二项分布教学设计新部编版

二项分布教学设计新部编版
二项分布教学设计新部编版

精品教学教案设计| Excellent teaching plan

育人犹如春风化雨,授业不惜蜡炬成灰

教师学科教案

[ 20 –20 学年度第__学期]

任教学科:_____________ 任教年级:_____________ 任教老师:_____________

xx市实验学校

精品教学教案设计| Excellent teaching plan

育人犹如春风化雨,授业不惜蜡炬成灰

教学设计

《独立重复试验

精品教学教案设计| Excellent teaching plan

育人犹如春风化雨,授业不惜蜡炬成灰独立重复试验与二项分布

一、教学内容分析:

本节内容是新教材选修2-3第二章《概率》的第4节《二项分布》的第2节。通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:等可能事件概率、互斥事件概率、条件概率、相互独立事件概率的求法以及二项分布的概念及特点。二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似的看成二项分布。在自然现象和社会现象中,大量的随机变量都服从或近似的的服从二项分布,实际应用广泛,理论上也非常重要。可以说本节内容是对前面所学知识的综合应用,是一种模型的构建。是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程。会对今后数学及相关学科的学习产生深远的影响。

二、学生学习情况分析:

(1)学生已经熟练掌握简单的概率的求法。

(2)学生的知识经验较为丰富,具备较强的抽象思维能力和演绎推理能力。

(3)学生思维灵活,积极性高,已经初步形成对数学问题的合作探究能力。

三、设计思想

本节课的设计遵循从一般到特殊,从具体到抽象的原则,适当运用多媒体辅助教学手段,通过类比推理让学生在观察分析、自主探索、合作交流的过程中,发现两点分布与二项分布以及超几何分布与二项分布的区别和联系,养成积极主动、勇于探索、自主学习的学习方式,提高学生的数学逻辑和抽象思维能力。

四、教学目标

高中数学新教学大纲明确指出本节课需达到的知识目标:在了解条件概率和相互独立事件概念的前提下,理解n次独立重复试验的模型及二项分布,并能准确的判断概率模型,培养学生的自主学习能力、数学建模能力和应用数学知识解决实际问题的能力。通过主动探究、合作学习、相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和契而不舍的钻研精神。

五、教学重点与难点

教学难点: 二项分布模型的构建。

教学难点:二项分布与超几何分布、两点分布的区别和联系。

六、教学过程设计

(一)知识准备、新课引入

(1)n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为:

精品教学教案设计| Excellent teaching plan

育人犹如春风化雨,授业不惜蜡炬成灰)(kXP?= ,nk,,2,1,0??则称随机变量

X服从二项分布.

记作:X~B(),并称p为

(2)二项分布的特点:a:b: c:

2.两点分布:

3.课前热身

(1)某同学投篮命中率为6.0,他在6次投篮中命中的次数X是一个随机变量,X~B ()故他投中2次的概率是

(2)小王通过英语听力测试的概率是31,他连续测试3次,其中恰有一次通过的概率是() A.94 B.92 C.274 D.272

【设计意图】:

通过对前一节知识复习,学生主动上黑板板演二项分布公式,及让学生口述二项分布的特点使学生对独立重复试验节及二项分布、两点分布的概念和公式有了进一步的认识,并能熟练应用。为本节课研究两点分布,二项分布及超几何的区别和联系做好准备。

(二)两点分布,超几何分布与二项分布的区别和联系的探究过程

1、超几何习题改为两点分布和二项分布的探究过程。

让学生将38页超几何习题改编为两点分布和二项分布的习题。并写出相应的分布列。引导:讨论5分钟,讨论好的小组推荐学生上黑板展示。

(1)改为两点分布:

从有4件次品的10件产品中抽取1件产品,则为次品的概率是多少?分布列为:[学情预设:此处学生很容易改为两点分布,但在分布列的书写上老师在点评时要给以指导。]

(2)改为二项分布

※(1)当抽取的方法从无放回变为有放回时,超几何分布变成为二项分布。

已知在10件产品中有4件次品,现从这10件成品中有放回的取3次,每次一件,用X 表示取得的次品数,试写出X的分布列。

[学情预设:设计这组问题目的是强调当抽取的方法从无放回变为有放回条件的重要性,能达到老师的预设与生成的目的。]

【设计意图】:让学生理解二项分布与两点分布及超几何分布的联系与区别,并能自主

编写题。

2、二项分布习题改为超几何分布的探究过程。(当产品总数很大时,超几何分布变为二项分布。)

例1.从批量较大的成品中,随机抽取10件产品进行质量检测,若这批产品的不合格率为0.05,随机变量X表示这10件产品中不合格品的数目,求随机变量X的分布列。

[学情预设:此处学生很容易从题目的提示中分析这是一个二项分布,再让学生分析为什么是一个二项分布?然后再让学生改为超几何分布。但在超几何分布的编写时老师对添加的数字要正确引导。]

设计意图:围绕近几年高考的概率的热点,进一步分清超几何分布与二项分布的区别。(三)概型的判断,问题探究

例2、某车间有5台机床,每台机床正常工作与否彼此独立,且正常工作的概率均为0.2. 设每台机床工作时需电力10KW,但因电力系统发生故障只能提供30KW的电力,问此时车

精品教学教案设计| Excellent teaching plan

育人犹如春风化雨,授业不惜蜡炬成灰间不能正常工作的概率有多大?

解决问题过程中,允许讨论。老师巡视,参与其中,适当指导,解答学生提问.5-6分钟学生跃跃欲试,纷纷举手示意.选一过程写得较详细清楚的同学代表展示自己的解答过程.

【设计意图】:通过前面几个概型的分析,让学生能够准确判断是哪一种概型,并能熟

练计算各种概型。

※链接高考(时量:8—10分钟满分:10分)

(2012四川高考理)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为110和p。

(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p的值;

(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量?,求?的概率分

布列。

此题学生通过讨论首先解决(1)中的两种做法,即正面计算和反面计算,通过对比探讨两种方法的利弊。通过对第(2)问的分析学生很容易判断这是一个二项分布,从而列出分布列。

【设计意图】:体验高考在本节知识点的考查,激发学生的研究兴趣,培养学生科学理性精神。

(四)总结

先由学生口头总结,然后教师归纳总结(由多媒体幻灯片展示):

1.二项分布的特点:

(1)每次实验的结果只能是两个互斥的结果之一。

(2)每次试验条件不变。

(3)每一次试验独立,即一次出现的结果与前面已出现的结果无关。

2.超几何分布特点:

(1)抽取的产品不再放回。

(2)产品数量是有限个

3.超几何分布与二项分布的区别于联系,并能准确判断给出的题目概型。

【设计意图】通过小结使学生对本节课的知识有一个全面的认识,掌握知识。为今后学习其它知识打基础。

(五)布置作业

①课本P56 习题2-4 A组 5

②课外拓展:自己编写一道二项分布的习题,并改为两点分布和超几何分布的习题。

【设计意图】书面作业第一个层次要求所有学生完成,第二个层次,只要求精品教学教案设计| Excellent teaching plan

育人犹如春风化雨,授业不惜蜡炬成灰学有余力的同学完成。体现了差异发展教学。

七、教学反思

本节是第二章《概率》的第4节《二项分布》的第2小节,也是学生学习概率并分清概型的重要环节,因此本节课学习对发展学生的逻辑思维能力和抽象思维能力是非常重要的。

本节课的设计遵循“提出问题——探究确认——思辩论证”的认识过程,注重引导学生通过观察、操作交流、讨论、有条理的思考和推理等活动,从多方面探究二项分布与两点分布及超几何分布的联系和区别。让学生通过自主探索、合作交流,进一步搞清楚两点分布、超几何分布及二项分布的特点。发展学生的逻辑推理能力和抽象思维能力。

本节课的设计注重训练学生用准确的数学符号标表示和计算概率。本节

课在对两点分布、超几何分布及二项分布的探究贯穿始终,体验它们的内在联系和区别,数学即生活感知生活中包涵的数学现象与数学原理,体验数学应用与实际生活,来源于实际。本节课的设计还注重了多媒体辅助教学的有效作用,在复习引入,对两点分布、超几何分布及二项分布的探究过程中,都有效地使用了多媒体。

城关中学董萍娟

二项分布教学设计公开课优质课教学设计比赛获奖版

二项分布教学设计 教材分析:相互独立事件、独立重复试验的概率及条件概率是高考重点考察的内容,在解答题中常和分布列的有关知识结合在一起考察,属中档题目。条件概率和相互独立事件的两个概念的引入,是为了更深刻的理解独立重复试验及二项分布模型。 学情分析:在此之前学生已复习了互斥事件,对立事件,分布列,两点分布,超几何分布等知识,因此在学习过程中应充分调动学生的积极性,通过学生自身的探究学习、互相合作,还有教师的适当引导才能发现二项分布的特点。此外还要让学生加强学二项分布与前面知识的区别与联系,构建知识网络。 教学目标: 知识与技能: 理解n次独立重复试验的模型; 理解二项分布的概念; 能利用n次独立重复试验的模型及二项分布解决相应的实际问题。 过程与方法: 通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法;在具体问题的解决过程中,领会二项分布需要满足的条件,培养运用概率模型解决实际问题的能力。 情感态度与价值观: 在利用二项分布解决简单的实际问题过程中,深化对某些随机现象的认识,进一步体会数学在日常生活中的广泛运用。 使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。

教学重点、难点: 教学重点:理解n次独立重复试验(n重伯努利试验); 理解二项分布的概念; 应用二项分布模型解决一些简单的实际问题。 教学难点:二项分布模型的构建; 应用二项分布模型解决一些简单的实际问题。 教学方法:由学生熟悉的硬币试验,和姚明投篮的故事引入,激起学生的兴趣。探究过程由学生合作来完成。在知识运用环节,模拟摸奖活动,由中奖学生选题做题,以检验学习效果。 教学过程: 〖创设情境〗: 情境1:在相同条件下,抛硬币3次,研究正面朝上的次数. 情境2:姚明作为中锋,职业生涯中投篮命中率为0.8,现假设投篮4次且每次命中率相同.研究投中次数. 问题1:如果将抛一次硬币看成做了一次试验,那么一共进行了多少次试验?试验间是否独立?每次试验有几个可能的结果?每次正面朝上的概率为多少?

二项分布及其应用教案定稿

2.2.3 独立重复试验与二项分布 一、教学目标 知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。 过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。 二、重难点 教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题 教学难点:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算 三、教学过程 复习引入: 1. 事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件。 2.随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记

作()P A 。 3. 概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地作为它的概率。 4.概率的性质:必然事件的概率为1 ,不可能事件的概率为0 ,随机事件的概率为0()1P A ≤≤,必然事件和不可能事件看作随机事件的两个极端情形。 5 基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。 讲授新课: 1 独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验。 2 独立重复试验的概率公式: 一般地,如果在1次试验中某事件发生的概率是P ,那么在n 次独立重复试验中 这个事件恰好发生k 次的概率k n k k n n P P C k P --=)1()(。 它是 [](1)n P P -+展开式的第1k +项。 3离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n 次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率是 k n k k n n q p C k P -==)(ξ,(k =0,1,2,…,n ,p q -=1). 于是得到随机变量ξ的概率分布如下:

二项分布教学设计

教学设计 《独立重复试验与二项分布》城关中学董萍娟

独立重复试验与二项分布 一、教学内容分析: 本节内容是新教材选修2-3第二章《概率》的第4节《二项分布》的第2节。通过前面的学习,学生已经学习掌握了有关概率和统计的基础知识:等可能事件概率、互斥事件概率、条件概率、相互独立事件概率的求法以及二项分布的概念及特点。二项分布是继超几何分布后的又一应用广泛的概率模型,而超几何分布在产品数量n相当大时可以近似的看成二项分布。在自然现象和社会现象中,大量的随机变量都服从或近似的的服从二项分布,实际应用广泛,理论上也非常重要。可以说本节内容是对前面所学知识的综合应用,是一种模型的构建。是从实际入手,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程。会对今后数学及相关学科的学习产生深远的影响。 二、学生学习情况分析: (1)学生已经熟练掌握简单的概率的求法。 (2)学生的知识经验较为丰富,具备较强的抽象思维能力和演绎推理能力。 (3)学生思维灵活,积极性高,已经初步形成对数学问题的合作探究能力。 三、设计思想 本节课的设计遵循从一般到特殊,从具体到抽象的原则,适当运用多媒体辅助教学手段,通过类比推理让学生在观察分析、自主探索、合作交流的过程中,发现两点分布与二项分布以及超几何分布与二项分布的区别和联系,养成积极主动、勇于探索、自主学习的学习方式,提高学生的数学逻辑和抽象思维能力。 四、教学目标 高中数学新教学大纲明确指出本节课需达到的知识目标:在了解条件概率和相互独立事件概念的前提下,理解n次独立重复试验的模型及二项分布,并能准确的判断概率模型,培养学生的自主学习能力、数学建模能力和应用数学知识解决实际问题的能力。通过主动探究、合作学习、相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,养成实事求是的科学态度和契而不舍的钻研精神。 五、教学重点与难点 教学难点: 二项分布模型的构建。 教学难点:二项分布与超几何分布、两点分布的区别和联系。 六、教学过程设计 (一)知识准备、新课引入 (1)n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为: ,2,1,0 k, =则称随机变量X服从二项分布. (k ) X P== ,n

二项分布知识在日常生活中的应用分析

二项分布知识在日常生活中的应用分析 二项分布是在n 次独立重复试验中引入的一个概念,它是一种常见的、重要的离散型随机变量的概率分布,引入他们实际上是对独立重复试验从概率分布角度的进一步研究。然而我们在利用二项分布原理解决实际问题时只注意到两点,即解释为什么可以看成二项分布模型,其次是考虑到它的计算,却往往忽视对计算结果进行解释,造成初学者无法摆脱知识上的种种困惑。鉴于此,我们选取几个典型案例进行剖析,供参考。 例1. 将一枚均匀硬币随机掷100次,相当于重复做了100次试验,每次有两个可能的结果(出现正面,不出现正面),出现正面的概率为1/2。 分析:如果令X 为硬币正面出现的次数,则X 服从2 1,100==p n 的二项分布,那么100100100100)2 1(C )211()21(C )(k k k k k X =-==-P 。 由此可以得到:“随机掷100次硬币正好出现50次正面”的概率为 080)2 1(C )50(10050100?≈==X P 。 在学习概率时我们会有一种误解,认为既然出现正面的概率为1/2,那么掷100次硬币出现50次正面是必然的,或者这个事件发生的概率应该很大。但计算表明这概率只有8%左右。 它说的是,许多人都投100次均匀硬币,其中大约有8%的人恰投出50次正面。另外有些人投出的正面次数可能是47次、48次、51次、52次等。总起来看,正面出现的次数约占二分之一,这和均匀硬币出现正面的概率是二分之一是一致的。 例2. 设某保险公司有10000人参加人身意外保险。该公司规定:每人每年付公司120元,若逢意外死亡,公司将赔偿10000元。若每人每年死亡率为0.006,试讨论该公司是否会赔本,其利润状况如何。 分析:在这个问题中,公司的收入是完全确定的,10000个投保人每人付给公司120元,公司的年收入为120万元。公司的支出取决于投保人中意外死亡的人数(这里略去有关公司日常性开支的讨论,如公司职工工资,行政开支等等),而这是完全随机的,公司无法在事前知道其确切人数。但公司可以知道死亡人数的分布。设X 表示这10000人中意外死亡的人数,由于每个人的死亡率为0.006,则X 服从n=10000,p=0.006的二项分布: k k k C k X P --==1000010000)006.01(006.0)( 死亡X 人时,公司要赔偿X 万元,此时公司的利润为(120-X )万元。尽管我们无法

独立重复试验与二项分布(教学设计)

2.2.3独立重复试验与二项分布(教学设计) 教学目标 知识与技能: 理解n 次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。 过程与方法: 通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念,使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象的数学思想方法。 情感态度与价值观: 使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神。 教学重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 教学难点:二项分布模型的构建。 教学过程: 一、复习回顾: 1、条件概率:在事件A 发生的条件下,事件B 发生的条件概率:() (|)() P AB P B A P A = 2、事件的相互独立性:事件A 与事件B 相互独立,则: P ( AB ) = P ( A ) P ( B ) , 若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立 二、创设情景,新课引入: 三个臭皮匠顶个诸葛亮的故事 已知诸葛亮解出问题的概率为0.8,臭皮匠老大解出问题的概率为0.6,老二为0.6,老三为0.6,且每个人必须独立解题,问三个臭皮匠中至少有一人解出的概率与诸葛亮解出的概率比较,谁大? 略解: 三个臭皮匠中至少有一人解出的概率为 三、师生互动,新课讲解: 1、分析下面的试验,它们有什么共同特点? (1)投掷一个骰子投掷5次; (2)某人射击1次,击中目标的概率是0.8,他射击10次; (3)实力相等的甲、乙两队参加乒乓球团体比赛,规定5局3胜制(即5局内谁先赢3局就算胜出并停止比赛); (4)抛硬币实验。 在研究随机现象时,经常需要在相同的条件下重复做大量试验来发现规律。例如掷硬币结果的规律,需要做大量的掷硬币试验。显然,在n 次重复掷硬币的过程中,各次试验的结果都不会受其他试验结果的影响,即 P(A 1A 2...A n )=P(A 1)P(A 2)...P(A n ). (1) 其中i A =),...,2,1(n i =是第i 次试验的结果。 2、 引入概念 一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。 1()10.40.40.40.9360.8P A B C -??=-??=>

二项分布应用举例说课讲解

二项分布应用举例

二项分布及其应用 知识归纳 1.条件概率及其性质 (1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做,用符号来表 示,其公式为P(B|A)= . 在古典概型中,若用n(A)表示事件A中基本事件的个 数,则P(B|A)= . (2)条件概率具有性质: ①; ②如果B和C是两互斥事件,则P(B+C|A)=. 2.相互独立事件 (1)对于事件A、B,若A的发生与B的发生互不影响,则称A、B是相互独立事件. (2)若A与B相互独立,则P(B|A)=, P(AB)=P(B|A)·P(A)=. (3)若A与B相互独立,则,,也都相互独立. (4)若P(AB)=P(A)P(B),则. 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种相互对立的结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的.

(2)在n 次独立重复试验中,事件A 发生k 次的概率为 (p 为事件A 发生的概率),若一个随机变量X 的分布列如上所述,称X 服从参数为n ,p 的 二项分布,简记为 . 自我检测 1.(2011·辽宁高考,5)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶 数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.12 解析:条件概率P (B |A )=P AB P A P (A )=C 23+1C 25=410=25,P (AB )=1C 25=110,∴P (B |A )=11025=1 4. 2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直 到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( ) A .C 1012? ????3810? ????582 B . C 911? ????389? ????58238 C .C 911? ????589? ????382 D .C 911? ????389? ?? ??582 解:事件{ξ=12}表示第12次取到红球,前11次取到9个红球,故P (ξ=12)=C 911? ????389·? ?? ??582·38. 3.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军, 乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( ) A.12 B.35 C.23 D.34 解析:∵甲、乙两队决赛时每队赢的概率相等,∴每场比赛甲、乙赢的概率均为12. 记甲获冠军为事件A ,则P (A )=12+12×12=34 4.(2010·福建高考,13)某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连 续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率

二项分布应用举例

二项分布及其应用 知识归纳 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做 ,用符号 来表 示,其公式为P (B |A )= . 在古典概型中,若用n (A )表示事件A 中基本事件的个 数,则P (B |A )= . (2)条件概率具有性质: ① ; ②如果B 和C 是两互斥事件,则P (B +C |A )= . 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )= , P (AB )=P (B |A )·P (A )= . (3)若A 与B 相互独立,则 , , 也都相互独立. (4)若P (AB )=P (A )P (B ),则 . 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种相互对立的结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)在n 次独立重复试验中,事件A 发生k 次的概率为 (p 为事件A 发生的概率),若一个随机变量X 的分布列如上所述,称X 服从参数为n ,p 的二项分布,简记为 . 自我检测 1.(2011·辽宁高考,5)从1,2,3,4,5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( ) A.18 B.14 C.25 D.12 解析:条件概率P (B |A )= PAB PA P (A )=C 23+1 C 25=410=25,P (AB )=1C 25=110,∴P (B |A )=1 1025 =14 . 2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10 次时停止,设停止时共取了ξ次球,则P (ξ=12)等于( ) A .C 1012????3810????582 B . C 911????389????58238 C .C 911 ????589????382 D .C 911????389??? ?582 解:事件{ξ=12}表示第12次取到红球,前11次取到9个红球,故P (ξ=12)=C 911????389·????582·38 . 3.(2011·广东高考)甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢 两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为( )

第8讲二项分布及其应用教案理新人教版

第8讲 二项分布及其应用 【20XX 年高考会这样考】 1.考查条件概率和两个事件相互独立的概念. 2.考查n 次独立重复试验的模型及二项分布. 3.能解决一些简单的实际问题. 【复习指导】 复习时要把事件的独立性、事件的互斥性结合起来,会对随机事件进行分析,即把一个随机事件分拆成若干个互斥事件之和,再把其中的每个事件分拆成若干个相互独立事件之积,同时掌握好二项分布的实际意义及其概率分布和数学期望的计算方法. 基础梳理 1.条件概率及其性质 (1)对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件概率,用符号P (B |A )来表示,其公式为P (B |A )= P AB P A . 在古典概型中,若用n (A )表示事件A 中基本事件的个数,则P (B |A )=n AB n A . (2)条件概率具有的性质: ①0≤P (B |A )≤1; ② 如果B 和C 是两互斥事件,则P (B ∪C |A )=P (B |A )+P (C |A ). 2.相互独立事件 (1)对于事件A 、B ,若A 的发生与B 的发生互不影响,则称A 、B 是相互独立事件. (2)若A 与B 相互独立,则P (B |A )=P (B ), P (AB )=P (B |A )·P (A )=P (A )·P (B ). (3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. (4)若P (AB )=P (A )P (B ),则A 与B 相互独立. 3.独立重复试验与二项分布 (1)独立重复试验 独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一次试验只有两种结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)二项分布 在n 次独立重复试验中,设事件A 发生的次数为k ,在每次试验中事件A 发生的概率为p ,

2.4.1二项分布 教案

备课时间 [来源:学科网]年月日[来 源:Z+xx+https://www.360docs.net/doc/f91552723.html,] 备课人:[来源:Z§xx§https://www.360docs.net/doc/f91552723.html,] 上课时间[来源:https://www.360docs.net/doc/f91552723.html,] 第周周月日 班级节次 课题 2.4.1二项分布总课时数第节 教学目标理解n次独立重复试验及二项分布模型,会判断一个具体问题是否服从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相应的实际问题。 重难 点 重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 难点:二项分布模型的构建。 教学 参考 教材、教参、非常学案 授课方法自学法、启发法 教学辅助手段 多媒体 专用教室 教学教学二次备课

过程设计一、问题情境 1.射击n次,每一次可能击中目标,也可能击不中目标,而且当条件 不变时,可认为每次击中目标的概率p是不变的。问每次射击是否相 互影响?是否相互独立? 2.抛掷一颗质地均匀的骰子n次,每一次抛掷可能出现5,也可能不 出现5,问每次掷出5的概率是多少? 3.种植n粒棉花种子,每一粒种子可能出苗,也可能不出苗,其出苗 的概率是67%。 分析以上问题,可视为n次实验,每次实验是否相互影响,是否相互 独立? 二、构建数学 在以上基础上总结(二项分布定义):一般地,由n次构成, 且每次实验相互独立完成,每次实验的结果仅有两种对立的 状态即A与A,每次实验中P(A)=p>0,称这样的实验为n次 独立重复实验。 在n 次独立重复试验中,设事件A发生的次数为X ,在 每次试验中事件A发生的概率为p,那么在n次独立重复试 验中,事件A恰好发生k 次的概率为 则称随机变量X服从二项分布,记作 X~B(n,p),也叫 Bernolli分布。 教师提 前布置 让学生 先预习, 课堂提 问 检查学 生预习 的情况。 给学生 留一些 时间记 忆公式, 观察其 特点,理 解如何 应用。 教学教学二次备课

高考数学 二项分布及其应用

高考数学 二项分布及其应用 1.已知盒中装有3着,现需要一只卡口灯泡,电工师傅每次从中任取一只并不放回,则在他第1次抽到的是螺口灯泡的条件下,第2次抽到的是卡口灯泡的概率为 ( ) A.310 B.29 C.78 D.79 解析:设事件A 为“第1次抽到是螺口灯泡”,事件B 为“第2次抽到是卡口灯泡”,则P (A )=310,P (AB )=310×79=2190=7 30.在已知第1次抽到螺口灯泡的条件下,第2次抽 到卡口灯泡的概率为P (B |A )=P (AB )P (A )=7 30310=7 9 . 答案:D 2.设A 、B 为两个事件,若事件A 和B 同时发生的概率为3 10,在事件A 发生的条件下, 事件B 发生的概率为1 2,则事件A 发生的概率为________________. 解析:由题意知,P (AB )=310,P (B |A )=1 2, ∴P (A )=P (AB )P (B |A )=3 1012=3 5 . 答案:35 3.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为________. 解析:设种子发芽为事件A ,种子成长为幼苗为事件AB (发芽,又成活为幼苗),出芽后的幼苗成活率为: P (B |A )=0.8,P (A )=0.9. 根据条件概率公式P (AB )=P (B |A )·P (A )=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72.

答案:0.72 题组二 相互独立事件 4.(2010·抚顺模拟)国庆节放假,甲去北京旅游的概率为1 3,乙、丙去北京旅游的概率分别 为14,1 5 .假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为 ( ) A.5960 B.35 C.12 D.160 解析:因甲、乙、丙去北京旅游的概率分别为13,14,1 5.因此,他们不去北京旅游的概 率分别为23,34,45,所以,至少有1人去北京旅游的概率为P =1-23×34×45=3 5. 答案:B 5.如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率 都是1 2 ,且是相互独立的,则灯泡甲亮的概率为 ( ) A.18 B.14 C.12 D.116 解析:理解事件之间的关系,设“a 闭合”为事件A ,“b 闭合”为事件B ,“c 闭合”为事件C ,则灯亮应为事件ACB - ,且A ,C ,B 之间彼此独立,且P (A )=P (B )=P (C ) =12,所以P (AB - C )=P (A )·P (B )·P (C )=18 . 答案:A 6.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才算合格. (1)分别求甲、乙两人考试合格的概率; (2)求甲、乙两人至少有一人考试合格的概率. 解:(1)设甲、乙两人考试合格的事件分别为A 、B ,则 P (A )=413428310C C C C +213 646 310C C C C +=23. P (B )=213 828310 C C C C +=14 15. (2)因为事件A 、B 相互独立,所以甲、乙两人考试均不合格的概率为

人教版高中数学选修2-3 第二章 二项分布及其应用 同步教案

学生姓名性别年级学科数学 授课教师上课时间年月日第()次课 共()次课 课时:2课时 教学课题人教版选修2-3 第二章二项分布及其应用同步教案 教学目标知识目标:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。 能力目标:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。 情感态度价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。 教学重点与难点理解n次独立重复试验的模型及二项分布,能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。 教学过程 知识梳理 离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是 错误!未找到引用源。,(k=0,1,2,…,n,错误!未找到引用源。). 于是得到随机变量ξ的概率分布如下: ξ0 1 …k …n P 错误!未找 到引用源。错误!未找 到引用源。 … 错误!未找 到引用源。 … 错误!未 找到引用 源。 由于错误!未找到引用源。恰好是二项展开式 错误!未找到引用源。 中的各项的值,所以称这样的随机变量ξ服从二项分布(binomial distribution ),记作ξ~B(n,p),其中n,p为参数,并记错误!未找到引用源。=b(k;n,p).

例题精讲 【例1】某射手每次射击击中目标的概率是0.8,求这名射手在 10 次射击中,(1)恰有 8 次击中目标的概率;(2)至少有 8 次击中目标的概率.(结果保留两个有效数字.) 【方法技巧】设ξ为击中目标的次数,则ξ~B (10, 0.8 ) . 如果在一次试验中某事件发生的概率是P,那么在n 次独立重复试验中这个事件恰好发生k次的概率是 k n k k n n q p C k P- = =) (ξ 错误!未找到引用源。,(k=0,1,2,…, n,错误!未找到引用源。). 【例2】某厂生产电子元件,其产品的次品率为5%.现从一批产品中任意地连续取出2件,写出其中次品数ξ的概率分布. 【方法技巧】由题意,随机变量ξ~B(2,5%).如果在一次试验中某事件发生的概率是P,那么在n次独立重复 试验中这个事件恰好发生k次的概率是 k n k k n n q p C k P- = =) (ξ 错误!未找到引用源。,(k=0,1,2,…,n,错误! 未找到引用源。). 【例3】重复抛掷一枚筛子5次得到点数为6的次数记为ξ,求P(ξ>3).

二项分布教学设计

第二章概率 § 2.4二项分布 一、教学目标: 1?知识与技能 (1)理解n次独立重复试验模型;理解二项分布的概念; (2)能利用n次独立重复试验模型及二项分布解决一些简单的实际问题。 2.过程与方法 在具体问题的解决过程中,领会二项分布需要满足的条件,培养运用概率模型解决实际问题的能力。 3?在利用二项分布解决一些简单的实际问题 过程中,深化对某些随机现象的认识,进一步体会数学在日常生活中的广泛运用。二、教学重点和难点: 重点:理解n次独立重复试验模型;理解二项分布的概念; 难点:利用二项分布解决一些简单的实际问题。 三、教学方法: 自主探究,合作交流和启发式相结合 四、教学过程: (一)复习:超几何分布 (二)新课引入: 3 引例某射击运动员进行了4次射击,假设每次击中目标的概率均为4,且各次击中

目标与否是相互独立的。用 X 表示4次射击中击中目标的次数,求 X 的分布列 阅读并回答本节思考交流1 、n 次独立重复试验 1. n 次独立重复试验的定义: 一般指在同样条件下可以重复进行的,各次之间相互独立的一种试验。 2. n 次独立重复试验的 特点: ⑴每次试验只有两种相互独立的结果,分别可以称为“成功”和“失败” ⑵每次试验“成功”的概率为 p ,每次试验“失败”的概率为 1 p ; ⑶各次试验之间是相互 独立的。 1 3、4 二、二项分布 观察: 一项式(4 4)的一项展开式: 思考: k 1 4 k ^3 k X 的分布列P (X k ) C 4(4) (4)相当于二项展开式的什么?

二项分布的定义: 在n次独立重复试验中,某事件A在每次试验中“成功”的概率为p。若变量X 表示在n次试验中事件A “成功”的次数。 P(X k) C:p k(1 p)n k,k 0,123, n 如果X的分布列如上所述,则称X服从参数为n, p的二项分布。简记为: X ?B(n, p) 阅读并回答本节思考交流2 例1:有N件产品,其中有M件次品.现从中取出n件,用X表示n次抽取中含有次品的个数.(n M,n N M,M N) ⑴采取放回式抽样,求X的分布列; ⑵采取不放回式抽样,求X的分布列; 例2.某公司安装了3台报警器,它们彼此独立工作,且发生险情时每台报警器报警的 概率均为0.9。求险情发生时下列事件的概率: ⑴3台都没有报警; ⑵恰有1台报警; ⑶恰有2台报警; ⑷3台都报警; ⑸至少有2台报警; ⑹至少有1台报警。

二项分布知识在日常生活中的应用分析

二项分布知识在日常生活中的应用分析 山东黄丽生 二项分布是在n次独立重复试验中引入的一个概念,它是一种常见的、重要的离散型随 机变量的概率分布,引入他们实际上是对独立重复试验从概率分布角度的进一步研究。然而我们在利用二项分布原理解决实际问题时只注意到两点,即解释为什么可以看成二项分布模 型,其次是考虑到它的计算,却往往忽视对计算结果进行解释,造成初学者无法摆脱知识上 的种种困惑。鉴于此,我们选取几个典型案例进行剖析,供参考。 例1.将一枚均匀硬币随机掷100次,相当于重复做了100次试验,每次有两个可能的结果 (出现正面,不出现正面),出现正面的概率为1/2。 1 分析:如果令X为硬币正面出现的次数,则X服从n 100 p -的二项分布,那么 2 P(X k) C k00(^k(1 1)100k Cw0(l)100。 由此可以得到:“随机掷100次硬币正好出现50次正面”的概率为 1 P(X 50) C;00(3)1000 08。 在学习概率时我们会有一种误解,认为既然出现正面的概率为1/2,那么掷100次硬 币出现50次正面是必然的,或者这个事件发生的概率应该很大。但计算表明这概率只有8% 左右。 它说的是,许多人都投100次均匀硬币,其中大约有8%的人恰投出50次正面。另外 有些人投出的正面次数可能是47次、48次、51次、52次等。总起来看,正面出现的次数 约占二分之一,这和均匀硬币出现正面的概率是二分之一是一致的。 例2.设某保险公司有10000人参加人身意外保险。该公司规定:每人每年付公司120元, 若逢意外死亡,公司将赔偿10000元。若每人每年死亡率为0.006,试讨论该公司是否会赔本,其利润状况如何。 分析:在这个问题中,公司的收入是完全确定的,10000个投保人每人付给公司120元,公司的年收入为120万元。公司的支出取决于投保人中意外死亡的人数(这里略去有关公司日 常性开支的讨论,如公司职工工资,行政开支等等) ,而这是完全随机的,公司无法在事前 知道其确切人数。但公司可以知道死亡人数的分布。设X表示这10000人中意外死亡的人数,由于每个人的死亡率为0.006,贝U X服从n=10000,p=0.006的二项分布:

二项分布及其应用-优质学案

n次独立重复试验与二项分布及其应用 班级: 【高考要求】 1.了解条件概率和两个事件相互独立的概念. 2.理解n 次独立重复试验的模型及二项分布. 3.能解决一些简单的实际问题. 【知识梳理】 1.条件概率 在已知B发生的条件下,事件 A发生的概率叫作B发生时A 发生的条件概率,用符号____________ 来表示,其公式为 P(A|B) =韻P(B)>0). 2.相互独立事件 (1)一般地,对两个事件 A, B,如果有称A、B相互独立. (2)如果A、B相互独立,则 A与~B、A与B、A与B也相互 独立. ⑶如果A1, A2,…,A n相互独立,则有:P (A1A2…A n)= P(A1)P(A2)…P(A n). 3.二项分布 进行n次试验,如果满足以下条件: (1)每次试验只有两个相互对立的结果,可以分别称为“成功” 和“失败”; (2)每次试验“成功”的概率均为 —P; (3)各次试验是___________的. 用X表示这n次试验中成功的次数,则 P(X= k) = __________________ (k= 0,1,2,…,n) 若一个随机变量X的分布列如上所述,称X服从参数为n, P 的二项分布,简记为X?B(n, p). 【回顾检测】 1.袋中有3红5黑8个大小形状相同的小球,从中依次摸出两个小球,则在第一次摸得红球的条件下,第二次仍是红球的概率为() A 3 厂2 肿 f 3 A- B- C- D 2.(2014课标全国n)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6, 已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( ) A . 0.8 B. 0.75 C. 0.6 D. 0.45 3.如图,用K, A , A2三类不同的元件连接成一个系统.当K 正常工作且A1,A2至少有一个正常工作时,系统 正常工作.已知K, A1, A2正常工作的概率依次 为090.8, 常工 作的概率为() D. 0.576 且在两 次罚OR则该队员每次罚球的命中率 小组: 姓名: 评价: ,则 P, “失败”的概率均为1 0.8,贝y系统正 ~0= -0-二—— A. 0.960 B. 0.864 C. 0.720 4.某篮球队员在比赛中每次罚球的命中率相同, 球中至多命中一次的概率为16

独立重复实验与二项分布教学设计(罗雪梅)

课题:独立重复试验与二项分布 人教A版选修2-3第二章第二单元第三课时 授课教师:广东省清远市英德中学罗雪梅 一、教学目标 ●知识与技能: 理解n次独立重复试验及二项分布模型,会判断一个具体问题是否服 从二项分布,培养学生的自主学习能力、数学建摸能力,并能解决相 应的实际问题。 ●过程与方法: 通过主动探究、自主合作、相互交流,从具体事例中归纳出数学概念, 使学生充分体会知识的发现过程,并渗透由特殊到一般,由具体到抽象 的数学思想方法。 ●情感态度与价值观: 使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯 物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精 神。 二、教学重点、难点 重点:独立重复试验、二项分布的理解及应用二项分布模型解决一些简单的实际问题。 难点:二项分布模型的构建。 三、教学方法与手段 教学方法:诱思探究教学法 学习方法:自主探究、观察发现、合作交流、归纳总结。 教学手段:多媒体辅助教学

四、教学过程

附:板书设计与时间安排1、板书设计

教案说明 我有这样的深刻体会:好的教学情景的创设,等于成功的一半。因而,我以一个轻松愉快的猜数游戏把学生带进一个轻松愉快的课堂环境中。从游戏开始,诱思深入,把老师在堂上讲、学生在堂下听的教学过程变为师生共同探索,共同研究的过程。学生围绕老师提出的一系列具有趣味性和启发性的层层入深的问题,展开讨论,使问题得到解决,从而突出本节重点,突破本节难点。在整个教学过程中,我主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线,思维为主攻”的“四为主”原则。教师不是抛售现成的结论,而是充分暴露学生的思维,展示“发现”的过程,突出“师生互动”的教学,这种设计充分体现了教师的主导作用。学生在一系列的思考、探究中逐步完成了本节的学习任务,充分实现了学生的主体性地位,在整个教学过程中,始终着眼于培养学生的思维能力,这种设计符合现代教学观和学习观的精神,体现了素质教育的要求。 教与学有机结合而对立统一。良好的教学设想,必须通过教学实践来体现,教师必须善于驾驭教法,指导学法,完成教学目标,从而使学生愉快地、顺利地、认真地、科学地接受知识。

人教版高中数学二项式定理教学设计全国一等奖

二项式定理(第1课时) 一、容和容解析 容:二项式定理的发现与证明. 容解析:本节是高中数学人教A版选修2-3第一章第3节的容.二项式定理是多项式乘法的特例,是初中所学多项式乘法的延伸,此容安排在组合数模型之后,随机变量及其分布之前,既是组合计数模型的一个应用,也是为学习二项分布作准备.另外,由于二项式系数是一些特殊的组合数,由二项式定理可以导出一些组合数的恒等式,这对深化组合数的认识有好处。 由于二项式定理的发现,可以通过从特殊到一般进行归纳概括,在归纳概括过程中还可以用到组合计数模型,因此,这部分容对于培养学生数学抽象与数学建模素养有着不可忽略的价值.教学中应当引起充分重视. 二、学情分析 这一堂课是面对高二学生。学生已经初步具备了多项式乘法,同类项合并,排列计数原理,组合数计数原理以及归纳推理等知识储备。能够在教师的引导下理解并掌握本节课中的推理演绎过程。但是,学生的自我探究,归纳,分析的能力还有待提高。 三、课程学习目标 (1)知识目标:使学生掌握二项式定理及推导方法,二项式展开式、通项公式的特点,并能利用二项式定理计算或证明一些简单问题。 (2)能力目标:在学生对二项式定理形成的参与讨论过程中,培养学生观察、猜想、归纳的能力,以及学生的化归意识及知识迁移能力。 (3)情感目标:通过二项式定理的学习,培养学生解决数学问题的兴趣和信心,让学生感受数学在的和谐、对称美及数学符号应用的简洁美。 四、设计思想: 本课采用合作探究、自主学习、合作交流的研究性学习方式,重点放在定理的形成、证明的探究及定理基本应用上,在知识的形成、发展过程中展开思维,逐步培养学生发现问题、探索问题、解决问题的能力和创造性思维的能力。 目标解析: (1)二项式展开式是依多项式乘法获得的特殊形式,因此从多项式乘法出发去发现二

2.2 二项分布及其应用(2)

作业: 一.选择题 1.甲、乙两人独立地解同一问题,甲能解决这个问题的概率是1p ,乙能解决这个问题的概率是2p ,那么其中至少有1人能解决这个问题的概率是 ( D ) A .21p p +; B .21p p ?; C .211p p ?-; D .121(1)(1)p p ---. 2.在一个盒子中有大小相同的10个球,其中6个红球,4个白球,两人无放回地各取一个球,则在第一个人摸出红球的条件下,第二个人也摸出红球的概率是 ( A ) A .13; B .23; C .49; D .59 . 【解析】设“第一个人摸出红球”为事件A ,“第二个人摸出红球”为事件B ,则()11692105490 C C P A A ?==,()11652103090C C P AB A ?==,则()()()5|9 P AB P B A P A ==。 3.两个独立事件1A 和2A 发生的概率分别为1p 和2p ,则有且只有一个发生的概率为 .()()122111p p p p -+- 4. (04年重庆) 甲、乙、丙三人每次射击命中目标的概率分别为0.7、0.6和0.5,计算: ⑴三人各向目标射击一次,求恰有两人命中目标及至少有一人命中目标的概率; ⑵若甲连续射击三次,求他恰好一次命中的概率. 解:⑴设i A (3,2,1=i )表示事件“第i 人命中目标”,显然1A 、2A 、3A 相互独立,且7.0)(1=A P ,6.0)(2=A P ,5.0)(3=A P . 三人中恰有两人命中目标的概率为 44.0)(321321321=??+??+??A A A A A A A A A P . 三人中恰有至少有一人命中目标的概率为 94.0)(1321=??-A A A P . ⑵设k A 表示“甲在第k 次命中目标”,3,2,1=k .显然1A 、2A 、3A 相互独立,且7.0)()()(321===A P A P A P . 甲连续射击三次,恰好一次命中的概率为 203.0)(321321321=??+??+??A A A A A A A A A P .

二项分布其应用教案定稿

223独立重复试验与二项分布 一、教学目标 知识与技能:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际问题。 过程与方法:能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算。 情感、态度与价值观:承前启后,感悟数学与生活的和谐之美,体现数学的文化功能与人文价值。 二、重难点 教学重点:理解n次独立重复试验的模型及二项分布,并能解答一些简单的实际 问题 教学难 点: 能进行一些与n次独立重复试验的模型及二项分布有关的概率的计算 三、教学过程 复习引入: 1.事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件。 2?随机事件的概率:一般地,在大量重复进行同一试验时,事件A发生的频率 m n 总是接近某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记

作 P(A) 3.概率的确定方法:通过进行大量的重复试验,用这个事件发生的频率近似地 作为它的概率。 4.概率的性质:必然事件的概率为1 ,不可能事件的概率为0,随机事件的概 率为0 P( A) 1,必然事件和不可能事件看作随机事件的两个极端情形。 5基本事件:一次试验连同其中可能出现的每一个结果称为一个基本事件。 讲授新课: 1独立重复试验的定义: 指在同样条件下进行的,各次之间相互独立的一种试验。 2独立重复试验的概率公式: 一般地,如果在1次试验中某事件发生的概率是 P ,那么在n 次独立重复试验中 这 个事件恰好发生k 次的概率P n (k) C n P(1 P* I 3离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发 生,在n 次独立重复试验中这个事件发生的次数 E 是一个随机变量.如果在一次 试验中某事件发生的概率是 P ,那么在n 次独立重复试验中这个事件恰好发生 k 次的概率是 / I \ /k k n k P n ( k) C n P q ,(心 o ,1,2,…,n , q 1 p ). 于是得到随机变量E 的概率分布如下: k k n k 它是(1 P) n 展开式的第 k 1 项

二项分布及其应用教案(绝对经典)

§12.5二项分布及其应用 会这样考 1.考查条件概率和两个事件相互独立的概念;2.考查n次独立重复试验及二项分布的概念;3.考查利用二项分布解决一些简单的实际问题. 1.条件概率及其性质 (1)对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫作条件概率,用符号 P(B|A)来表示,其公式为P(B|A)=P(AB) P(A) (P(A)>0). 在古典概型中,若用n(A)表示事件A中基本事件的个数,则P(B|A)=n(AB) n(A) . (2)条件概率具有的性质: ①0≤P(B|A)≤1; ②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A). 2.相互独立事件 (1)对于事件A、B,若A的发生与B的发生互不影响,则称A、B是相互独立事件. (2)若A与B相互独立,则P(B|A)=P(B), P(AB)=P(B|A)P(A)=P(A)P(B). (3)若A与B相互独立,则A与B,A与B,A与B也都相互独立. (4)若P(AB)=P(A)P(B),则A与B相互独立. 3.二项分布 (1)独立重复试验是指在相同条件下可重复进行的,各次之间相互独立的一种试验,在这种试验中每一 次试验只有__两__种相互对立的结果,即要么发生,要么不发生,且任何一次试验中发生的概率都是一样的. (2)在n次独立重复试验中,事件A发生k次的概率为C k n p k(1-p)n-k(k=0,1,2,…,n)(p为事件A发生的 概率),若一个随机变量X的分布列如上所述,称X服从参数为n,p的二项分布,简记为X~B(n,p).期望:EX=n p 方差:DX=n p(1-p) [难点正本疑点清源] 1.“互斥事件”与“相互独立事件”的区别与联系 (1)“互斥”与“相互独立”都是描述的两个事件间的关系. (2)“互斥”强调不可能同时发生,“相互独立”强调一个事件 的发生与否对另一个事件发生的概率没有影响. (3)“互斥”的两个事件可以独立,“独立”的两个事件也可以互斥. 2.计算条件概率有两种方法 (1)利用定义P(B|A)=P(AB) P(A) ;

相关文档
最新文档