAS3.如图所示,为了测量出A,B两点之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定D,使CD=BC,那么只要测量出AD的长度也就得到了A,B两点之间的距离,这样测量的依据是()A.AAS B.SAS C.ASA D.SSS二.填空题(共2小题)4.如图,小颖要测量池塘两岸相对的两点A、B的距离,她在池塘外AB的垂线BF上取两点C、D,使BC=CD,再出BF的垂线DE,使点E与A、C在一条直线上,则量出的DE长就是A、B的距离.她的依据是.5.如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是s.三.解答题(共6小题)6.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C 和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.7.如图,点B、F、C、E在一条直线上(点F,C之间不能直接测量),点A,D在直线l 的异侧,测得AB=DE,AB∥DE,AC∥DF.(1)求证:△ABC≌△DEF;(2)若BE=14m,BF=5m,求FC的长度.8.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?9.如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′到BD的距离;(2)求A′到地面的距离.10.如图,一块三角形模具的阴影部分已破损.回答下列问题:(1)只要从模具片中度量出哪些边、角,就可以到店铺加工一块与原来的模具△ABC的形状和大小完全相同的△A′B′C′模具?请简要说明理由.(2)按尺规作图的要求,在框内正确作出△A′B′C′图形,保留作图痕迹,不写作法和证明.11.如图,有一个池塘,要到池塘两侧AB的距离,可先在平地上取一个点C,从C不经过池塘可以到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A,B的距离,为什么?北师大新版七年级下学期《4.5 利用三角形全等测距离》2019年同步练习卷参考答案与试题解析一.选择题(共3小题)1.工人师傅常用角尺平分一个任意角,做法如下:如图,∠AOB是一个任意角,在边OA、OB上分别取OM=ON,移动角尺,使角尺两边相同的到刻度分别与点M、N重合,过角尺顶点C作射线OC由此作法便可得△NOC≌△MOC,其依据是()A.SSS B.SAS C.ASA D.AAS【分析】由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.【解答】解:∵在△ONC和△OMC中,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,故选:A.【点评】此题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.2.如图,要测量河两岸相对两点A、B间的距高,先在过点B的AB的垂线上取两点C、D,使得CD=BC,再在过点D的垂线上取点E,使A、C、E三点在一条直线上,可以证明△EDC≌△ABC,所以测得ED的长就是A、B两点间的距离,这里判定△EDC≌△ABC 的理由是()A.SAS B.SSS C.ASA D.AAS【分析】根据垂直的定义、全等三角形的判定定理解答即可.【解答】解:∵AB⊥BD,ED⊥BD,∴∠ABD=∠EDC=90°,在△EDC和△ABC中,,∴△EDC≌△ABC(ASA)故选:C.【点评】本题考查的是全等三角形的应用,掌握全等三角形的判定定理是解题的关键.3.如图所示,为了测量出A,B两点之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定D,使CD=BC,那么只要测量出AD的长度也就得到了A,B两点之间的距离,这样测量的依据是()A.AAS B.SAS C.ASA D.SSS【分析】根据SAS即可证明△ACB≌△ACD,由此即可解决问题.【解答】解:∵AC⊥BD,∴∠ACB=∠ACD=90°,在△ACB和△ACD中,,∴△ACB≌△ACD(SAS),∴AB=AD(全等三角形的对应边相等).故选:B.【点评】本题考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.二.填空题(共2小题)4.如图,小颖要测量池塘两岸相对的两点A、B的距离,她在池塘外AB的垂线BF上取两点C、D,使BC=CD,再出BF的垂线DE,使点E与A、C在一条直线上,则量出的DE长就是A、B的距离.她的依据是ASA.【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【解答】解:在△ABC和△EDC中,∴△ABC≌△EDC(ASA),她的依据是两角及这两角的夹边对应相等即ASA这一方法.故答案为:ASA.【点评】此题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,两根旗杆间相距12m,某人从点B沿BA走向点A,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM.已知旗杆AC的高为3m,该人的运动速度为1m/s,则这个人运动到点M所用时间是3s.【分析】根据题意证明∠C=∠DMB,利用AAS证明△ACM≌△BMD,根据全等三角形的性质得到AC=BM=3m,再利用时间=路程÷速度加上即可.【解答】解:∵∠CMD=90°,∴∠CMA+∠DMB=90°,又∵∠CAM=90°,∴∠CMA+∠C=90°,∴∠C=∠DMB.在Rt△ACM和Rt△BMD中,,∴Rt△ACM≌Rt△BMD(AAS),∴AC=BM=3m,∵该人的运动速度为1m/s,∴他到达点M时,运动时间为3÷1=3(s).故答案为3.【点评】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt△ACM≌Rt△BMD.三.解答题(共6小题)6.如图所示的A、B是两根呈南北方向排列的电线杆,A、B之间有一条小河,小刚想估测这两根电线杆之间的距离,于是小刚从A点开始向正西方向走了20步到达一棵大树C 处,接着又向前走了20步到达D处,然后他左转90°直行,当他看到电线杆B、大树C 和他自己现在所处的位置E恰在同一条直线上时,他从D位置走到E处恰好走了100步,利用上述数据,小刚测出了A、B两根电线杆之间的距离.(1)请你根据上述的测量方法在原图上画出示意图;(2)如果小刚一步大约60厘米,请你求A、B两根电线杆之间的距离.【分析】(1)根据题意画出图形即可;(2)根据题意得出各线段长度,再证△ABC≌△DEC得AB=DE=60m.【解答】解:(1)根据题意画出图形,如图所示.(2)由题可知∠BAC=∠EDC=90°,60cm=0.6m,AC=20×0.6=12m,DC=20×0.6=12m,DE=100×0.6=60m,∵点E、C、B在一条直线上,∴∠DCE=∠ACB.∵∠BAC=∠EDC=90°,AC=DC,∠DCE=∠ACB,∴△ABC≌△DEC,∴AB=DE.∵DE=60m,∴AB=60m,答:A、B两根电线杆之间的距离大约为60m.【点评】本题主要考查全等三角形的应用,解题的关键是熟练掌握全等三角形的判定与性质.7.如图,点B、F、C、E在一条直线上(点F,C之间不能直接测量),点A,D在直线l的异侧,测得AB=DE,AB∥DE,AC∥DF.(1)求证:△ABC≌△DEF;(2)若BE=14m,BF=5m,求FC的长度.【分析】(1)先证明∠ABC=∠DEF,再根据ASA即可证明.(2)根据全等三角形的性质即可解答.【解答】(1)证明:∵AB∥DE,∴∠ABC=∠DEF,∴AC∥DF,∴∠ACB=∠DFE,在△ABC与△DEF中,∴△ABC≌△DEF;(AAS)(2)∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+FC,∴BF=EC,∵BE=14m,BF=5m,∴FC=14﹣5﹣5=4m.【点评】本题考查全等三角形的判定和性质、平行线的判定等知识,解题的关键是正确寻找全等三角形的条件,记住平行线的判定方法,属于基础题,中考常考题型.8.茗茗用同种材料制成的金属框架如图所示,已知∠B=∠E,AB=DE,BF=EC,其中△ABC的周长为24cm,CF=3cm,则制成整个金属框架所需材料的长度为多少?【分析】首先证明△ABC≌△DEF(SAS)可得AC=DF,然后再根据△ABC的周长为24cm,CF=3cm可得制成整个金属框架所需这种材料的长度.【解答】解:∵BF=EC,∴BF+FC=CE+FC,即BC=EF,∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴AC=DF,∵△ABC的周长为24cm,CF=3cm,∴制成整个金属框架所需这种材料的长度为24×2﹣3=45cm.【点评】此题主要考查了全等三角形的应用,关键是掌握证明三角形全等的方法,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.9.如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.(1)求A′到BD的距离;(2)求A′到地面的距离.【分析】(1)作A'F⊥BD,垂足为F,根据全等三角形的判定和性质解答即可;(2)根据全等三角形的性质解答即可.【解答】解:(1)如图2,作A'F⊥BD,垂足为F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;图2又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BF A'中,∴△ACB≌△BF A'(AAS);∴A'F=BC∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距离是1.2m.(2)由(1)知:△ACB≌△BF A'∴BF=AC=2m,作A'H⊥DE,垂足为H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距离是1m.【点评】本题考查全等三角形的应用,解题的关键是正确寻找全等三角形全等的条件,灵活运用所学知识解决问题,属于中考常考题型.10.如图,一块三角形模具的阴影部分已破损.回答下列问题:(1)只要从模具片中度量出哪些边、角,就可以到店铺加工一块与原来的模具△ABC的形状和大小完全相同的△A′B′C′模具?请简要说明理由.(2)按尺规作图的要求,在框内正确作出△A′B′C′图形,保留作图痕迹,不写作法和证明.【分析】(1)根据全等三角形的判定定理,当已知两角及夹边对应相等时,两个三角形全等,据此求解即可.(2)根据角边角作△A′B′C′即可.【解答】解:(1)要从模具片中度量出边BC的长度、∠B及∠C的大小,就可以到店铺加工一块与原来的模具△ABC的形状和大小完全相同的△A′B′C′模具.因为两角及夹边对应相等的两个三角形全等;(2)如图:【点评】本题考查全等三角形的应用,关键知道两角一夹边对应相等的两个三角形全等,根据此也可画出全等三角形.11.如图,有一个池塘,要到池塘两侧AB的距离,可先在平地上取一个点C,从C不经过池塘可以到达点A和B,连接AC并延长到点D,使CD=CA,连接BC并延长到点E,使CE=CB,连接DE,那么量出DE的长就是A,B的距离,为什么?【分析】利用“边角边”证明△ABC和△DEC全等,再根据全等三角形对应边相等解答.【解答】解:量出DE的长就等于AB的长,理由如下:在△ABC和△DEC中,,∴△ABC≌△DEC(SAS),∴AB=DE.【点评】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档