全国各地高考文科数学试题分类汇编:选修部分

合集下载

高考数学试题分类汇编17选修系列试题

高考数学试题分类汇编17选修系列试题

各地2021年高考数学 最新联考试题分类汇编〔17〕选修系列本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

一、填空题:9.〔十二校2021届高三第二次联考理〕(几何证明选讲)如图,圆0的割线PBA 过圆心O ,弦CD 交PA 于点F ,且△COF ~△PDF ,PB=OA=2,那么.PF= .【答案】310.〔十二校2021届高三第二次联考理〕(坐标系与参数方并呈)极坐标系中,曲线=-=θρθρcos sin 4和l 相交于点A ,B ,那么|AB|= .【答案】11.〔十二校2021届高三第二次联考理〕(不等式选讲)半圆的直径AB=2R ,P 是弧AB 上一点,那么2|PA|+3|PB|的最大值是 .【答案】11.〔十二校2021届高三第二次联考文〕设极点与坐标原点重合,极轴与x 轴正半轴重合,直线l 的极坐标方程是:)3sin(πθρ-=a ,R a ∈圆,C 的参数方程是θθθ(,sin 22,cos 232⎩⎨⎧+=+=y x 为参数〕,假设圆C 关于直线l 对称,那么a= .【答案】-210. 〔师大附中2021届高三第六次月考理〕直线的参数方程是⎪⎪⎩⎪⎪⎨⎧+==242222t y t x 〔其中为参数〕,圆C 的极坐标方程为)4cos(2πθρ+=,过直线上的点向圆引切线,那么切线长的最小值是 .【解析】θθρsin 2cos 2-= ,θρθρρsin 2cos 22-=∴,02222=+-+∴y x y x C 的直角坐标方程为圆,即1)22()22(22=++-y x ,)22,22(-∴圆心直角坐标为. 024=+-∴y x l 的普通方程为直线,圆心C 到l 直线间隔 是52|242222|=++, ∴直线上的点向圆C 引的切线长的最小值是621522=-15.(2021年高考模拟试卷一文科)〔优选法和试验设计初步4-7〕一个单峰函数()x f y =的因素x 的取值范围是[20,30],用黄金分割法安排试点,x 1,x 2,x 3,x 4 …中,假设x 1<x 2,x 1,x 3依次是好点,那么x 4= 。

五年(2018-22)全国高考数学真题分类汇编(全国卷新高考卷卷等)专题13 计数原理(解析版)

五年(2018-22)全国高考数学真题分类汇编(全国卷新高考卷卷等)专题13  计数原理(解析版)
【题目来源】2021高考北京·第11题
12.(2020年浙江省高考数学试卷·第12题)设 ,则a5=________;a1+a2+a3=________.
【答案】(1).80(2).122
解析: 的通项为 ,令 ,则 , ;
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2020年浙江省高考数学试卷·第12题
2018-2022五年全国各省份高考数学真题分类汇编
专题13计数原理
一、选择题
1.(2022高考北京卷·第8题)若 ,则 ( )
A.40B.41C. D.
【答案】B
解析:令 ,则 ,
令 ,则 ,
故 ,
故选,B.
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2022高考北京卷·第8题
13.(2020天津高考·第11题)在 的展开式中, 的系数是_________.
【答案】【答案】10【解析】因为 的展开式的通项公式为 ,令 ,解得 .所以 的系数为 .故答案为: .
【题目栏目】计数原理\二项式定理\二项展开式通项公式的应用
【题目来源】2020天津高考·第11题
14.(2019年高考浙江文理·第13题)在二项式 的展开式中,常数项是,系数为有理数的项的个数是.
A.5B.8C.10D.15
【答案】C
【解析】根据题意可知,原位大三和弦满足: .
∴ ; ; ; ; .
原位小三和弦满足: .
∴ ; ; ; ; .
故个数之和为10.
故选:C.
【点睛】本题主要考查列举法的应用,以及对新定义的理解和应用,属于基础题.
【题目栏目】计数原理\分类加法计数原理的应用

【备战】(四川版)高考数学分项汇编 专题15 选修部分(含解析)文

【备战】(四川版)高考数学分项汇编 专题15 选修部分(含解析)文

第十五章 选修部分一.基础题组1.【2007四川,文13】1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .2.【2008四川,文13】()()34121x x +-展开式中x 的系数为_______________。

【答案】:2【考点】:此题重点考察二项展开式中指定项的系数,以及组合思想;【突破】:利用组合思想写出项,从而求出系数;3.【2009四川,文14】61(2)2x x-的展开式的常数项是 (用数字作答)4.【2010四川,文9】由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是( ) (A )36 (B )32 (C )28 (D )24【命题意图】本题主要考查排列组合知识和分类讨论的思想方法5.【2010四川,文13】(x -2x)4的展开式中的常数项为______________(用数字作答)6.【2011四川,文13】9(1)x +的展开式中3x 的系数是_________.(用数字作答)7.【2012四川,文2】7(1)x +的展开式中2x 的系数是( )A 、21B 、28C 、35D 、42二.能力题组1.【2007四川,文9】用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A.48个B.36个C.24个D.18个【答案】()B2.【2008四川,文15】从甲、乙等10名同学中挑选4名参加某校公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有________________种。

【答案】:140【考点】:此题重点考察组合的意义和组合数公式;【突破】:从参加 “某项”切入,选中的无区别,从而为组合问题;由“至少”从反面排除易于解决;3.【2009四川,文11】2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( )A . 60B . 48C . 42D . 36【答案】B4.【2012四川,文11】方程22ay b x c =+中的,,{2,0,1,2,3}a b c ∈-,且,,a b c 互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A 、28条B 、32条C 、36条D 、48条。

十年(2012-2021)高考数学真题分项汇编(全国通用)-专题16 选修4-5不等式选讲(学生版)

十年(2012-2021)高考数学真题分项汇编(全国通用)-专题16 选修4-5不等式选讲(学生版)

专题16 选修4-5不等式选讲【2021年】1.(2021年全国高考乙卷数学(文)试题)已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.2.(2021年全国高考甲卷数学(理)试题)已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +≥,求a 的取值范围.3.(2021年全国新高考Ⅰ卷数学试题)已知函数()()1ln f x x x =-.(1)讨论()f x 的单调性;(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112e a b<+<.【2012年——2020年】1.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数()|31|2|1|f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集.2.(2020年全国统一高考数学试卷(文科)(新课标Ⅰ))已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.3.(2020年全国统一高考数学试卷(理科)(新课标Ⅰ))设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c .4.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.5.(2019年全国统一高考数学试卷(理科)(新课标Ⅰ))已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.6.(2019年全国统一高考数学试卷(文科)(新课标Ⅰ))设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 7.(2018年全国普通高等学校招生统一考试文科数学(新课标I 卷))已知()11f x x ax =+--. (1)当1a =时,求不等式()1f x >的解集;(2)若()0,1x ∈时不等式()f x x >成立,求a 的取值范围.8.(2018年全国普通高等学校招生统一考试理数(全国卷II ))设函数()52f x x a x =-+--. (1)当1a =时,求不等式()0f x ≥的解集;(2)若()1f x ≤恒成立,求a 的取值范围.9.(2018年全国卷Ⅰ理数高考试题)设函数()211f x x x =++-.(1)画出()y f x =的图像;(2)当[)0x +∞∈,,()f x ax b ≤+,求+a b 的最小值.10.(2017年全国普通高等学校招生统一考试文科数学(新课标1卷))已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[–1,1],求a 的取值范围.11.(2017年全国普通高等学校招生统一考试理科数学(新课标2卷))已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.12.(2017年全国普通高等学校招生统一考试文科数学(新课标3卷))已知函数()f x =│x +1│–│x –2│. (1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围.13.(2016年全国普通高等学校招生统一考试文科数学(新课标1卷))(2016高考新课标Ⅰ,理24)选修4-5:不等式选讲已知函数f (x )=|x +1|−|2x −3|.(Ⅰ)画出y =f (x )的图象;(Ⅰ)求不等式|f (x )|>1的解集.14.(2016年全国普通高等学校招生统一考试文科数学(新课标2卷))选修4-5:不等式选讲已知函数11()22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ; (Ⅰ)证明:当a ,b M ∈时,1a b ab +<+.15.(2016年全国普通高等学校招生统一考试)已知函数()|2|f x x a a =-+.(1)当a=2时,求不等式()6f x ≤的解集;(2)设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.16.(2015年全国普通高等学校招生统一考试理科数学(新课标))已知函数()|1|2||,0f x x x a a =+-->.(1)当1a =时,求不等式()1f x >的解集;(2)若()f x 的图象与x 轴围成的三角形面积大于6,求a 的取值范围.17.(2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ))选修4-5不等式选讲设a b c d ,,,均为正数,且a b c d +=+,证明:(Ⅰ)若ab cd >>;(Ⅰ>是a b c d -<-的充要条件.18.(2014年全国普通高等学校招生统一考试文科数学(新课标Ⅰ))若且 (I )求的最小值; (II )是否存在,使得?并说明理由.19.(2014年全国普通高等学校招生统一考试文科数学(全国Ⅰ卷))设函数1()|(0)f x x x a a a=++- (1)证明:()2f x ≥;(2)若(3)5f <,求a 的取值范围.20.(2013年全国普通高等学校招生统一考试理科数学(新课标1卷))选修4—5:不等式选讲 已知函数f (x )=|2x -1|+|2x +a|,g (x )=x +3.(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当xⅠ1,22a ⎛⎫-⎪⎝⎭时,f (x )≤g (x ),求a 的取值范围.21.(2013年全国普通高等学校招生统一考试文科数学(新课标2卷))设a ,b ,c 均为正数,且a+b+c=1,证明:(Ⅰ)ab+bc+ac ≤13; (Ⅰ)2221a b c b c a++≥.22.(2012年全国普通高等学校招生统一考试文科数学(课标卷))已知函数()f x =2x a x ++-. (Ⅰ)当3a =-时,求不等式()f x ≥3的解集;(Ⅰ) 若()f x ≤4x -的解集包含[1,2],求a 的取值范围.(命题意图)本题主要考查含绝对值不等式的解法,是简单题.。

高考数学试题分类汇编 选修4 试题

高考数学试题分类汇编 选修4 试题

十五、选修4制卷人:歐陽文化、歐陽理複;制卷時間:二O 二二年二月七日1.〔理4〕不等式|5||3|10x x -++≥的解集是 A .[-5,7] B .[-4,6]C .(][),57,-∞-+∞ D .(][),46,-∞-+∞【答案】D2.〔理5〕如图,AD ,AE ,BC 分别与圆O 切于点D ,E ,F , 延长AF 与圆O 交于另一点G 。

给出以下三个结论: ①AD+AE=AB+BC+CA ; ②AF·AG=AD·AE ③△AFB ~△ADG 其中正确结论的序号是 A .①② B .②③ C .①③ D .①②③【答案】A3.〔理5〕在极坐标系中,点θρπcos 2)3,2(=到圆的圆心的间隔 为〔A 〕2 〔B 〕942π+〔C 〕912π+〔D 〕3【答案】D4.〔理3〕在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是A .(1,)2πB .(1,)2π-C . (1,0)D .(1,π)【答案】B5.〔理11〕抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩〔t 为参数〕假设斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,那么r =________. 【答案】26.〔理12〕如图,圆中两条弦AB 与CD 相交于点F ,E 是AB 延长线上一 点,且2,::4:2:1.DF CF AF FB BE ===假设CE 与圆相切,那么线段CE 的长为__________.【答案】727.〔理13〕集合{}1|349,|46,(0,)A x R x x B x R x t t t ⎧⎫=∈++-≤=∈=+-∈+∞⎨⎬⎩⎭,那么集合A B ⋂=________.【答案】{|25}x x -≤≤8.〔理5〕在极坐标系中,直线(2cos sin )2ρθθ+=与直线cos 1ρθ=的夹角大小为 。

【答案】25arccos59.〔理10〕行列式a bc d 〔,,,{1,1,2}a b c d ∈-〕的所有可能值中,最大的是 。

高考数学分类练习 N单元 选修4系列(文科) Word版含答案

高考数学分类练习  N单元 选修4系列(文科) Word版含答案

数 学N 单元 选修4系列N1 选修4-1 几何证明选讲 22.N1 选修4­1:几何证明选讲如图1­6所示,△OAB 是等腰三角形,∠AOB =120°.以O 为圆心,12OA 为半径作圆.(1)证明:直线AB 与⊙O 相切;(2)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .图1­622.证明:(1)设E 是AB 的中点,连接OE . 因为OA =OB ,∠AOB =120°, 所以OE ⊥AB ,∠AOE =60°.在Rt △AOE 中,OE =12AO ,即O 到直线AB 的距离等于⊙O 的半径,所以直线AB 与⊙O相切.(2)因为OA =2OD ,所以O 不是A ,B ,C ,D 四点所在圆的圆心.设O ′是A ,B ,C ,D 四点所在圆的圆心,作直线OO ′.由已知得O 在线段AB 的垂直平分线上,又O ′在线段AB 的垂直平分线上,所以OO ′⊥AB .同理可证,OO ′⊥CD ,所以AB ∥CD . 22.N1 选修4­1:几何证明选讲如图1­5,在正方形ABCD 中,E ,G 分别在边DA ,DC 上(不与端点重合),且DE =DG ,过D 点作DF ⊥CE ,垂足为F .(1)证明:B ,C ,G ,F 四点共圆;(2)若AB =1,E 为DA 的中点,求四边形BCGF 的面积.图1­522.解:(1)证明:因为DF ⊥EC ,所以△DEF ∽△CDF ,则有∠GDF =∠DEF =∠FCB ,DFCF=DE CD =DG CB,所以△DGF ∽△CBF ,由此可得∠DGF =∠CBF .因此∠CGF +∠CBF =180°,所以B ,C ,G ,F 四点共圆. (2)由B ,C ,G ,F 四点共圆,CG ⊥CB 知FG ⊥FB .连接GB .由G 为Rt △DFC 斜边CD 的中点,知GF =GC ,故Rt △BCG ≌Rt △BFG ,因此,四边形BCGF 的面积S 是△GCB 面积S △GCB 的2倍,即S =2S △GCB =2×12×12×1=12.22.N1 选修4­1:几何证明选讲如图1­6,⊙O 中的中点为P ,弦PC ,PD 分别交AB 于E ,F 两点.(1)若∠PFB =2∠PCD ,求∠PCD 的大小;(2)若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明:OG ⊥CD .图1­622.解:(1)连接PB ,BC ,则∠BFD =∠PBA +∠BPD ,∠PCD =∠PCB +∠BCD .因为=,所以∠PBA =∠PCB ,又∠BPD =∠BCD ,所以∠BFD =∠PCD .又∠PFB +∠BFD =180°,∠PFB =2∠PCD ,所以3∠PCD =180°,因此∠PCD =60°.(2)证明:因为∠PCD =∠BFD ,所以∠EFD +∠PCD =180°,由此知C ,D ,F ,E 四点共圆,其圆心既在CE 的垂直平分线上,又在DF 的垂直平分线上,故G 就是过C ,D ,F ,E 四点的圆的圆心,所以G 在CD 的垂直平分线上.又O 也在CD 的垂直平分线上,因此OG ⊥CD .21.A.N1 选修4­1:几何证明选讲如图1­7,在△ABC 中,∠ABC =90°,BD ⊥AC ,D 为垂足,E 是BC 的中点,求证:∠EDC =∠ABD .图1­721.A.证明:在△ADB 和△ABC 中, 因为∠ABC =90°,BD ⊥AC ,∠A 为公共角, 所以△ADB ∽△ABC ,于是∠ABD =∠C . 在Rt △BDC 中,因为E 是BC 的中点, 所以ED =EC ,从而∠EDC =∠C , 所以∠EDC =∠ABD .N2 选修4-2 矩阵21.B .N2 选修4­2:矩阵与变换已知矩阵A =⎣⎢⎡⎦⎥⎤1 20 -2,矩阵B 的逆矩阵B -1=⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2,求矩阵AB . 21.B .解:设B =⎣⎢⎡⎦⎥⎤a b c d ,则B -1B = ⎣⎢⎢⎡⎦⎥⎥⎤1 -120 2⎣⎢⎡⎦⎥⎤a bc d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎢⎡⎦⎥⎥⎤a -12c b -12d 2c 2d =⎣⎢⎡⎦⎥⎤100 1,故⎩⎪⎨⎪⎧a -12c =1,b -12d =0,2c =0,2d =1,解得⎩⎪⎨⎪⎧a =1,b =14,c =0,d =12,所以B =⎣⎢⎢⎡⎦⎥⎥⎤1 140 12.因此,AB =⎣⎢⎡⎦⎥⎤1 20 -2⎣⎢⎢⎡⎦⎥⎥⎤1 140 12=⎣⎢⎢⎡⎦⎥⎥⎤1 540 -1.N3 选修4-4 参数与参数方程 23.N3 选修4­4:坐标系与参数方程在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =1+a sin t (t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .23.解:(1)消去参数t 得到C 1的普通方程x 2+(y -1)2=a 2.C 1是以(0,1)为圆心,a 为半径的圆.将x =ρcos θ,y =ρsin θ代入C 1的普通方程中,得到C 1的极坐标方程为ρ2-2ρsin θ+1-a 2=0.(2)曲线C 1,C 2的公共点的极坐标满足方程组⎩⎪⎨⎪⎧ρ2-2ρsin θ+1-a 2=0,ρ=4cos θ. 若ρ≠0,则由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,在C 3上, 所以a =1.23.N3 选修4­4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.23.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2.将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44.由|AB |=10得cos 2α=38,则tan α=±153. 所以l 的斜率为153或-153.23.N3 选修4­4:坐标系与参数方程 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =3cos α,y =sin α(α为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为ρsin (θ+π4)=2 2.(1)写出C 1的普通方程和C 2的直角坐标方程;(2)设点P 在C 1上,点Q 在C 2上,求|PQ |的最小值及此时P 的直角坐标. 23.解:(1)C 1的普通方程为x 23+y 2=1,C 2的直角坐标方程为x +y -4=0.(2)由题意,可设点P 的直角坐标为(3cos α,sin α).因为C 2是直线,所以|PQ |的最小值即为P 到C 2的距离d (α)的最小值,d (α)=|3cos α+sin α-4|2=2|sin (α+π3)-2|, 当且仅当α=2k π+π6(k ∈Z )时,d (α)取得最小值,最小值为2,此时点P 的直角坐标为(32,12).21.C .N3 选修4­4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t(t 为参数),椭圆C的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =2sin θ(θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB的长.21.C .解:椭圆C 的普通方程为x 2+y 24=1.将直线l 的参数方程⎩⎪⎨⎪⎧x =1+12t ,y =32t代入x 2+y 24=1,得1+12t 2+32t 24=1,即7t 2+16t =0,解得t 1=0,t 2=-167.所以AB =|t 1-t 2|=167.N4 选修4-5 不等式选讲 24.N4 选修4­5:不等式选讲 已知函数f (x )=|x +1|-|2x -3|. (1)在图1­7中画出y =f (x )的图像; (2)求不等式|f (x )|>1的解集.图1­724.解:(1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,则y =f (x )的图像如图所示.(2)由f (x )的表达式及图像知,当f (x )=1时,x =1或x =3; 当f (x )=-1时,x =13或x =5.故f (x )>1的解集为{x |1<x <3},f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x <13或x >5.所以|f (x )|>1的解集为{x ⎪⎪⎪x <13或1<x <3或x >5}.24.N4 选修4­5:不等式选讲已知函数f (x )=⎪⎪⎪⎪⎪⎪x -12+⎪⎪⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.24.解:(1)f (x )=⎩⎪⎨⎪⎧-2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2,解得x >-1;当-12<x <12时,f (x )<2;当x ≥12时,由f (x )<2得2x <2,解得x <1.所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0,因此|a +b |<|1+ab |.24.N4 选修4­5:不等式选讲已知函数f (x )=|2x -a |+a .(1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x -1|,当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 24.解:(1)当a =2时,f (x )=|2x -2|+2. 解不等式|2x -2|+2≤6,得-1≤x ≤3. 因此,f (x )≤6的解集为{x |-1≤x ≤3}.(2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.① 当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是 选修4­5:不等式选讲 设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .21.D .证明:因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .N5 选修4-7 优选法与试验设计。

2015年全国各地高考文科数学试题选修部分

2015年全国各地高考文科数学试题选修部分
一、选择题
1 .(2015年高考大纲卷(文))不等式222x
的解集是()A .-1,1
B .-2,2
C .-1,00,1
D .-2,00,2【答案】D
二、填空题
2 .(2015年高考陕西卷(文))(几何证明选做题) 如图, AB 与CD 相交于点E , 过E 作BC 的平行线与AD 的延长线相交于点P . 已知
A C , PD = 2DA = 2,
则PE = ______.
D
B
C
E P A 【答案】.
63 .(2015年高考广东卷(文))(坐标系与参数方程选做题)
已知曲线C 的极坐标方程为2cos .以极点为原点,极轴为x 轴的正半轴建立直角坐标系,则曲线C 的参数方程为____________.
【答案】1cos
sin x y (为参数)
4 .(2015年高考陕西卷(文))A . (不等式选做题) 设a , b ∈R , |a -b |>2, 则关于实数x 的不等式
||||2x a x b 的解集是______. 【答案】A:R
5 .(2015年高考天津卷(文))如图, 在圆内接梯形ABCD 中, AB //DC , 过点A 作圆的切线与CB 的延长线交于点E . 若AB = AD = 5, BE = 4, 则弦BD 的长为______.。

高考数学最新联考试题分类汇编17选修系列

山西省各地市 高考数学 最新联考试题分类汇编(17)选修系列一、解答题:22.(山西省山大附中 4月高三月考文)(本小题满分10分) 已知点)sin ,cos 1(αα+P ,参数[]πα,0∈,点Q 在曲线C :)4sin(210πθρ-=上.(1)求在直角坐标系中点P 的轨迹方程和曲线C 的方程;(2)求PQ 的最小值.22.设点P 的坐标为(x ,y ),则有1cos ,sin x y αα=+⎧⎨=⎩消去参数α,可得22(1) 1.x y -+=由于α∈[0,π],∴y ≥0,故点P 的轨迹是上半圆).0(1)1(22≥=+-y y x ∵曲线C :)4sin(210πθρ-=,即22102(sin cos )22ρθ-θ=,即 ρsin θ-ρcos θ=10,故曲线C 的直角坐标方程:x-y+10=0.(2)如图所示:由题意可得点Q 在直线x-y+10=0 上,点P 在半圆上,半圆的圆心C (1,0)到直线x-y+10=0的距离等于101011222-+=.即|PQ|的最小值为1122-1. 23.(山西省山大附中 4月高三月考文)(本小题满分10分)已知函数1()x f x e ex=+( 2.718)e ≈L (1)若1212,[1,),x x x x ∈+∞≠.求证:2121()()0f x f x x x ->-; (2)若满足(||3)(|4|1)f a f a +>-+.试求实数a 的取值范围.23.解:(Ⅰ)212121211212121212112111(1)()()()1()()()x x x x f x f x x x x x x x x x e x x e x x e x x -+-----===--- 211212110,0x x x x x x -∴>>∴> ..2分1212,[1,),x x x x ∈+∞≠Q221()()0f x f x x x -∴>- ...5分zxxk(Ⅱ)由(Ⅰ)可知,()f x 在[1,)+∞为单调增函数.||31,|4|11a a +>-+≥Q 且(||3)(|4|1)f a f a +>-+||3|4|1a a ∴+>-+..7分 当0a ≤时,34135a a a -+>-+∴>∴∈∅;当04a <<时,341114a a a a +>-+∴>∴<<;当4a ≥时,341334a a a +>-+∴>-∴≥综上所述:1a > ...10分22. (山西省太原市第五中学2013届高三4月月考理)(本题满分10分) 选修4-1:几何证明选讲如图, ABC ∆内接于⊙O , AB 是⊙O 的直径, PA 是过点A 的直线, 且ABC PAC ∠=∠.(1)求证: PA 是⊙O 的切线;(2)如果弦CD 交AB 于点E , 8=AC ,5:6:=ED CE , 3:2:=EB AE , 求直径AB 的长.22.(1)∵AB 是直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,又∵∠PAC=∠ABC ,∴∠PAC+∠BAC=90°,即∠PAB=90°,∴BA ⊥PA ,∴PA 是圆O 的切线 ----------------------- 5分(2)设AE=2m ,DE=5n ,则BE=3m ,CE=6n ,由相交弦定理得6m²=30n²,∴m=5n 由AC/BD=AE/DE 得BD=45设BC=X ,由BC/AD=CE/AE 得AD=5/3X由AC²+BC²=AD²+BD²解得X=6, ∴AB=10------------------------10分23. (山西省太原市第五中学 高三4月月考理)(本小题满分10分)选修4-4:极坐标与参数方程选讲已知曲线C 的极坐标方程为θρcos 4=,直线l 的参数方程是:⎪⎪⎩⎪⎪⎨⎧+=+-=t y t x 225225 (t 为参数).(Ⅰ)求曲线C 的直角坐标方程,直线l 的普通方程;(Ⅱ)将曲线C 横坐标缩短为原来的21,再向左平移1个单位,得到曲线1C ,求曲线1C 上的点到直线l 距离的最小值.24. (山西省太原市第五中学 高三4月月考理)(本小题满分10分)选修4—5:不等式选讲已知关于x 的不等式|2|||2(0)ax ax a a -+-≥>.(Ⅰ)当1a =时,求此不等式的解集;(Ⅱ)若此不等式的解集为R ,求实数a 的取值范围.22. (山西省临汾一中、忻州一中、康杰中学、长治二中 高三第三次四校联考文)(本小题满分10分)选修4—1:几何证明选讲已知PA 与圆O 相切于点A ,经过点O 的割线PBC 交圆O 于点C B 、,APC ∠的平分线分别交AC AB 、于点E D 、.(1)证明:ADE AED ∠=∠;(2)若AP AC =,求 的值. 22.(本小题满分10分)选修4—1:几何证明选讲(1)∵ PA 是切线,AB 是弦,∴ ∠BAP=∠C ,又 ∵ ∠APD=∠CPE ,∴ ∠BAP+∠APD =∠C+∠CPE ,∵ ∠ADE=∠BAP+∠APD ,∠AED=∠C+∠CPE ,∴ ∠ADE=∠AED 。

全国各地高考文科数学试题分类汇编集合练习

2013年全国各地高考文科数学试题分类汇编1:集合一、选择题1 .(2013年高考安徽(文))已知{}{}|10,2,1,0,1A x x B =+>=--,则()R C A B ⋂=() A .{}2,1-- B .{}2-C .{}1,0,1-D .{}0,1 2 .(2013年高考北京卷(文))已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB = ( ) A .{}0 B .{}1,0-C .{}0,1D .{}1,0,1- 3 .(2013年上海高考数学试题(文科))设常数a ∈R ,集合()(){}|10A x x x a =--≥,{}|1B x x a =≥-.若A B =R ,则a 的取值范围为( ) A .(),2-∞ B .(],2-∞ C .()2,+∞ D .[)2,+∞4 .(2013年高考天津卷(文))已知集合A = {x ∈R| |x|≤2}, B= {x∈R| x≤1}, 则A B ⋂= ( )A .(,2]-∞B .[1,2]C .[-2,2]D .[-2,1] 5 .(2013年高考四川卷(文))设集合{1,2,3}A =,集合{2,2}B =-,则A B = ( )A .∅B .{2}C .{2,2}-D .{2,1,2,3}- 6 .(2013年高考山东卷(文))已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B =,{1,2}B =,则U A B = ( )A .{3}B .{4}C .{3,4}D .∅ 7 .(2013年高考辽宁卷(文))已知集合{}{}1,2,3,4,|2,A B x x AB ==<=则 ( ) A .{}0 B .{}0,1C .{}0,2D .{}0,1,28 .(2013年高考课标Ⅱ卷(文))已知集合M={x|-3<X<1},N={-3,-2,-1,0,1},则M ∩N= ( )A .{-2,-1,0,1}B .{-3,-2,-1,0}C .{-2,-1,0}D .{-3,-2,-1 }9 .(2013年高考课标Ⅰ卷(文))已知集合{1,2,3,4}A =,2{|,}B x x n n A ==∈,则A B = ( )A .{0}B .{-1,,0}C .{0,1}D .{-1,,0,1}10.(2013年高考江西卷(文))若集合A ={x ∈R|ax 2+ax+1=0}其中只有一个元素,则a= ( )A .4B .2C .0D .0或411.(2013年高考湖北卷(文))已知全集{1,2,3,4,5}U =,集合{1,2}A =,{2,3,4}B =,则U B A = ( )A .{2}B .{3,4}C .{1,4,5}D .{2,3,4,5}12.(2013年高考广东卷(文))设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =( ) A .{0}B .{0,2}C .{2,0}-D .{2,0,2}-【答案】A13.(2013年高考福建卷(文))若集合}4,3,1{},3,2,1{==B A ,则B A 的子集个数为 ( )A .2B .3C .4D .1614.(2013年高考大纲卷(文))设集合{}{}1,2,3,4,5,1,2,u U A A ===集合则( ) A .{}1,2 B .{}3,4,5 C .{}1,2,3,4,5 D .∅15.(2013年高考浙江卷(文))设集合S={x|x>-2},T={x|-4≤x≤1},则S∩T=( ) A .[-4,+∞) B .(-2, +∞) C .[-4,1] D .(-2,1]16.(2013年高考重庆卷(文))已知集合{1,2,3,4}U =,集合={1,2}A ,={2,3}B ,则()U A B =( )A .{1,3,4}B .{3,4}C .{3}D .{4}二、填空题18.(2013年高考湖南(文))已知集合{2,3,6,8},{2,3},{2,6,8}U A B ===,则()C A B ⋃⋂=_____ABBDB ABCAA BACBD D }862{,,。

高考数学分类练习 N单元 选修4系列(文科)含答案2

数 学 N 单元 选修4系列N1 选修4-1 几何证明选讲15.N1 (几何证明选讲选做题)如图1­1所示,在平行四边形ABCD 中,点E 在AB 上且EB =2AE ,AC 与DE 交于点F ,则△CDF 的周长△AEF 的周长=________.图1­115.3 本题考查相似三角形的性质定理,周长比等于相似比.∵EB =2AE ,∴AE =13AB=13CD .又∵四边形ABCD 是平行四边形,∴△AEF ~△CDF ,∴△CDF 的周长△AEF 的周长=CD AE=3. 21.N1 A .如图1­7所示,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点. 证明:∠OCB =∠D .图1­7证明:因为B ,C 是圆O 上的两点,所以OB =OC , 所以∠OCB =∠B .又因为C ,D 是圆O 上位于AB 异侧的两点, 所以∠B ,∠D 为同弧所对的两个圆周角, 所以∠B =∠D ,因此∠OCB =∠D . 21. N2 B .已知矩阵A =⎣⎢⎡⎦⎥⎤-1 21 x,B =⎣⎢⎡⎦⎥⎤1 12 -1,向量α=⎣⎢⎡⎦⎥⎤2y ,x ,y 为实数.若Aα=Bα,求x +y 的值.解:由已知得,Aα=⎣⎢⎡⎦⎥⎤-1 2 1 x 错误!=错误!),B α=错误! ))错误!)=错误!).因为Aα=Bα,所以⎣⎢⎡⎦⎥⎤-2+2y 2+xy )=⎣⎢⎡⎦⎥⎤2+y 4-y ).故⎩⎪⎨⎪⎧-2+2y =2+y ,2+xy =4-y ,解得⎩⎪⎨⎪⎧x =-12,y =4,所以x +y =72.22.N1 选修4­1:几何证明选讲图1­6如图1­6,EP 交圆于E ,C 两点,PD 切圆于D ,G 为CE 上一点且PG =PD ,连接DG 并延长交圆于点A ,作弦AB 垂直EP ,垂足为F .(1)求证:AB 为圆的直径; (2)若AC =BD ,求证:AB =ED .22.证明:(1)因为PD =PG ,所以∠PDG =∠PGD . 由于PD 为切线,故∠PDA =∠DBA . 又由于∠PGD =∠EGA ,故∠DBA =∠EGA , 所以∠DBA +∠BAD =∠EGA +∠BAD , 从而∠BDA =∠PFA .因为AF ⊥EP ,所以∠PFA =90°, 所以∠BDA =90°,故AB 为圆的直径. (2)连接BC ,DC .由于AB 是直径,故∠BDA =∠ACB =90°.在Rt △BDA 与Rt △ACB 中,AB =BA ,AC =BD ,从而Rt △BDA ≌Rt △ACB ,所以∠DAB =∠CBA.又因为∠DCB=∠DAB,所以∠DCB=∠CBA,故DC∥AB.因为AB⊥EP,所以DC⊥EP,∠DCE为直角.所以ED为直径.又由(1)知AB为圆的直径,所以ED=AB.22.N1选修4­1:几何证明选讲如图1­5,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC =2PA,D为PC的中点,AD的延长线交⊙O于点E.证明:(1)BE=EC;(2)AD·DE=2PB2.图1­522.证明:(1)连接AB,AC.由题设知PA=PD,故∠PAD=∠PDA.因为∠PDA=∠DAC+∠DCA,∠PAD=∠BAD+∠PAB,∠DCA=∠PAB,所以∠DAC=∠BAD,从而BE=EC.因此BE=EC.(2)由切割线定理得PA2=PB·PC.因为PA=PD=DC,所以DC=2PB,BD=PB.由相交弦定理得AD·DE=BD·DC,所以AD·DE=2PB2.22.N1选修4-1:几何证明选讲如图1­5,四边形ABCD是⊙O的内接四边形,AB的延长线与DC的延长线交于点E,且CB=CE.图1­5(1)证明:∠D=∠E;(2)设AD不是⊙O的直径,AD的中点为M,且MB=MC,证明:△ADE为等边三角形.22.证明:(1)由题设知A,B,C,D四点共圆,所以∠D=∠CBE.由已知得∠CBE=∠E,故∠D=∠E.(2)设BC的中点为N,连接MN,则由MB=MC知MN⊥BC,故点O在直线MN上.又AD不是⊙O的直径,M为AD的中点,故OM⊥AD,即MN⊥AD,所以AD∥BC,故∠A=∠CBE.又∠CBE=∠E,故∠A=∠E.由(1)知,∠D=∠E,所以△ADE为等边三角形.15.N1B.(几何证明选做题)如图1­3所示,△ABC中,BC=6,以BC为直径的半圆分别交AB,AC于点E,F,若AC=2AE,则EF=________.图1­315. 3 由题目中所给图形的位置关系,可知∠AEF =∠ACB ,又∠A =∠A ,所以△AEF ∽△ACB ,所以AE AC =EF BC.又AC =2AE ,BC =6,所以EF =3.7.N1 如图1­1所示,△ABC 是圆的内接三角形,∠BAC 的平分线交圆于点D ,交BC 于点E ,过点B 的圆的切线与AD 的延长线交于点F .在上述条件下,给出下列四个结论:①BD 平分∠CBF ;②FB 2=FD ·FA ;③AE ·CE =BE ·DE ;④AF ·BD =AB ·BF .则所有正确结论的序号是( )A .①②B .③④C .①②③D .①②④7.D ∵∠DBC =∠DAC ,∠DBF =∠DAB ,且∠DAC =∠DAB ,∴∠DBC =∠DBF ,∴BD 平分∠CBF ,∴△ABF ∽△BDF ,∴AB BD =AF BF =BFDF,∴AB ·BF =AF ·BD ,BF 2=AF ·DF .故①②④正确.由相交弦定理得AE ·DE =BE ·CE ,故③错误.N2 选修4-2 矩阵N3 选修4-4 参数与参数方程14.N3 (坐标系与参数方程选做题)在极坐标系中,曲线C 1与C 2的方程分别为2ρcos2θ=sin θ与ρcos θ=1.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,则曲线C 1与C 2交点的直角坐标为________.14.(1,2) 本题考查极坐标方程与直角坐标方程的转化以及曲线交点坐标的求解. 曲线C 1的直角坐标方程是2x 2=y ,曲线C 2的直角坐标是x =1.联立方程C 1与C 2得⎩⎪⎨⎪⎧2x 2=y ,x =1,解得⎩⎪⎨⎪⎧y =2,x =1,所以交点的直角坐标是(1,2).12.N3 在平面直角坐标系中,曲线C :⎩⎪⎨⎪⎧x =2+22t ,y =1+22t (t 为参数)的普通方程为________. 12.x -y -1=0 依题意,消去参数可得x -2=y -1,即x -y -1=0. 21. N3 C .在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =2+22t (t 为参数),直线l 与抛物线y 2=4x 相交于A ,B 两点,求线段AB 的长.解:将直线l 的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =2+22t 代入抛物线方程y 2=4x ,得⎝ ⎛⎭⎪⎫2+22t 2=4⎝ ⎛⎭⎪⎫1-22t ,解得t 1=0,t 2=-8 2, 所以AB =|t 1-t 2|=8 2.23.N3 选修4­4:坐标系与参数方程将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C . (1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.23.解:(1)设(x 1,y 1)为圆上的点,经变换为C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1.由x 21+y 21=1得x 2+⎝ ⎛⎭⎪⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).(2)由⎩⎪⎨⎪⎧x 2+y 24=1,2x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =0或⎩⎪⎨⎪⎧x =0,y =2.不妨设P 1(1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝ ⎛⎭⎪⎫12,1,所求直线斜率k =12,于是所求直线方程为y -1=12⎝ ⎛⎭⎪⎫x -12,即2x -4y =-3,化为极坐标方程,得2 ρcos θ-4ρsin θ=-3, 即ρ=34sin θ-2cos θ.23.N3 选修4­4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为ρ=2cos θ,θ∈⎣⎢⎡⎦⎥⎤0,π2.(1)求C 的参数方程;(2)设点D 在C 上,C 在D 处的切线与直线l :y =3x +2垂直,根据(1)中你得到的参数方程,确定D 的坐标.23.解:(1)C 的普通方程为 (x -1)2+y 2=1(0≤y ≤1). 可得C 的参数方程为⎩⎪⎨⎪⎧x =1+cos t ,y =sin t ,(t 为参数,0≤t ≤π). (2)设D (1+cos t ,sin t ).由(1)知C 是以G (1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与l 垂直,所以直线GD 与l 的斜率相同,tan t =3,t =π3.故D 的直角坐标为⎝ ⎛⎭⎪⎫1+cos π3,sin π3,即⎝ ⎛⎭⎪⎫32,32.23.N3 选修4-4:坐标系与参数方程已知曲线C :x 24+y 29=1,直线l :⎩⎪⎨⎪⎧x =2+t ,y =2-2t (t 为参数).(1)写出曲线C 的参数方程、直线l 的普通方程;(2)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.23.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =3sin θ(θ为参数),直线l 的普通方程为2x +y -6=0.(2)曲线C 上任意一点P (2cos θ,3sin θ)到直线l 的距离d =55|4cos θ+3sin θ-6|,则|PA |=d sin 30°=2 55|5sin(θ+α)-6|,其中α为锐角,且tan α=43.当sin(θ+α)=-1时,|PA |取得最大值, 最大值为2255.当sin(θ+α)=1时,|PA |取得最小值, 最小值为255.15.N3C.(坐标系与参数方程选做题)在极坐标系中,点⎝ ⎛⎭⎪⎫2,π6到直线ρ sin ⎝ ⎛⎭⎪⎫θ-π6=1的距离是________.15. 1 易知点⎝ ⎛⎭⎪⎫2,π6的直角坐标为(3,1),直线ρsin ⎝ ⎛⎭⎪⎫θ-π6=1的直角坐标方程为x -3y +2=0.由点到直线距离公式,得d =|3-3+2|12+(-3)2=1.N4 选修4-5 不等式选讲 21. N4 D .已知x >0,y >0,证明:(1+x +y 2)(1+x 2+y )≥9xy . 证明:因为x >0,y >0, 所以1+x +y 2≥33xy 2>0, 1+x 2+y ≥33x 2y >0,故(1+x +y 2)(1+x 2+y )≥33xy 2·33x 2y =9xy .15.N4 x ,y ∈R ,若|x |+|y |+|x -1|+|y -1|≤2,则x +y 的取值范围为________.15. ⎩⎪⎨⎪⎧|x |+|x -1|≥1,|y |+|y -1|≥1⇒|x |+|y |+|x -1|+|y -1|≥2⇒|x |+|y |+|x -1|+|y-1|=2⇒⎩⎪⎨⎪⎧|x |+|x -1|=1,|y |+|y -1|=1⇒⎩⎪⎨⎪⎧0≤x ≤1,0≤y ≤1⇒0≤x +y ≤2.24.N4 选修4­5:不等式选讲设函数f (x )=2|x -1|+x -1,g (x )=16x 2-8x +1.记f (x )≤1的解集为M ,g (x )≤4的解集为N .(1)求M ;(2)当x ∈M ∩N 时,证明:x 2f (x )+x 2≤14.24.解:(1)f (x )=⎩⎪⎨⎪⎧3x -3,x ∈[1,+∞),1-x ,x ∈(-∞,1).当x ≥1时,由f (x )=3x -3≤1得x ≤43,故1≤x ≤43;当x <1时,由f (x )=1-x ≤1得x ≥0, 故0≤x <1.所以f (x )≤1的解集M =⎩⎨⎧⎭⎬⎫x 0≤x ≤43.(2)由g (x )=16x 2-8x +1≤4得16⎝ ⎛⎭⎪⎫x -142≤4, 解得-14≤x ≤34,因此N =⎩⎨⎧⎭⎬⎫x -14≤x ≤34,故M ∩N =⎩⎨⎧⎭⎬⎫x 0≤x ≤34.当x ∈M ∩N 时,f (x )=1-x ,于是x 2f (x )+x ·2=xf (x )=xf (x )=x (1-x )=14-⎝ ⎛⎭⎪⎫x -122≤14.24.N4 选修4­5:不等式选讲设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.24.解:(1)证明:由a >0 ,有f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a-(x -a )=1a+a ≥2,所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |.当a >3时,f (3)=a +1a ,由f (3)<5得3<a <5+212.当0<a ≤3时,f (3)=6-a +1a ,由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝⎛⎭⎪⎫1+52,5+212.24.N4 选修4-5:不等式选讲 若a >0,b >0,且1a +1b=ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?请说明理由.24.解:(1)由ab =1a +1b≥2ab,得ab ≥2,当且仅当a =b =2时等号成立.故a 3+b 3≥2 a 3b 3≥42, 当且仅当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2.(2)由(1)知,2a +3b ≥2 6ab ≥4 3. 由于4 3>6,从而不存在a ,b ,使2a +3b =6.15.N4 A.(不等式选做题)设a ,b ,m ,n ∈R ,且a 2+b 2=5,ma +nb =5,则m 2+n 2的最小值为________.15.A. 5 由柯西不等式可知(a 2+b 2)(m 2+n 2)≥(ma +nb )2,即5(m 2+n 2)≥25,当且仅当an =bm 时,等号成立,所以m 2+n 2 ≥ 5.1. 已知点P 所在曲线的极坐标方程为ρ=2cos θ,点Q 所在曲线的参数方程为⎩⎪⎨⎪⎧x =1+t ,y =4+2t (t 为参数),则|PQ |的最小值是( ) A .2 B.4 55+1C .1 D.4 55-11.D 易知点P 在圆x 2+y 2-2x =0上,圆心为(1,0),半径为1,点Q 在直线2x -y +2=0上,故|PQ |的最小值是|2+2|5-1=4 55-1.4. 在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴的正半轴为极轴)中,直线C 2的方程为ρ(cos θ-sin θ)+1=0,则曲线C 1与C 2的交点的个数为________.4.2 由题意,曲线C 1的参数方程⎩⎨⎧x =2cos α,y =3sin α(α为参数)可化为一般方程x 24+y 23=1,直线C 2的极坐标方程ρ·(cos θ-sin θ)+1=0可化为普通方程x -y +1=0.联立两个方程,消去y 可得x 24+(x +1)23=1,即7x 2+8x -8=0.因为Δ=82+4×7×8>0,所以直线与椭圆相交,且有两个交点.5. 在极坐标系中,圆C 1的方程为ρ=4 2cos ⎝⎛⎭⎪⎫θ-π4,以极点为坐标原点,极轴为x 轴的正半轴建立平面直角坐标系,已知圆C 2的参数方程为⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(a >0,θ为参数).若圆C 1与圆C 2外切,则实数a =____________. 5. 2 依题意,ρ=4 2cos θ-π4=4cos θ+4sin θ,化成普通方程为x 2+y 2=4x +4y ,即(x -2)2+(y -2)2=8,即该圆的圆心为C 1(2,2),半径r 1=2 2.将⎩⎪⎨⎪⎧x =-1+a cos θ,y =-1+a sin θ(a >0,θ为参数)化成普通方程为(x +1)2+(y +1)2=a 2,即圆心为C 2(-1,-1),半径r 2=a .由丙点间两圆外切可得|C 1C 2|=3 2=2 2+a ,所以a = 2.6. 已知曲线C 的极坐标方程为ρ=4cos θ.若以极点为原点,极轴为x 轴的正半轴建立平面直角坐标系,则曲线C 的参数方程为________.6.⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数) 由曲线C 的极坐标方程为ρ=4cos θ,可得其普通方程为x 2+y 2=4x ,即(x -2)2+y 2=4,所以曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).7. 已知极坐标系下曲线ρ=4sin θ表示圆,则点A ⎝⎛⎭⎪⎫4,π6到圆心的距离为____________.7.2 3 将曲线ρ=4sin θ化成普通方程为x 2+y 2=4y ,则该圆的圆心为(0,2),而点A ⎝⎛⎭⎪⎫4,π6的直角坐标为(2 3,2),由两点间距离公式可得d =(2 3)2+(2-2)2=2 3.8. 以直角坐标系的原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数),圆C 的极坐标方程为ρ=2cos θ,若直线l 经过圆C 的圆心,则常数a 的值为________.8.1 将直线l 的参数方程⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)化为普通方程为y =x -a ,将圆C 的极坐标方程ρ=2cos θ化为普通方程为x 2+y 2=2x ,则圆心为(1,0),代入直线y =x -a 可得a =1.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档