直流系统短路计算

直流系统短路计算
直流系统短路计算

直流系统短路计算

1 计算意义

为使直流牵引供电系统在城市轨道交通中更有效的发挥作用,必须保证继电保护的可靠性、选择性、灵敏性和速动性。而直流系统短路计算正是城市轨道交通直流牵引供电系统设备选型及继电保护整定所必须具备的基础条件。只有在直流系统短路计算之后,才能够进行直流系统设备选型与继电保护整定。

2 计算内容

直流系统短路计算一般需要计算以下内容:

(1) 正常情况下双边供电时,各供电区间任一点的直流短路电流。

(2) 任一中间牵引变电所解列时,由相邻牵引变电所构成大双边供电时的区间任一点的直流短路电流。

(3) 端头牵引变电所解列时,由次端头牵引变电所单边供电的区间任一点的直流短路电流。

3 计算方法

直流牵引供电系统短路计算有两种方法:电路图法和示波图法,由于示波图法是建立在工程实践基础之上,通过对现场短路试验所拍摄的示波图进行数理分析,而计算出相关参数,因此本文仅应用电路图法进行直流系统短路计算。

(1) 电路图法

这一方法是针对城市轨道交通直流牵引供电系统电源多、供电回路多、供电方式多、回路参数多的特点,按照实际供电网络画出等效电路图、进行网络变换,在供电网络中只包括电阻。再将网络变换后的电路图利用基本定律—欧

I,而不能计姆定律、基尔霍夫定律进行计算。该方法只能计算稳态短路电流

K

算供电回路的时间常数τ和短路电流上升率di/dt,这是该计算方法的不足。

①用电路图法进行直流短路计算需要以下两个假设条件:

a 牵引供电网络中,电源电压U相同。

b 牵引变电所为电源电压,其内阻ρ因不同的短路点而改变,不认为是一个固定值。

②用电路图法进行直流短路计算需要输入以下三个条件:

a 牵引变电所直流母线电压U (V );

b 牵引变电所内阻ρ(Ω);

c 牵引网电阻R (Ω)。 (2) 牵引变电所内阻

牵引变电所内阻包括以下四个部分设备的阻抗:交流中压电缆、牵引变压器、整流器、直流电缆。下面介绍从北京地铁现场短路试验中心总结出来的,便于工程应用的经验公式(1-1),其计算结果包括了中压电缆和直流电缆。

经验计算公式如下:

T

n

d r nS U U k 9.01002

?

=ρ ( 1-1)

式中 n U —直流侧额定电压(kV );

d U —牵引变压器短路电压百分值;

T S —变压器容量(MV·

A ); n —牵引整流机组台数;

r k —内阻系数,根据短路点距离牵引变电所的不同距离,可取不同值。

4 计算过程分析

各种供电方式下直流短路电流计算公式推导如下:

(1) 一座牵引变电所单边供电(不考虑相邻牵引变电所的影响) ① 等效电路图,如图 1-8所示。

R

图 1-8 一座牵引变电所单边供电直流短路等效示意图

② 短路电流:

112

K U I R R ρ=

++

( 1-2)

式中 U —牵引变电所母线电压(V );

1ρ—牵引变电所内阻(Ω); 1R —接触网电阻(Ω)

2R —走行轨电阻(上下行并联)

(Ω)。 (2) 一座牵引变电所单边供电(考虑相邻一座牵引变电所的影响) ① 等效电路图,如图 1-9所示。

2

R

4

R R 2

R 4R R

图 1-9 一座牵引变电所单边供电直流短路等效示意图(考虑一座相邻牵引变电所的影响)

② 网孔电流。

根据KVL 定律,对以上电路图可列方程: 网孔1:11121I R I U ρ-= 网孔2:222110I R I ρ-= 对以上方程求解得:

12

11122

U I R R ρ=

-

( 1-3)

1

21

22

I I R ρ=

( 1-4)

③ 总短路电流:

1K I I ∑=

( 1-5)

④ 各变电所短路电流: 112I I I ρ=- ( 1-6)

22I I ρ=

( 1-7)

1ρ、2ρ—牵引变电所内阻(Ω)

R —接触网电阻(Ω);

2R 、4R —走行轨电阻(上下行并联)(Ω); 3R —接触网电阻(上下行并联)

(Ω);

11R —回路1自阻,11112R R R ρ=++(Ω);

22R —回路2自阻,221234R R R ρρ=+++(Ω)

。 (3) 两座牵引变电所双边供电(不考虑对侧接触网的影响,不考虑相邻牵

引变电所的影响)

① 等效电路图,如图 1-10所示。

R R 3R 4

R +U 2

_

图 1-10 两座牵引变电所双边供电直流短路等效示意图

(不考虑对侧接触网及相邻牵引变电所影响)

② 网孔电流。

根据KVL 定律,对以上电路图可列方程: 网孔1:U R I =111 网孔2:U R I =222 对以上方程求解得: 111

U I R =

( 1-8)

222

U I R =

( 1-9)

③ 总短路电流:

12K I I I ∑=+

( 1-10)

1ρ、2ρ—牵引变电所内阻(Ω); 1R 、2R —接触网电阻(Ω)

; 4R 、5R —走行轨电阻(上下行并联)(Ω); 11R —回路1自阻,11113R R R ρ=++(Ω);

22R —回路2自阻,22124R R R ρ=++(Ω)

。 (4) 两座牵引变电所双边供电(考虑对侧接触网的影响,不考虑相邻牵引变电所的影响)

① 等效电路图,如图 1-11所示。

4+_

5

45

图 1-11 两座牵引变电所双边供电直流短路等效示意图 (考虑对侧接触网的影响,不考虑相邻牵引变电所的影响)

② 网孔电流。

根据KVL 定律,对以上电路图可列方程: 网孔1:11123I R I r U += 网孔2:22213I R I r U += 对以上方程可求得:

12

1133

11223

U I R r r R R r =

-+- ( 1-11)

113

21

223

R r I I R r -=-

( 1-12)

③ 馈线短路电流。

星—三角变换电路图,如图 1-12所示。

图 1-12 星—三角变换电路图

图中: 13

1123R R r R R R =++

( 1-13) 23

2123R R r R R R =++

( 1-14)

12

3123R R r R R R =

++

( 1-15)

馈线短路电流如下: 11123

11

()K I r I I r I R ++=

( 1-16) 22123

22

()K I r I I r I R ++=

( 1-17)

1122

33

K I r I r I R -=

( 1-18)

④ 总短路电流:

12K K K I I I ∑=+

( 1-19)

⑤ 各变电所短路电流: 113K K I I I ρ=+ ( 1-20)

223K K I I I ρ=-

( 1-21)

式中 U —牵引变电所母线电压(V );

1ρ、2ρ—牵引变电所内阻(Ω)

1R 、2R 、3R —接触网电阻(Ω)

4R 、5R —走行轨电阻(上下行并联)

(Ω); 11R —回路1自阻,111134R r r R ρ=+++(Ω);

22R —回路2自阻,222235R r r R ρ=+++(Ω)

。 (5) 两座牵引变电所双边供电(考虑对侧接触网和相邻牵引变电所的影

响)

① 等效电路图,如图 1-13所示。 ② 网孔电流。

根据KVL 定律,对以上电路图可列方程: 网孔1:1112331I R I r I U ρ+-= 网孔2:22213420I R I r I ρ+-= 网孔3:333110I R I ρ-= 网孔4:444220I R I ρ-= 对以上方程求解得:

12

1

2

1133

33

11133

2

22344

()U

I R r r R R R r R ρ

ρρ=

---

+

--

( 1-22)

2111333

21

22

22344

R r R I I R r ρρ

--

=--

( 1-23)

45

4

R 7R 9

(a) 短路等效示意图

457

9

4

U

(b) 星—三角变换后等效示意图

图 1-13 两座牵引变电所双边供电点直流短路等效示意图

1

31

33

I I ρ= ( 1-24)

2

42

44

I I ρ=

( 1-25)

③ 根据星—三角变换,可得各馈线短路电流:

11123

11

()K I r I I r I R ++=

( 1-26) 22123

22

()K I r I I r I R ++=

( 1-27)

1122

33

K I r I r I R -=

( 1-28)

④ 总短路电流:

12K K K I I I ∑=+

( 1-29)

⑤各变电所短路电流 1133K K I I I I ρ=+- ( 1-30) 2234K K I I I I ρ=--

( 1-31) 33I I ρ= ( 1-32)

44I I ρ=

( 1-33)

式中 U —牵引变电所母线电压(V );

1ρ、2ρ、3ρ、4ρ—牵引变电所内阻(Ω);

1R 、2R 、3R 、6R 、8R —接触网电阻(Ω); 4R 、5R 、7R 、9R —走行轨电阻(Ω); 11R —回路1自阻,111134R r r R ρ=+++(Ω); 22R —回路2自阻,222235R r r R ρ=+++(Ω); 33R —回路3自阻,333617R R R ρρ=+++(Ω);

44R —回路4自阻,442894R R R ρρ=+++(Ω)

电力系统短路计算课程设计

南昌工程学院 课程设计 (论文) 机械与电气工程学院电气工程及其自动化专业课程设计(论文)题目电力系统短路电流计算 学生姓名 班级 学号 指导教师 完成日期2013 年11 月30 日

成绩: 评语: 指导教师: 年月日

南昌工程学院 课程设计(论文)任务书

机械与电气工程学院 10电气工程及其自动化专业班学生: 日期:自 2013 年 11 月 18 日至 2013 年 11 月 30 日 指导教师: 助理指导教师(并指出所负责的部分): 教研室:电气工程教研室主任: 附录:短路点的设置如下,计算时桥开关和母连开关都处于闭合状态。

一、取基准容量: S B=100MVA 基准电压:U B=U av 二、计算各元件电抗标幺值: =0.0581, (1)X L=0.401Ω/km ,L1=16.582km L2=14.520km ,X d1=X d2=X'' d 系统电抗标幺值X'' =0.0581,两条110kV进线为LGJ-150型 d 线路长度一条为16.582km,另一条为14.520km.。 (2)主变铭牌参数如下: 1﹟主变:型号 SFSZ8-31500/110 接线 Y N/Y N/d11 变比 110±4×2.5%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=10.47 U K(3-1)=18 U K(2-3)=6.33 短路损耗(kw) P K(1-2)=169.7 P K(3-1)=181 P K(2-3)=136.4 空载电流(%) I0(%)=0.46 空载损耗(kW) P0=40.6 2﹟主变:型号 SFSZ10-40000/110 接线 Y N/Y N/d11 变比 110±8×1.25%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=11.79 U K(3-1)=21.3 U K(2-3)=7.08 短路损耗(kW) P K(1-2)=74.31 P K(3-1)=74.79 P K(2-3)=68.30 空载电流(%) I0(%)=0.11 空载损耗(kW) P0=26.71 (3)转移电势E∑=1

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算发布者:admin 发布时间:2009-3-23 阅读:513次供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4

电力系统短路电流计算书

电力系统短路电流计算书 1 短路电流计算的目的 a. 电气接线方案的比较和选择。 b. 选择和校验电气设备、载流导体。 c. 继电保护的选择与整定。 d. 接地装置的设计及确定中性点接地方式。 e. 大、中型电动机起动。 2 短路电流计算中常用符号含义及其用途 a. 2I -次暂态短路电流,用于继电保护整定及校验断路器额定断充容量。 b. ch I -三相短路电流第一周期全电流有效值,用于校验电气设备和母线的动稳 定及断路器额定断流容量。 c. ch i -三相短路冲击电流,用于校验电气设备及母线的动稳定。 d. I ∞-三相短路电流稳态有效值,用于校验电气设备和导体的热稳定。 e. "z S -次暂态三相短路容量,用于检验断路器遮断容量。 f. S ∞-稳态三相短路容量,用于校验电气设备及导体的热稳定. 3 短路电流计算的几个基本假设前提 a. 磁路饱和、磁滞忽略不计。即系统中各元件呈线性,参数恒定,可以运用叠加原理。 b. 在系统中三相除不对称故障处以外,都认为是三相对称的。 c. 各元件的电阻比电抗小得多,可以忽略不计,所以各元件均可用纯电抗表示。 d. 短路性质为金属性短路,过渡电阻忽略不计。 4 基准值的选择 为了计算方便,通常取基准容量S b =100MVA ,基准电压U b 取各级电压的平均 电压,即 U b =U p =,基准电流 b b I S =;基准电抗 2b b b b X U U S ==。

常用基准值表(S 基准电压U b (kV ) 37 115 230 基准电流I b (kA ) 基准电抗X b (Ω) 132 530 各电气元件电抗标么值计算公式 元件名称 标 么 值 备 注 发电机(或电动机) " % "*100 cos d b N X S d P X φ =? "%d X 为发电机次暂态电抗的百 分值 变压器 %" * 100 k b N U S T S X = ? %k U 为变压器短路电压百分值, S N 为最大容量线圈额定容量 电抗器 2%*100 3k N b N b X U S k I U X =? ? %k X 为电抗器的百分电抗值 线路 2*0b b S l U X X l =? 其中X 0为每相电抗的欧姆值 系统阻抗 *b b kd S S c S S X = = S kd 为与系统连接的断路器的开断容量;S 为已知系统短路容量 其中线路电抗值的计算中,X 0为: a. 6~220kV 架空线 取 Ω/kM b. 35kV 三芯电缆 取 Ω/kM c. 6~10kV 三芯电缆 取 Ω/kM 上表中S N 、S b 单位为MVA ,U N 、U b 单位为kV ,I N 、I b 单位为kA 。 5 长岭炼油厂短路电流计算各主要元件参数 系统到长炼110kV 母线的线路阻抗(标么值) a. 峡山变单线路供电时: 最大运行方式下:正序; 最小运行方式下:正序 b. 巴陵变单线路供电时: 最大运行方式下:正序

两相短路故障的计算

编号0714141 课程设计 系(部)院:机电工程系 专业:电气工程及其自动化 作者姓名: 学号: 指导教师:职称:讲师 完成日期:年月日 二○一○年十二月

目录 目录 0 摘要 (2) ABSTRACT (3) 1 引言 (4) 1.1短路故障的原因 (4) 1.2短路故障发生的原因 (4) 1.3短路类型 (4) 1.4短路的危害 (4) 2 电力系统自动化的一般概念 (5) 3 本课程设计的主要任务 (6) 4 课程设计的目的 (6) 5 课程设计任务书 (6) 6课程设计内容及过程 (8) 6.1数学模型 (8) 6.1.1架空输电线的等值电路和参数 (8) 6.1.2变压器等值电路和参数 (9) 6.2对称分量法 (11) 6.2.1不对称三相量的分解 (11) 6.2.2变压器的各零序等值电路 (12) 6.3两相短路接地的分析 (13) 6.4算例 (16) 课程设计总结 (19) 参考文献 (20)

摘要 电力系统自动化(automation of power systems)对电能生产、传输和管理实现自动控制、自动调度和自动化管理。电力系统是一个地域分布辽阔,由发电厂、变电站、输配电网络和用户组成的统一调度和运行的复杂大系统。在电力系统的设计和运行中,必须考虑到可能发生的故障和不正常的运行情况,防止其破坏对用户的供电和电气设备的正常工作。从电力系统的实际运行情况看,这些故障多数是由短路引起的,例如短路时电路的电压骤降,严重影响电气设备的正常运行,短路时保护装置动作,如熔断器的保险丝熔断,将短路电路切除,这会造成停电,而且短路点越靠近电源,停电范围越大,造成生活的不便和经济上的损失,严重的短路会影响电力系统运行的稳定性,可使并列运行的发电机组失去同步,造成系统解列,不对称短路,像单相短路和两相短路。因此除了对电力系统的短路故障有一较深刻的认识外,还必须熟练掌握电力系统的短路计算。这里着重介绍简单不对称故障两相短路接地的常用计算方法。对称分量法是分析不对称故障常用方法,根据对称分量法,一组不对称的三相量可以分解为正序、负序和零序三相对称的三相量。在应用对称分量法分析计算不对称故障时必须首先作出电力系统的各序网络,通过网络化简求出各序网络对短路点的输入电抗以及正序网络的等值电势,再根据不对称短路的不同类型,列出边界方程,以求得短路点电压和电流的各序分量。 关键词:两相短路故障;短路计算;两相短路接地;对称分量法.

直流系统短路计算

直流系统短路计算 1 计算意义 为使直流牵引供电系统在城市轨道交通中更有效的发挥作用,必须保证继电保护的可靠性、选择性、灵敏性和速动性。而直流系统短路计算正是城市轨道交通直流牵引供电系统设备选型及继电保护整定所必须具备的基础条件。只有在直流系统短路计算之后,才能够进行直流系统设备选型与继电保护整定。 2 计算容 直流系统短路计算一般需要计算以下容: (1) 正常情况下双边供电时,各供电区间任一点的直流短路电流。 (2) 任一中间牵引变电所解列时,由相邻牵引变电所构成大双边供电时的区间任一点的直流短路电流。 (3) 端头牵引变电所解列时,由次端头牵引变电所单边供电的区间任一点的直流短路电流。 3 计算方法 直流牵引供电系统短路计算有两种方法:电路图法和示波图法,由于示波图法是建立在工程实践基础之上,通过对现场短路试验所拍摄的示波图进行数理分析,而计算出相关参数,因此本文仅应用电路图法进行直流系统短路计算。 (1) 电路图法 这一方法是针对城市轨道交通直流牵引供电系统电源多、供电回路多、供电方式多、回路参数多的特点,按照实际供电网络画出等效电路图、进行网络变换,在供电网络中只包括电阻。再将网络变换后的电路图利用基本定律—欧 I,而不能计姆定律、基尔霍夫定律进行计算。该方法只能计算稳态短路电流 K 算供电回路的时间常数τ和短路电流上升率di/dt,这是该计算方法的不足。 ①用电路图法进行直流短路计算需要以下两个假设条件: a 牵引供电网络中,电源电压U相同。 b 牵引变电所为电源电压,其阻ρ因不同的短路点而改变,不认为是一个固定值。 ②用电路图法进行直流短路计算需要输入以下三个条件:

电力系统下课程设短路电流计算

《电力系统分析》课程设计报告题目:3G9bus短路电流计算 系别电气工程学院 专业班级10级电气四班 学生姓名 学号 指导教师 提交日期 2012年12月10日

目录 一、设计目的 (3) 二、短路电流计算的基本原理和方法 (3) 2.1电力系统节点方程的建立 (3) 2.2利用节点阻抗矩阵计算短路电流 (4) 三、3G9bus短路电流在计算机的编程 (6) 3.1、三机九节点系统 (6) 3.3输出并计算结果 (13) 四.总结 (15)

一、设计目的 1.掌握电力系统短路计算的基本原理; 2.掌握并能熟练运用一门计算机语言(MATLAB 语言或FORTRAN 或C 语言或C++语言); 3.采用计算机语言对短路计算进行计算机编程计算。 二、短路电流计算的基本原理和方法 2.1电力系统节点方程的建立 利用节点方程作故障计算,需要形成系统的节点导纳(或阻抗)矩阵。一般短路电流计算以前要作电力系统的潮流计算,假定潮流计算的节点导纳矩阵已经形成,在此基础上通过追加支路的方式形成电力短路电流计算的节点导纳矩阵YN 。 1)对发电机节点 在每一发电机节点增加接地有源支路 i E 与i i i Z R jX =+串联 求短路稳态解: i Qi E E = i i qi Z R jX =+ 求短路起始次暂态电流解:i i E E ''= i i i Z R jX ''=+ 一般情况下发电机定子绕组电阻忽略掉,并将i E 与i i i Z R jX =+的有源支路转化成电流源 i i i I E Z =与导纳 1 i i i i i Y G B R jX =+= +并联的形式 2)负荷节点的处理 负荷节点在短路计一算中一般作为节点的接地支路,并用恒定阻抗表示,其数值由短路前瞬间的负荷功率和节点实际电压算出,即首先根据给定的电力系统运行方式制订系统的等值电路,并进行各元件标么值参数的计算,然后利用变压器和线路的参数形成不含发电机和负荷的节点导纳矩阵 YN 。 2?k LDk LDk LDk LDk V Z R jX S =+= 2 ?LDk LDk LDk LDk k S Y G jB V =+=

电力系统三相短路电流的计算

能源学院 课程设计 课程名称:电力系统分析 设计题目:电力系统三相短路电流的计算 学院:电力学院 专业:电气工程及其自动化____________ 班级:1203班________________________ 姓名:将________________________ 学号:1310240006__________________

目录 摘要 (1) 课题 (2) 第一章.短路的概述 (2) 1.1发生短路的原因 (2) 1.2发生短路的类型 (2) 1.3短路计算的目的 (3) 1.4短路的后果 (3) 第二章.给定电力系统进行三相短路电流的计算 (4) 2.1收集已知电力系统的原始参数 (4) 2.2制定等值网络及参数计算 (4) 2.2.1标幺值的概念 (4) 2.2.2计算各元件的电抗标幺值 (5) 2.2.3系统的等值网络图 (5) 第三章.故障点短路电流计算 (6) 第四章.电力系统不对称短路电流计算 (9) 4.1对称分量法 (9) 4.2各序网络的定制 (10) 4.2.1同步发电机的各序电抗 (10) 4.2.2变压器的各序电抗 (10) 4.3不对称短路的分析 (12) 4.3.1不对称短路三种情况的分析 (12) 4.3.2正序等效定则 (14) 心得体会 (15) 参考文献 (16)

电力系统分析是电气工程、电力工程的专业核心课程,通过学习电力系统分析,学生可以了解电力系统的构成,电力系统的计算分析及方法、电力系统常见的故障及其处理方法、电力系统稳定性的判断,为从事电力系统打下必要的基础。 电力系统短路电流的计算是重中之重,电力系统三相短路电流计算主要是短路电流周期(基频)分理的计算,在给定电源电势时,实际上就是稳态交流电路的求解。采用近似计算法,对系统元件模型和标幺参数计算作简化处理,将电路转化为不含变压器的等值电路,这样,就把不同电压等级系统简化为直流系统来求解。 在电力系统中,短路是最常见而且对电力系统运行产生最严重故障的后果之一。

电力系统两相接地短路计算与仿真

电力系统两相接地短路计算与仿真

辽宁工业大学《电力系统分析》课程设计(论文) 题目:电力系统两相接地短路计算与仿真(2) 院(系):电气工程学院 专业班级:电气112 学号:110303057 学生姓名:李晓冬 指导教师:孙丽颖 教师职称:教授 起止时间:14-06-30至14-07-11

课程设计(论文)任务及评语 课程设计(论文)任务 原始资料:系统如图 各元件参数如下(各序参数相同): G1、G2:S N =35MVA,V N =10.5kV,X=0.33; T1: S N =31.5MVA,Vs%=10.5,k=10.5/121kV,△Ps=180kW, △ Po=30kW,Io%=0.8;YN/d-11 T2: S N =31.5MVA,Vs%=10, k=10.5/121kV,△Ps=200kW, △Po=33kW,Io%=0.9; YN/d-11 L12:线路长70km,电阻0.2Ω/km,电抗 0.41Ω/km,对地容纳2.78×10-6S/km; L23:线路长75km,电阻0.18Ω/km,电抗 0.38Ω/km,对地容纳2.98×10-6S/km;; L13: 线路长85km,电阻0.18Ω/km,电抗 0.4Ω/km,对地容纳2.78×10-6S/km;; 负荷:S3=45MVA,功率因数均为0.9. 任务要求(节点2发生AC两相金属性接地短路时): 1 计算各元件的参数; 2 画出完整的系统等值电路图; 3 忽略对地支路,计算短路点的A、 B和C三相电压和电流; 4 忽略对地支路,计算其它各个节 点的A、B和C三相电压和支路电流; 5 在系统正常运行方式下,对各种 不同时刻AC两相接地短路进行Matlab仿 真; 6 将短路运行计算结果与各时刻短 路的仿真结果进行分析比较,得出结论。 G G G1 T1 1 L12 2 T2 G2 1:k

电力系统分析短路电流的计算

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求: (1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15.01=T X 15 .00=T X 25 .02=T X 25.02==''X X d 图1-1 1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1.在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2.正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3.负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入

代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4.零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1.单相(a 相)接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I = 经过整理后便得到用序量表示的边界条件为: (2)(0)(1)(2)(0)00fa fa fa fa fa fa V V V I I I ? =++=? ??==? 2.两相(b 相和c 相)短路 b 相和c 相短路的边界条件 . 0fa I = ; ..0fb fc I I += ; . . fb fc V V = 经过整理后便得到用序量表示的边界条件为: (0) (1)(2)(1)(2)00fa fa fa fa fa I I I V V ? =??? +=??? =?? 3. 两相(b 相和c 相)短路接地 b 相和 c 相短路接地的边界条件 0fa I = ; 0fb V = ; 0fc V =

电力系统短路电流计算书

电力系统短路电流计算书 Final revision by standardization team on December 10, 2020.

电力系统短路电流计算书 1短路电流计算的目的 a.电气接线方案的比较和选择。 b.选择和校验电气设备、载流导体。 c.继电保护的选择与整定。 d.接地装置的设计及确定中性点接地方式。 e.大、中型电动机起动。 2短路电流计算中常用符号含义及其用途 I-次暂态短路电流,用于继电保护整定及校验断路器额定断充容量。 a. 2 I-三相短路电流第一周期全电流有效值,用于校验电气设备和母线的动稳定及b. ch 断路器额定断流容量。 i-三相短路冲击电流,用于校验电气设备及母线的动稳定。 c. ch d.I∞-三相短路电流稳态有效值,用于校验电气设备和导体的热稳定。 e."z S-次暂态三相短路容量,用于检验断路器遮断容量。 f.S∞-稳态三相短路容量,用于校验电气设备及导体的热稳定. 3短路电流计算的几个基本假设前提 a.磁路饱和、磁滞忽略不计。即系统中各元件呈线性,参数恒定,可以运用叠加原 理。 b.在系统中三相除不对称故障处以外,都认为是三相对称的。 c.各元件的电阻比电抗小得多,可以忽略不计,所以各元件均可用纯电抗表示。

d.短路性质为金属性短路,过渡电阻忽略不计。 4基准值的选择 为了计算方便,通常取基准容量S b=100MVA,基准电压U b取各级电压的平均电压,即 U b =U p = ,基准电流 b b I S = ;基准电抗2 b b b b X U U ==。 常用基准值表(S b=100MVA) 各电气元件电抗标么值计算公式

电力系统三相短路的实用计算

第七章电力系统三相短路的实用计算 容要点 电力系统故障计算。可分为实用计算的“手算”和计算机算法。大型电力系统的故障计算,一般均是采用计算机算法进行计算。在现场实用中,以及大学本、专科学生的教学中,常采用实用的计算方法—‘手算’(通过“手算“的教学,可以加深学生对物理概念的理解)。 例题1: 如图7一1所示的输电系统,当k点发生三相短路,作标么值表示的等值电 路并计算三相短路电流。各元件参数已标于图中。 图7一1系统接线图 解:取基准容量Sn=100MVA,基准电压Un=Uav(即各电压级的基准电压用平均额定电压表示)。则各元件的参数计算如下,等值电路如图7一2所示

图7-2 等值电路 例题7-2: 已知某发电机短路前在额定条件下运行,额定电流 3.45 N KA I=,N COS?=

0.8、d X ''=0.125。试求突然在机端发生三相短路时的起始超瞬态电流''I 和冲击电流有名值。(取 1.8=i m p K ) 解:因为,发电机短路前是额定运行状态,取101. 10U =∠? 习题: 1、电力系统短路故障计算时,等值电路的参数是采用近似计算,做了哪些简化? 2、电力系统短路故障的分类、危害、以及短路计算的目的是什么? 3、无限大容量电源的含义是什么?由这样电源供电的系统,三相短路时,短路电流包含几种分量?有什么特点? 4、何谓起始超瞬态电流(I")?计算步骤如何?在近似计算中,又做了哪些简

化假设? 5、冲击电流指的是什么?它出现的条件和时刻如何?冲击系数imp k 的大小与什么有关? 6、在计算1"和imp i 时,什么样的情况应该将异步电动机(综合负菏)作为电源看待?如何计算? 7、什么是短路功率(短路容量)?如何计算?什么叫短路电流最大有效值?如何计算? 8、网络变换和化简主要有哪些方法?转移电抗和电流分布系数指的是什么?他们之间有何关系? 9.运算由线是在什么条件下制作的?如何制作? 10.应用运算曲线法计算短路电流周期分量的主要步骤如何? 11、供电系统如图所示,各元件参数如下:线路L, 50km, X1=0.4km Ω ;变压器T, N S =10MVA, %k u =10.5. T K = 110/11。假定供电点(s)电压为106.5kV 保持恒定不变,当空载运行时变压器低压母线发生三相短路时,试计算:短路电流周期分量起始值、冲击电流、短路电流最大有效值及短路容量的有名值。 12、某电力系统的等值电路如图所示。已知元

电力系统两相短路计算与仿真(2)

辽宁工业大学 《电力系统分析》课程设计(论文)题目:电力系统两相短路计算与仿真(2) 院(系):工程技术学院 专业班级:电气工程及其自动化 学号: 学生姓名: 指导教师:王 教师职称 起止时间:15-06-15至15-06-26

课程设计(论文)任务及评语

摘要 目前,随着科学技术的发展和电能需求的日益增长,电力系统规模越来越庞大,电力系统在人民的生活和工作中担任重要的角色,电力系统的稳定运行直接影响人们的日常生活,因此,关于电力系统的短路计算与仿真也越来越重要。 本论文首先介绍有关电力系统短路故障的基本概念及短路电流的基本算法,主要讲解了对称分量法在不对称短路计算中的应用。其次,通过具体的简单环网短路实例,对两相接地短路进行分析和计算。最后,通过MATLAB软件对两相接地短路故障进行仿真,观察仿真后的波形变化,将短路运行计算结果与各时刻短路的仿真结果进行分析比较,得出结论。 关键词:电力系统分析;两相接地短路;MATLAB仿真

目录 第1章绪论 (1) 1.1短路的原因、类型及后果 (1) 1.1.1电路系统中的短路 (1) 1.1.1短路的后果 (1) 1.2短路计算的目的 (2) 第2章电力系统不对称短路计算原理 (3) 2.1对称分量法基本原理 (3) 2.2三相序阻抗及等值网络 (3) 2.3 两相不对称短路的计算步骤 (4) 2.4两相(b相和c相)短路 (4) 第3章电力系统两相短路计算 (7) 3.1系统等值电路的化简 (7) 3.2两相短路计算 (9) 第4章短路计算的仿真 (11) 4.1仿真模型的建立 (11) 4.2 仿真结果及分析 (11) 第5章总结 (14) 参考文献 (15)

低压系统短路电流计算与断路器选择

低压系统短路电流计算与断路器选择 低压系统短路电流计算是电气设计中的一项重要组成部分,计算数据量大,过程繁琐,设计人员大多以经验估算,常常影响设计质量,甚至埋下安全隐患。本文拟在通过对低压短路电流的计算简述以及实例介绍,说明低压断路器的选择及校验方法。 在设计中,短路电流计算与断路器选择的步骤如下: ①简单估算低压短路电流; ②确定配电中心馈出电缆满足热稳定的最小截面; ③选择合适的低压断路器; ④合理选择整定值,校验灵敏度及选择性。 1.低压短路电流估算 1.1短路电流的计算用途 短路电流的计算用途主要有以下几点: ①校验保护电器的整定值,如断路器、熔断器的分断能力应大于安装处最大预期短路电流。 ②确定保护电器的整定值,使其在短路电流对开关电器及线路器材造成破坏之前切断故障电路。 ③校验开关电器及线路器材的动热稳定是否满足规范和实际运行的要求。 1.2短路电流的计算特点 短路电流计算的特点:

①用户变压器容量远小于系统容量,短路电流周期分量不衰减。 ②计入短路各元件有效电阻,但不计入元件及设备的接触电阻和电抗。 ③因线路电阻较大,不考虑短路电流非周期分量的影响。 ④变压器接线方式按D、yn11考虑。 1.3短路电流的计算方法 短路电流计算的方法: ——三相短路电流或单相短路电流kA; 式中 I k Z ——短路回路总阻抗mΩ(包括系统阻抗、变压器阻抗、母 k 线阻抗及电缆阻抗等,其中阻抗还包括电阻、电抗、相保电阻、相保电抗) U——电压V(用于三相短路电流时取230,用于单相短路电流时取220) 1.4短路电流的计算示例 下面通过范例来叙述低压短路电流的计算过程。

短路电流计算公式

变压器短路容量-短路电流计算公式-短路冲击电流的计算供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量Sjz =100 MV A 基准电压UJZ规定为8级. 230, 115, 37, 10.5, 6.3, 3.15 ,0.4, 0.23 KV 有了以上两项,各级电压的基准电流即可计算出,例: UJZ (KV)3710.56.30.4 因为S=1.73*U*I 所以IJZ (KA)1.565.59.16144

电力系统短路电流计算及标幺值算法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称; 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

系统不对称短路计算

摘要 随着电力事业的快速发展,电力电子新技术得到了广泛应用;出于技术、经济等方面的考虑,500kV 及以上的超高压输电线路普遍不换位,再加上大量非线性元件的应用,电力系统的不对称问题日益严重。因此电力系统不对称故障分析与计算显得尤为重要。基于对称分量法的基本理论,对称分量法采取的具体方法之一是解析法,即把该网络分解为正,负,零序三个对称序网,这三组对称序分量可分别按对称的三相电路分解。计算机程序法。通过计算机形成三个序网的节点导纳矩阵,然后利用高斯消去法通过相应公式对他们进行数据运算,即可求得故障端点的等值阻抗。最后根据故障类型选取相关公式计算故障处各序电流,电压,进而合成三相电流电压。进行了参数不对称电网故障计算方法的研究。通过引计算机算法,系统介绍电网参数不对称的计算机算法方法。根据断相故障和短路故障的特点,通过在故障点引入计算机算法,,给出了各种断相故障和短路故障的仿真计算。此方法以将故障电网分为对称网络和不网络两部分,在程序法则下建立起不对称电网故障计算统一模型,根据线性电路的基本理论,并借助于相序参数变换技术完成故障计算。 关键词:参数不对称电网故障计算

目录 摘要 (5) 任务题目及要求 (1) (一) 短路 (3) 短路的含义 (3) 短路产生的原因及危害 (3) 短路故障的概述 (3) (二)标幺制 (4) 标幺值的定义 (4) 采用标么制的优点 (5) (三)电力系统各序网络的制定 (5) 序网络的制定 (5) 复合序网的绘制 (5) 正序网络 (6) 负序网络 (6) 零序网络 (6) (四)计算 (6) 取基准容量: (6) 计算各元件电抗标幺值: (6) 各元件电抗标幺值: (7) K1点短路电流计算 (8) K2点短路电流计算 (9) K3点短路电流计算 (10) (五)小结 (12) 参考文献 (13)

电力系统三相短路电流的计算

银川能源学院 课程设计 课程名称:电力系统分析 设计题目:电力系统三相短路电流的计算 学院:电力学院 专业:电气工程及其自动化____________ 班级:1203班________________________ 姓名:张将________________________ 学号:1310240006__________________

目录 摘要 ............................................................................... 错误!未定义书签。课题 (2) 第一章.短路的概述 (2) 1.1发生短路的原因 (2) 1.2发生短路的类型 (2) 1.3短路计算的目的 (3) 1.4短路的后果 (3) 第二章.给定电力系统进行三相短路电流的计算 (4) 2.1收集已知电力系统的原始参数 (4) 2.2制定等值网络及参数计算 (4) 2.2.1标幺值的概念 (4) 2.2.2计算各元件的电抗标幺值 (5) 2.2.3系统的等值网络图 (5) 第三章.故障点短路电流计算...................................... 错误!未定义书签。第四章.电力系统不对称短路电流计算 (9) 4.1对称分量法 (9) 4.2各序网络的定制 (10) 4.2.1同步发电机的各序电抗 (10) 4.2.2变压器的各序电抗 (10) 4.3不对称短路的分析 (12) 4.3.1不对称短路三种情况的分析 (12) 4.3.2正序等效定则 (14) 心得体会 (15) 参考文献 (16)

电力系统两相短路计算与仿

辽 宁 工 业 大 学
《电力系统计算》课程设计(论文)
题目:
电力系统两相短路计算与仿真(1)
院(系) : 电 气 工 程 学 院 专业班级: 学 号:
学生姓名: 指导教师: 教师职称: 起止时间:13-07-01 至 13-07-12

本科生课程设计(论文)
课程设计(论文)任务及评语
院(系) :电气工程学院 G1
G
教研室:电气工程及其自动化 1 L2 2 T2 k:1 L1 3 L3 G2
G
T1 1:k
原始资料:系统如图
S3
课 程 设 计 ( 论 文 ) 任 务
各元件参数如下(各序参数相同) : G1、G2:SN=30MVA,VN=10.5kV,X=0.26; T1: SN=31.5MVA , Vs%=9.5 , k=10.5/121kV, △ Ps=220kW, △ Po=33kW,Io%=0.9 ; YN/d-11 T2: SN=31.5MVA,Vs%=10.5, k=10.5/121kV,△Ps=180kW, △Po=30kW,Io%=0.8; YN/d-11 -6 L1:线路长 80km,电阻 0.17Ω /km,电抗 0.4Ω /km,对地容纳 2.78×10 S/km; -6 L2:线路长 75km,电阻 0.2Ω /km,电抗 0.42Ω /km,对地容纳 2.88×10 S/km; ; -6 L3: 线路长 80km,电阻 0.17Ω /km,电抗 0.4Ω /km,对地容纳 3.08×10 S/km; ; 负荷:S3=45MVA,功率因数均为 0.9. 任务要求(节点 3 发生 AC 相金属性短路时) : 1 计算各元件的参数; 2 画出完整的系统等值电路图; 3 忽略对地支路,计算短路点的 A、B 和 C 三相电压和电流; 4 忽略对地支路,计算其它各个节点的 A、B 和 C 三相电压和支路电流; 5 在系统正常运行方式下,对各种不同时刻 AC 两相短路进行 Matlab 仿真; 6 将短路运行计算结果与各时刻短路的仿真结果进行分析比较,得出结论。
指 导 教 师 评 语 及 成 绩
平时考核: 总成绩:
设计质量:
答辩:
指导教师签字: 年 月 论文质量60%
1

注:成绩:平时20%
答辩20%
以百分制计算

[电气工程师]短路电流计算公式归纳

3U B 3U B S T U U S 短路电流计算 在电力系统短路电流计算中,假设各元件的磁路不饱和的目的 :可以应用叠加原理, 在短路的实用计算中,通常只用周期分量电流的有效值来计算短路功率 标么值:任意一个物理量对基准值的比值。U I Z , S U I S U 2 基准值 S B 3U B I B , I B B , Z B B S B 发电机标么值电抗: X X G % ( U GN )2 B G 100 U B S 变压器标么值电抗: X U k % ( U N ) 2 S B 线路标么值电抗: X L X 100 U B B L 2 B X % U S 电抗器标么值电抗: X R B R 100 2 B 不同基准值的标幺值之间的换算: X X ( U N )2 S B B N U B S N 三相短路:短路点电压为零,各相短路电流相等,短路电流只包含正序分量。 无限大系统供电网络短路时,电源电压保持不变,U 1,短路容量的标么值和短路电 流的标么值相等,短路电流周期分量标么值 I f U X f 1 X f S f ,短路电流: I f I f B ,短路容量:S f S f S B ,S f 3U av I f 短路容量用来校验开关的切断 能力。 转移阻抗:任意两个接点之间的等值电抗。 无限大功率电源供电电路的短路电流在暂态过程中包含交流分量和直流分量。 短路冲击电流:短路电流最大瞬时值,在短路发生后约半个周期出现,短路后 0.01s 的 瞬时值, i m 2K m I f 用于校验设备的动稳定。K m 为冲击系数,当短路发生在发电机 电压母线时, K m 1.9 ,当短路发生在发电厂高压母线时, K m 1.85 ,当短路发生在其他地点, K m 1.8 。 非周期电流的初值越大,暂态过程中短路电流最大瞬时值越大。它与短路发生时刻有关, 与短路发生时电源电势的初始相角(合闸角) 有关。短路电流冲击值在短路前空载, 电压初相位为0的情况下最大。 序阻抗:静止磁耦合元件(线路、电抗器、变压器)正序阻抗和负序阻抗相等 Z 1 Z 2 ; 零序电抗比正序电抗大。变压器零序等值电路与外电路的连接,取决于零序电流的流通 S GN S N

短路电流计算公式

二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量 (MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压(Ujz).将短路计算中各个参数都转化为和该参数的基准量的比值(相对于基准量的比值),称为标么值(这是短路电流计算最特别的地方,目的是要简化计算). (1)基准 基准容量 Sjz =100 MVA 基准电压 UJZ规定为8级. 230, 115, 37, , , ,, KV

相关文档
最新文档