用频率估计概率教学反思
北师大版数学九年级上册3 用频率估计概率1教案与反思

3.2 用频率估计概率投我以桃,报之以李。
《诗经·大雅·抑》原创不容易,【关注】,不迷路!1.知道通过大量的重复试验,可以用频率来估计概率;(重点)2.了解替代模拟试验的可行性.一、情景导入我们知道,任意抛一枚均匀的硬币,“正面朝上”的概率是0.5,许多科学家曾做过成千上万次的实验,其中部分结果如下表:观察上表,你获得什么启示?(实验次数越多,频率越接近概率)二、合作探究探究点:用频率估计概率小颖和小红两位同学在学习“概率”时,做掷骰子(质地均匀的正方体)试验,她们共做了60次试验,试验的结果如下表:(1)计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据试验,一次试验中出现‘5点朝上’的概率大”;小红说:“如果掷600次,那么出现‘6点朝上’的次数正好是100次.”小颖和小红的说法正确吗?为什么?解:(1)“3点朝上”的频率为660=110,“5点朝上”的频率为2060=13;(2)小颖的说法是错误的,因为“5点朝上”的频率大并不能说明“5点朝上”这一事件发生的概率大,因为当试验的次数非常多时,随机事件发生的频率才会稳定在事件发生的概率附近.小红的说法也是错误的,因为掷骰子时“6点朝上”这个事件的发生具有随机性,故如果掷600次,“6点朝上”的次数不一定是100次.易错提醒:频率与概率的联系与区别:(1)联系:当试验次数很多时,事件发生的频率会稳定在一个常数附近,人们常把这个常数作为概率的近似值.(2)区别:事件发生的频率不能简单地等同于其率.概率从数量上反映了一个随机事件发生的可能性大小,是理论值,是由事件本质决定的,只能取唯一值,它能精确地反映事件发生的可能性大小;而频率只有在大量重复试验的前提下才可近似地作为这个事件的概率,即概率是频率的稳定值,而频率是概率的近似值.在“抛掷一枚均匀硬币”的试验中,如果手边现在没有硬币,则下列各个试验中哪个不能代替()A.两张扑克,“黑桃”代替“正面”,“红桃”代替“反面”B.两个形状大小完全相同,但颜色为一红一白的两个乒乓球.扔一枚图钉D.人数均等的男生、女生,以抽签的方式随机抽取一人解析:“抛一枚均匀硬币”的试验中,出现正面和反面的可能性相同,因此所选的替代物的试验结果只能有两个,且出现的可能性相同,因此A项、B项、D项都符合要求,故选C.方法总结:用替代物进行试验时,首先要求替代物与原试验物所产生的所有可能均等的结果数相同,且所有结果中的每一对应事件的概率相等;其次所选择的替代物不能比实物进行试验时困难.替代物通常选用:扑克、卡片、转盘、相同的乒乓球、计算器等.某篮球队教练记录了该队一名主力前锋练习罚篮的结果如下:(1)填表:求该前锋罚篮命的频率(精确到0.01);(2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,你能估计这次他能罚中的概率是多少吗?解:(1)表中的频率依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802;(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率约为0.8.方法结:利用频率估计概率时,不能以某一次练习的结果作为估计的概率.试验的次数越多,用频率估计概率也越准确,因此用多次试验后的频率的稳定值估计概率.在一个不透明的盒子里装有颜色不同的黑、白两种球,其中白球24个,黑球若干.小兵将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是试验中的一组统计数据:(1)请估计:当n 很大时,摸到白球的频率将会接近 (精确到0.1); (2)假如你摸一次,估计你摸到白球的概率P (白球)= ; (3)试估算盒子里黑球有多少个. 解:(1)0.6 (2)0.6 (3)设黑球有x 个,则2424+x=0.6,解得x =16. 经检验,x =16是方程的解且符合题意. 所以盒子里有黑球16个.方法总结:本题主要考查用频率估计概率的方法,当摸球次数增多时,摸到白球的频率mn 将会接近一个数值,则可把这个数值近似看作概率,知道了概率就能估算盒子里黑球有多少个.三、板书设计用频率估计概率⎩⎨⎧用频率估计概率用替代物模拟试验估计概率通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.经历实验、统计等活动过程,进一步发展学生合作交流的意识和能力.通过动手实验和课堂交流,进一步培养学生收集、描述、分析数据的技能,提高数学交流水平,发展探索、合作的精神.【素材积累】岳飞应募参军,因战功累累不断升职,宋高宗亲手写了“精忠岳飞”四个字,制成旗后赐给他。
3.2.1用频率估计概率(教案)

3.增强学生的应用意识:将所学的频率估计概率知识应用于解决实际问题,让学生在实际情境中感受数学的魅力,提高学生运用数学知识解决实际问题的能力。
4.培养学生的合作交流能力:在小组合作探究过程中,鼓励学生相互交流、讨论,共同分析问题,培养团队协作能力和有效沟通技巧。
3.重点难点解析:在讲授过程中,我会特别强调频率的定义和频率估计概率的方法这两个重点。对于难点部分,如频率的稳定性,我会通过抛硬币实验的例子和数据分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与用频率估计概率相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如抛硬币、掷骰子等,演示频率估计概率的基本原理。
具体内容包括:
a.通过实验或调查,收集某一事件发生的次数和总次数。
b.计算事件发生的频率。
c.分析频率的稳定性和可信度,进而估计事件的概率。
本节课旨在让学生在实际操作中体会概率与频率的关系,培养学生运用频率估计概率的能力。
二、核心素养目标
1.培养学生的数据观念:通过本节课的学习,使学生能够理解频率的概念,认识到频率与概率之间的关系,学会利用频率估计概率,从而增强对数据的敏感性和分析能力。
其次,在新课讲授环节,我尝试通过理论介绍和案例分析相结合的方式,让学生更好地理解频率估计概率的方法。从课堂反馈来看,这种方法效果还不错。但在讲解难点部分,如频率的稳定性,我觉得自己还可以用更生动形象的方式来进行讲解,以便让学生更容易理解。
在实践活动环节,学生们分组讨论和实验操作的表现整体较好,但我发现部分学生在操作过程中仍然存在一些误区。为此,我打算在今后的教学中,加强对学生实验操作的指导,让他们在实践中更好地掌握频率估计概率的方法。
3.2用频率估计概率(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与用频率估计概率相关的实际问题。
2.实验操作:为了加深理解,我们将进行抛硬币和掷骰子的实验操作。这个操作将演示频率的计算方法和频率稳定性对概率估计的影响。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“用频率估计概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
其次,在新课讲授环节,我尝试用生动的案例和实验操作来解释频率和概率的概念,帮助学生理解。从学生的反馈来看,这种方法效果不错,但我也注意到有些学生对频率与概率之间的区别仍然存在疑惑。在今后的教学中,我需要更加关注这部分学生的需求,通过更多具体的例子和解释来帮助他们理解。
再谈谈实践活动部分,学生们在分组讨论和实验操作过程中表现出了很高的积极性。但我发现,在实验操作环节,部分小组的数据处理不够严谨,这可能对最终的概率估计结果产生影响。针对这个问题,我打算在接下来的课程中加强学生对数据准确性和可靠性方面的指导。
二、核心素养目标
本节课的核心素养目标主要包括:1.培养学生的数据观念,通过收集和分析数据,让学生体会数据中蕴含的信息,提高数据分析和处理能力;2.培养学生的逻辑思维能力,让学生在探讨频率与概率关系的过程中,运用逻辑推理,形成清晰的思维路径;3.培养学生的数学建模能力,引导学生运用数学知识,构建频率估计概率的模型,提高解决实际问题的能力。通过本节课的学习,使学生能够运用数学思维和方法,解决与概率相关的问题,增强数学应用意识,提升学科核心素养。
《利用频率估计概率》教学设计 初中九年级数学教案教学设计课后反思 人教版

《25.3用频率估计概率》教学设计【教材分析】《利用频率估计概率》是人教版九年级上册第二十五章《概率初步》的第三节。
它是学习了前两节概率和用列举法求概率的基础上,即学习了理论概率后,进一步从试验的角度来估计概率,让学生再次体会频率与概率间的关系,通过这部分内容的学习可以帮助学生进一步理解试验频率和理论概率的关系。
概率与人们的日常生活密切相关,应用十分广泛。
纵观近几年的中考题,概率已是考查的热点,同时,对此内容的学习,也是为高中深入研究概率的相关知识打下坚实基础。
【教学目标】根据新课程标准的要求,课改应体现学生身心发展特点;应有利于引导学生主动探索和发现;有利于进行创造性的教学。
因此,我把本节课的教学目标确定为以下四个方面:【知识技能】理解“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”.掌握用样本估计总体的基本思想.【数学思考】通过学生自己动手、动脑和亲身试验体会数学知识与现实世界的联系,并思考概率与频率之间的关系,样本估计总体的思想.【问题解决】通过实验,理解当实验次数较大时实验频率稳定于理论频率,并据此估计某一事件发生的概率.用估计得出的概率去解决实际问题.【情感态度】通过动手实验和课堂交流,进一步培养收集,描述,分析数据的技能,提高数学交流水平,发展探索,合作的精神.感受数学知识的运用在生活中的重要性.【重点与难点】重点:1.体会用频率估计概率的必要性和合理性。
2.学会依据问题特点,用频率来估计事件发生的概率。
难点:1.理解频率与概率的关系,2.用频率估计概率解决实际问题。
【学生分析】学习统计概率的学生并不是难在用频率估计概率,而是难在多大程度上感受用频率估计概率的必要性以及体会用频率估计概率所蕴含的基本思想,然后自觉地运用到实际生活中。
所以,要发动学生积极参与,动手实验,在实践中感悟。
【教学方法】树立以学生为本的思想,通过创设问题情境,利用《问题生成评价单》,以多媒体为教学平台,通过精心设计的问题串和活动系列,采取精讲多练、讲练结合的方法来落实知识点并不断地制造思维兴奋点,让学生脑、嘴、手动起来,充分调动了学生的学习积极性,达到事半功倍的教学效果。
3.2用频率估计概率(教案)

举例:通过抛硬币、掷骰子等实验,让学生观察不同试验次数下频率的变化,引导学生发现频率的稳定性。
(2)频率与概率之间的转化:让学生理解频率与概率之间的联系和区别,如何将频率转化为概率,这是学生掌握的难点。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“频率估计概率在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的数据分析观念,使学生能够通过实验观察数据,发现频率的稳定性,从而理解频率与概率之间的关系。
2.提高学生的数学抽象能力,让学生从具体的实验现象中抽象出频率估计概率的一般方法,并应用于实际问题。
3.增强学生的逻辑推理能力,引导学生通过实验、观察、分析等过程,合理解释频率估计概率的合理性。
1.回顾概率的定义,理解概率与频率的区别与联系。
2.通过实验,观察不同试验次数下事件发生频率的变化,探讨频率的稳定性。
3.学习如何利用频率估计概率,并通过实例进行分析。
4.练习运用频率估计概率的方法,解决简单的实际问题。
本节课的重点是让学生掌握利用频率估计概率的方法,难点是如何引导学生通过实验发现频率的稳定性,从而理解频率与概率之间的关系。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
初中数学_用频率估计概率教学设计学情分析教材分析课后反思

“正面向上”频率m/n.思考:1.观察统计表与统计图,你发现“正面向上”的频率有什么规律?2.随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?得到:每次试验中随机事件发生的频率具有不确定性,也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5. 这也与我们计算的概率是一致的,就用0.5这个常数表示“正面向上”发生的可能性的大小.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).4.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.5.归纳:即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).一般地,在大量重复试验中,如果事件A发生的频率m/n会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率, 记作P(A)= p.思考:①课本142页思考.②频率与概率有什么区别与联系?从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.③阅读课本142页文字,并思考:如何灵活选用利用频率估计概率与利用公式求概率.6.练习:某射击运动员在同一条件下练习射击,结果如下表所示:(1)计算表中击中靶心的各个频率并填入表中.(2)这个运动员射击一次,击中靶心的概率约是_____.三、课堂训练完成课本142、145页练习四、小结归纳1.本节学习的概率问题有什么特点?2.利用频率估计概率与利用公式求概率分别适用于什么样的问题?如何灵活选择方法求事件的概率?五、作业设计复习巩固作业和综合运用为全体学生必做;拓广探索为成绩中上等学生必做;学有余力的学生,要求模仿编拟课堂上出现的一些补充题目进行重复练习. 学生结合统计表和统计图思考学生类比得出结论教师给出概率的统计定义,学生理解.学生以小组形式讨论频率与概率的区别与联系师生交流总结出如何灵活选用利用频率估计概率与利用公式求概率.学生根据上面探究阅读分析尝试解决问题,明白在结果可能性不相等的情况下要利用频率来估计概率.学生在实际背景下弄清题中的数量关系,逐步理出思路,解决问题.教师组织学生进行练习,学生独立完成,教师巡视指导.让学生尝试归纳,总结,发言,体会,反思,教师点评汇总通过学生亲自动手实践和历史材料展示,体会大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,.同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.通过辨析区别与联系加深理解,以便灵活选用通过实际应用理解和巩固利用频率估计概率的方法,培养学生应用意识.应用巩固,掌握方法.使学生能灵活求事件的概率.归纳提升,加强学习反思,帮助学生养成系统整理知识的习惯巩固深化提高学情分析学生在小学对事件发生的可能性大小已经有了初步的认识,有了在具体环境中对可能性的体验。
25.3用频率估计概率解决问题(教案)
在学生小组讨论环节,我尽量以引导者的身份参与其中,但在启发学生思考问题时,我发现自己提问的方式有时过于直接,可能限制了学生的思维。在今后的教学中,我应该尝试提出更多开放性的问题,激发学生的创新思维。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了频率与概率的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对用频率估计概率的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在完成“25.3用频率估计概率解决问题”这一章节的教学后,我对自己在课堂教学中的表现进行了深刻的反思。首先,我觉得在导入新课环节,通过提问方式引导学生思考日常生活中的概率问题,效果还是不错的,学生的兴趣和好奇心被充分调动起来。但在新课讲授过程中,我发现部分学生对频率与概率的概念理解不够深入,可能是我讲解得不够详细,也可能是我没有给学生提供足够的思考空间。
二、核心素养目标
本节课的核心素养目标主要包括:1.培养学生的数据分析观念,使其能够运用频率估计概率,理解数据背后的随机性,提高数据处理能力;2.培养学生的逻辑推理能力,使其在解决概率问题时,能够运用所学知识进行合理的推理;3.培养学生的数学建模素养,通过构建数学模型来描述和解决现实生活中的概率问题;4.培养学生的数学应用意识,让学生在实际问题中发现、提出、分析并解决概率问题,体会数学与现实生活的紧密联系。通过本节课的学习,使学生能够运用数学知识解决现实问题,提高其数学核心素养。
浙教版数学九年级上册2 用频率估计概率教案与反思
2.3 用频率估计概率知人者智,自知者明。
《老子》棋辰学校陈慧兰1.理解每次试验可能结果不是有限个,或各种可能结果发生的可能性不相等时,用频率估计概率的方法;能应用模拟实验求概率及其它们的应用.2.通过复习列举法求概率的条件和方法,引入相反方向的:每次试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,利用频率求概率的方法,同时也介绍利用模拟试验求概率的方法.教学重点用频率估计概率的条件及方法.教学难点频率与概率的关系.一、导入新课教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、探索新知例1:某林业部门要考查某种幼树在一定条件的移植活率.(1)它能够用列举法求出吗?为什么?(2)它应用什么方法求出?(3)请完成下表,并求出移植成活率.移植总数(n)成活数(m)成活的频率(mn)10 8 0.8050 47 ____270 235 0.871400 369 ____750 662 ____1500 1335 0.893500 3203 0.915 7000 6335 _____900 8073 _____ 14000126280.902解:(1)不能.理由:移植总数无限,每一棵小苗成活的可能性不相等.(2)它应该通过填完表格,用频率来估计概率.(3)略所求的移植成率这个实际问题的概率是为:0.9.例2:某水果公司以2元/千克的成本新进了10000千克的柑橘,如果公司希望种柑橘能够获得利润5000元,那么在出售柑橘(已经去掉损坏的柑橘)时,每千克大约定价为多少元比较合适?销售人员首先从所有的柑橘中随机地抽取若干柑橘,•进行了“柑橘损坏表”统计,并把获得的数据记录在下表中,请你帮忙完成下表.柑橘总质量 (n )/千克 损坏橘质量 (m )/千克 柑橘损坏的频率(m n) 50 5.50 0.110 100 10.50 0.105 150 15.50 _____ 200 19.42 _____ 250 24.25 _____ 300 30.93 _____ 350[来源:35.32_____400 39.24 _____ 450 44.57 _____ 50051.54_____解:从填完表格,我们可得,柑橘损坏的概率为0.1,则柑橘完成的概率为0.9.因此:在10000千克柑橘中完好柑橘的质量为10000×0.9=9000千克. 完好柑橘的实际成本为:21000290000.9⨯==2.22(元/千克) www .xkb 设每千克柑橘的销价为x 元,则应有: (x -2.22)×9000=5000 解得:x ≈2.8因此,出售柑橘时每千克大约定价为2.8元可获利润5000元.例3:一个学习小组有6名男生3名女生,•老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取,•你能设计一种试验来估计“被抽取的3人中有2名男生1名女生”的概率吗?分析:因为要做从这9人中,抽取3人的试验确实工作量很大,为了简便这种试验,我们可用下面两种方法来简便.1.取9张形状完全相同的卡片,在6张卡片上分别写上1~6的整数表示男生,在其余的3张卡片上分别写上7~9的整数表示女生,把9张卡片混合起来并洗均匀.从卡片中放回的抽3次,随机抽取,每次抽取1张,并记录结果,经重复大量试验,•就能够计算相关频率,估计出三人中两男一女的概率.2.用计算器也能产生你指定的两个整数之间(包括这两个整数)的随机整数,•也同样能够估计概率.以上这两种试验我们把它称为模拟实验.•从模拟实验中产生的一串串的数为“随机数”.例4:在车站、街旁、旅游点、学校门口常常看到以下的博彩游戏:玩法(1)记分卡共20张,其中5分、10分各10张;(2)记分卡反放,每次任意摸10张,总分在下列分数中的可以得到与该分数对应的奖品;(3)每次摸奖付1元。
人教版九年级上册25.3用频率估计概率(教案)
5.本章内容主要包括:频率与概率的关系、频率的稳定值、如何进行实验和数据处理、频率估计概率的应用实例。
二、核心素养目标
1.数据分析:培养学生通过实验收集数据、分析数据的能力,学会运用频率估计概率,提高数据处理与概括能力;
2.逻辑推理:引导学生理解频率与概率之间的关系,通过逻辑推理,掌握频率估计概率的方法;
-实际问题中的应用:学生可能难以将频率估计概率的方法应用于解决复杂问题;
-难点解析:通过案例教学,如掷骰子游戏、抽奖活动等,让学生学会将实际问题转化为数学问题,运用频率估计概率进行解决。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《用频率估计概率》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要估计某个事件发生概率的情况?”(如抛硬币出现正面)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索用频率估计概率的奥秘。
-举例:抛硬币实验,让学生明白频率如何稳定在概率附近。
-实验数据收集与处理:指导学生如何进行实验,收集数据,计算频率;
-举例:掷骰子实验,教授如何记录数据,计算各面出现的频率。
-频率估计概率的方法:教授学生如何运用频率估计概率,解决实际问题;
-举例:通过篮球投篮实验,让学生学会利用频率估计投篮命中率。
1.加强对学生数学建模能力的培养,提高他们解决实际问题的能力;
2.引导学生围绕教学主题进行讨论,避免讨论偏离目标;
3.运用更多形象、生动的教学手段,帮助学生更好地理解抽象的数学概念。
最后,我要继续关注学生的学习情况,及时发现和解决他们在学习过程中遇到的问题,努力提高他们的数学素养,为他们的未来发展奠定坚实的基础。
《频率与概率》教学反思
频率与概率教学反思《频率与概率》是一节试验动手的多媒体新授课,整个教学过程中遵循“回-导-学-展-讲-练-结”高效课堂教学模式,以学生活动为主,利用合作试验得到的试验数据和相关的多媒体教学手段来完成教学。
本节课设计主要体现如下的教育理念:首先,学生的主动地位得以体现,注重了学生创新能力的培养,促进学生全面发展。
课堂上学生积极参与了自主探究学习活动,学生的动手实践能力得到了提高。
其次,体现了教师是学习的组织者、引导者和合作者。
再次,教学中信心的多媒体技术的使用,有利于学生理解和掌握频率与概率的关系。
本节教学中开篇用索契冬奥会视频引入本节新课,激发学生学习的兴趣;在研究频率与概率关系中,使用计算机模拟抛掷银币的试验,可以动态的让学生感知随着试验中次数增加,频率值一直在发生动态的改变;通过合作试验的Excel统计图表折线图的使用,可以更加清晰的展现频率的波动和概率的稳定;在知识总结中,利用微课视频总结回顾知识体系。
本节课需要改进的地方就是,在体会频率与概率关系过程中,在抛掷硬币实验以外,如果能设计另外一个操作实验,让学生尽可能多的在实际中操作中感受频率的变化,体会随机事件发生的不确定性和稳定性,可能预期的教学效果将会更好。
数学学习的过程不是让学生被动的吸收教材和教师给出的现成结论,而是一个由学生亲自参与的、生动活泼的、富有个性的自我生长的过程。
既然学习是学生自我生长的过程,那么,教学必然是一个动态生成的过程。
1、在对实验数据的收集整理中,让学生分组实验、整理数据。
教学中,我没有催赶,没有采用明示、暗示的手段,而是让学生自己寻找到比较合适的方法,统计出准确的数据。
2、利用电子模拟演示试验。
在刚结束的的市交流课上,一节九(上)《频率与概率》第二课时,加深了我对概率意义的深层次理解,对教材的设计意图有了新的领悟,为概率部分的教学积累了一定的教学经验. 概率是课改后新增的内容,它的思考方法不同于传统的教学,试验活动贯穿于课堂始终.本节课是在学生已经认识了随机事件,并且研究简单随机事件发生的可能性基础上,用树状图和列表法来找等可能结果,并由此计算两步试验概率的问题,学生接受起来有一定的困难.为很好的完成本节的教学目标,在授课时,我更多的关注下面的问题,也为本节课的成功奠定了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 第三章 概率的进一步认识 3.2 用频率估计概率
一、学生知识状况分析 学生的知识技能基础:学生通过以前的学习,对用试验方法估计随机事件发生的概率有了初步的认识,知道了“当试验次数较大,实验频率稳定于理论概率,并可据此估计某一事件发生的概率”. 学生的活动经验基础:经历了试验、统计过程,获得了用试验方法估计事件发生的概率的体验,并且在以前的数学学习活动中已经历了很多合作学习的过程,具有了一定的合作学习经验,具备了一定的合作与交流的能力.
二、教学任务分析 本节课的重点是掌握试验的方法估计复杂的随机事件发生的概率。 难点是试验估计随机事件发生的概率;关键是通过试验、统计活动,体会随机事件的概率。 为此,本节课的教学目标是: 1、知识与技能 经历收集数据、进行试验、统计结果、合作交流的过程,估计一些复杂的随机事件发生的概率. 2、过程与方法 经历试验、统计等活动过程,在活动中进一步发展学生合作交流的意识和能力. 3、情感、态度、价值观 通过对贴近学生生活的有趣的生日问题的试验、统计,提高学生学习数学的兴趣,且有助于破除迷信,培养学生严谨的科学态度和辩证唯物主义世界观.
三、教学过程分析 本节课设计了七个教学环节:一、课前准备;二、情境引入;三、探索新知;四、练习提高;五、课时小结;六、布置作业;七、活动探究. 2
第一环节:课前准备(提前一周布置) 内容:以6人合作小组为单位,开展调查活动:每人课外调查10个人的生日、生肖. 目的:收集数据,为本节课的学习提供素材,在课堂中运用源于学生实际调查的真实数据展开教学,能极大地激发学生学习数学的兴趣及学习的积极性与主动性.另一方面,也锻炼了学生的社交能力. 实际效果与注意事项:学生课外收集数据时有可能来自相同的人,各小组课前准备时,教师提醒尽量避免调查相同的人,最好每个小组的调查范围相对确定,如:初一、初二、初三等。
第二环节:情境引入 内容:《红楼梦》第62回中有这样的情节: 当下又值宝玉生日已到,原来宝琴也是这日,二人相同。„„ 袭人笑道:“这是他来给你拜寿.今儿也是他的生日,你也该给他拜寿.”宝玉听了,喜的忙作下揖去,说:原来今儿也是姐姐的芳诞.”平儿还福不迭。…… 探春忙问:“原来邢妹妹也是今儿,我怎么就忘了。” „„ 探春笑道:“倒有些意思,一年十二个月,月月有几人生日。人多了,便这等巧了,也有三个一日,两个一日的。„„ 目的:以小说情节开篇,引人入胜,直接引入与生日有关的话题,激发学生的学习兴趣. 实际效果:学生置身于情境之中,并陷入思考:为什么“便这等巧?”
第三环节:探索新知 经历试验、统计等活动过程,估计复杂随机事件(生日相同)的概率。 内容: 教师提出问题串 (1)400位同学中,一定有2人的生日相同(可以不同年)吗?有什么依 3
据呢? (2)300位同学中,一定有2人的生日相同(可以不同年)吗? (3)教师提出一个论断:“我认为咱们班50个同学中很可能就有2个同学的生日相同”你相信吗? 对于问题(1),学生能给予肯定的回答“一定”,对于能力比较强的学生可以用“抽屉原理”加以解释。例如,有的学生会给出如下的解释:“一年最多366天,400个同学中一定会出现至少2人出生在同月同日,相当于400个物品放到366个抽屉里,一定至少有2个物品放在同一抽屉里—抽屉原理:把m个物品任意放进几个空抽屉里(m>n),那么一定有一个抽屉中放进了至少2个物品”。 对于问题(2),学生会给出“不一定”的答案。 对于问题(3),学生会表示怀疑,不太相信。 于是,在班级课堂里展开现场的调查。得到数据后请学生反思: ① 如果50个同学中有2人生日相同,能否说明50人中有2人生日相同的概率是1? ② 如果50人中没有2人生日相同,就说明50人中2 人生日相同的概率为0? 学生能根据以往的知识进行反思,并能举一些类似的问题作为例子。例如: 随意抛掷一枚硬币,若国徽面朝上,说它的确概率为1,国徽面朝下的概率为0.显然是错误的,我们知道它们的概率均为0.5. 随意抛掷一枚骰子,“6朝上”时我们说“6朝上”的概率为1,6朝下的概率为0,显然也是错误的,我们知道它们的概率为1/6. 活动一,每个同学课外调查10人的生日,从全班的调查结果中随机选择50人,看有没有2人生日相同,设计方案估计50人中有2人生日有相同的概率. 活动设计目的:通过具体收据数据、实验、统计结果过程,丰富学生的数学活动经验,对本节课有更直观的感知,经历用实验估计理论概率的过程,初步感受到生日相同的概率较大. 设计方案:学生自主设计. 附学生设计的方案: 方案一:将每个同学调查的生日随机排列成一方阵,然后按某一规则从中 4
选取50个数据进行实验(如25×20),从某行某列开始,自左而右,自上而下,,选出50个数). 方案二:把全班每个同学所调查的数据写在纸条上,放在箱子里随机抽取. 方案三:从50个同学手里随机抽取一个调查数据,组成50个数据. 方案四:全班分成10个小组,把每个小组调查数据放在一起,打乱次序,随机抽取5个,然后10个小组的结果放在一组成50个数据. 活动过程指导: (1)节约时间,生日表示方式简化成四位数.如“0217” (2)人人参与,大胆发言、交流、讨论从大量的重复试验活动中感受生日相同的概率较大. (3)激励学生提出更好的活动方案,如:产生1~365之间某一自然数随机数的方法;分工制作1~365自然数卡片,放入纸箱随机抽取一张,记下号码,放回去,再随机抽取,直至抽出50张,多次重复试验,并估计出50人中有2人生日相同的概率,此为模拟试验. 活动评价指导: (1)学生的参与程度,活动过程中的思维方式,与同学合作交流情况. (2)鼓励思维多样性. (3)关注学生能否用实验方法估计一些较复杂随机事件发生的概率. (4)关注学生对概率的理解是否全面. (5)关注实验次数. 实际效果:通过以上探索活动,经历了大量重复试验,能估算出50人中有2人生日相同的概率是多少.约0.9704,很大. 结果可解释《红楼梦》生日相同“遇的巧”的问题. 这个结果出人意料之处就在于其结果违反了人们的直觉:人们往往觉得两人生日相同是一种可能性不大的事情,计算结果却是:如果人数不少于是23人,这种可能性就达50%.看下表是“几个人中至少有2人生日相同”的概率大小表: n p n p n p n p n p 20 0.4114 29 0.6810 38 0.8641 47 0.9548 56 0.9883 21 0.4437 30 0.7105 39 0.8781 48 0.9606 57 0.9901 5
22 0.4757 31 0.7305 40 0.8912 49 0.9658 58 0.9917 23 0.5073 32 0.7533 41 0.9032 50 0.9704 59 0.9930 24 0.5383 33 0.7750 42 0.9140 51 0.9744 60 0.9941 25 0.5687 34 0.7953 43 0.9239 52 0.9780 26 0.5982 35 0.8144 44 0.9329 53 0.9811 27 0.6269 36 0.8322 45 0.9410 54 0.9839 28 0.6545 37 0.8487 46 0.9483 55 0.9836
第四环节:练习提高 内容:课本P168随堂练习 课外调查的10个人的生肖分别是什么?他们中有2人的生肖相同吗?6个人中呢?利用全班的调查数据设计一个方案,估计6个人中有2个人生肖相同的概率. 目的:本问题与前面生日问题类似,借助于课外调查的数据再次进行有关问题的概率估算,丰富数学活动经验,直观感受较复杂事件的概率问题. 设计方案:模仿生日问题,学生自主设计,以上方案仅供参考. 方案一:全班分6人一小组试验(多出人员可一人当2人,3人),每人随机写下自己调查的一个生肖,小组长汇总收集数据,统计结果,课代表收集全班数据,估算6人中有2人生肖相同的概率. 方案二:将全班调查好所有结果写在纸条上,放进箱子里随机抽取6张. 方案三:生肖结果用数字代替排成方阵. 活动过程指导: (1)简化过程,把生肖按顺序用1-12个数据代替. (2)鼓励学生积极大胆发表自己的见解. (3)在讨论、交流过程中使学生进一步感受大量重复试验中频率稳定于概率的意义. (4)激励学生探索该问题的模拟试验. 活动评价指导: (1)主要是积极评价,鼓励学生思维的多样性. 6
(2)看学生能否用试验的方法估计一些复杂随机事件的概率. (3)关注学生对概率意义的理解是否全面. (4)此问题的理论概率约0.78,在此不要求学生把结果精确到那一位.
第五环节:课时小结 内容:师生共同总结本节内容 目的:回顾本节教学目标 学生先自我总结,然后师生共析: 本节课经历了调查、收集数据、整理数据、进行试验、统计结果,合作交流的过程,知道了用大量的实验频率来估计,一些复杂的随机事件的概率,当试验次数赵多时,实验频率稳定于理论概率,还知道了“直觉并不可靠”,本节“生日相同的概率”50人中有2人生日相同的概率竟高达0.97,这有违我们的“常识”。实际上,生活中有很多类似巧合,实则平凡且极为平凡的现象,如果我们从科学的角度通过实验估计随机事件发生的概率,用知识来武装我们的头脑,我们就会“透过现象看本质”,也不会受别有用心的人的欺骗,从而破除迷信,树立正确的唯物主义世界观.
第六环节:布置作业 1、课本习题 2、收集有关概率的文章
第七环节:活动探究 本环节对学生的思维要求较高,仅供给部分学有余力的学生阅读和提高,并非对全体同学的要求。 内容: 1、用“树状图”原理,求班上60名同学中至少有2人生日相同的概率 先求出“60人中没有两人生日相同的概率” 365×364×363×…×306